2000-September-20

Edwin Hart

Discussion with Takayuki Sato of Japan at SC 2/WG 2 Meeting in Athens

Mr. Sato (Sato-San in Japanese) had proposed revising TR 15285 because of new requirements he discovered. This note summarizes his points and then attempts to classify the issues he raised.

Sato-San had read the drafts of ISO/IEC TR 15285, An operational model for characters and glyphs (frequently called “The character-glyph model”, and provided many good comments. Sato-San retired from HP-Japan and started working to help computerize the languages of minority people in southern and southeastern Asia. As a result of his new work, two WG 2 meetings ago, Sato-San submitted three documents that proposed revising the Technical Report. Although I did not participate at that meeting, I did read the documents. Unfortunately, what he wanted was unclear to me; I needed to see some examples to understand his concerns. He submitted a fourth paper to the previous WG 2 Meeting but that paper still did not clarify his concerns for me. We agreed to discuss his concerns at the WG 2 Meeting in Athens.

He described several concerns.

His major concern is to have a document to provide guidance to the people trying to decide the set of characters to be coded for scripts (writing systems) that have not yet been coded for computers. He believes that the input method (that maps keystrokes or sounds into coded characters) be independent of how a script is coded but that the input method be natural to use so that it will be accepted and used.

He started by saying he was concerned about the linguists description of the elements of the writing system and how writing was taught versus coding the “characters” because the relationship between the linguistic elements and what the coding elements should be was not always straightforward, particularly in the southern and southeaster areas of Asia.

Concern 1: Boundary Identification

He first described a theoretical example in Hangul to illustrate a difficulty with recognizing boundaries. Hangul is a syllabic writing system used in Korea. Each Hangul syllable contains 3 sound elements: a beginning consonant, a vowel, a final consonant (but sometimes the beginning or final consonant is not present): Ci V Cf. Hangul has several consonants that use two shapes and it also has a consonant with just one of the shapes (e.g., “TT” and “TT”, if I substitute Latin characters for Hangul Jamo), each representing a different sound. Both consonants can appear as initial or final consonants. Now children are taught to write these in order, so they might write “TAT” or “TATT” or “TTAT” and each syllable has a different sound. Now if the keyboard has a key for “T” but not “TT”, then someone could type “BATTTAR” as part of a stream of text. When a computer parses this text to identify the syllable elements, the syllable boundary is unclear: “BAT” “TTAR” versus “BATT” “TAR”. Sato-San’s concern was to code the graphic elements of a writing system to simplify processing.

He identified four alternatives for coding to make it easier to identify the boundary:

1. Assign one code for “T” so that “TT” represents two “T” codes.
Note that this alternative will require a dictionary to identify the boundaries but even this may be insufficient if, in the above example, both boundaries are valid.

2. Assign a different code for the “T” versus the “TT” consonant.
Note that this may require a separate key on the keyboard (which may or may not be acceptable), or if the person types a “T” followed by another “T” for the “TT” consonent, moves the problem into the input method to decide the boundary.

3. Assign a different code for the initial consonant versus the final consonant of the same shape.

4. Code a separator character to indicate the boundary.
Note that this may require changing the way people think about the writing system, and if so, it would not be acceptable.

Note that Hangul uses both alternative 2 and 3 to distinguish between single and double shapes, and between initial and final consonants.

Concern 2: Order of Data Entry, Display Order versus Sound Order

In some scripts, the order of the written shapes may not be the order of pronunciation (sound order). In these scripts, a person may write the shapes in writing order or in sound order. In some of these scripts, children are taught to write in sound order. As adults, some still use sound order but others simplify this to writing order. This requires that an input method be able to accept keystrokes in either sound or written order. Moreover, the input method may require the person to set one alternative or the other but it would be better if the input method could determine the input order being used automatically.

How should the elements be stored?

1. In display order

2. In sound order

In addition, inserting a character or adding the next character may change the shapes of a nearby character. An example of this is the Devanagari script. However, this affects the displaying of coded characters but this represents a separate topic that is addressed by the character-glyph model (TR 15285: 1998).

Concern 3: Input Method

Sato-San believes that the input method should be independent of the way a script is coded. Moreover, he hopes to standardize the functions (and APIs) that would be required to map keystrokes to coded characters.

Design Goals:

Coding should be independent from

1. The input mechanism (keyboard to coded characters or voice to coded characters)

Input mechanism should be natural for the user

1. If a keyboard already exists (e.g., for a typewriter) and it is widely accepted, computer input should mimic this.

2. The person should not need to enter a symbol (e.g., a syllable or word separator) if he would not normally be doing this.

3

