Corrigendum to Unicode 3.0.1

This corrigendum forbids the generation and interpretation of "non-shortest form" UTF-8.
The current C12 forbids the generation of "non-shortest form" UTF-8, and forbids the interpretation of illegal sequences, but not the interpretation of "non-shortest form". Where software does interpret the non-shortest forms, security issues can arise. For example, process A performs security checks, but does not check for non-shortest forms. Process B accepts the byte sequence from process A, and transforms it into UTF-16 while interpreting non-shortest forms. The UTF-16 text may then contain characters that should have been filtered out by process A. 

To address issue, the Unicode Technical Committee has modified the definition of UTF-8 to forbid conformant implementations from interpreting non-shortest forms for BMP characters, and clarified some of the conformance clauses. These modifications make use of updated notation: see the Glossary for any unfamiliar terms. The UTF-8 program in http://www.unicode.org/Public/PROGRAMS/CVTUTF/ has been upgraded to reflect this corrigendum. 

Change C12 to the following: 

	C12
	(a) When a process generates data in a Unicode Transformation Format, it shall not emit ill-formed byte code unit sequences.
(b) When a process interprets data in a Unicode Transformation Format, it shall treat illegal byte code unit sequences as an error condition.
(c) A conformant process shall not interpret illegal UTF code unit sequences as characters.
(d) Irregular UTF code unit sequences shall not be used for encoding any other information.


Add the following notes after C12: 

· The definition of each UTF specifies the illegal code unit sequences in that UTF. For example, the definition of UTF-8 (D36) specifies that code unit sequences such as <C0, AF> are illegal. 

· Internally, a particular function might be used that does not check for illegal code unit sequences. However, a conformant process can use that function only on data that has already been certified to not contain any illegal code unit sequences. 

· Processes that require unique representation shall not interpret irregular UTF code unit sequences as characters. They may, for example, reject or remove those sequences. Processes may transform irregular code unit sequences into the equivalent well-formed code value sequences. 

· Conformant processes shall not interpret illegal code unit sequences. However, the conformance clauses do not, for example, prevent utility programs from operating on "mangled" text. For example, a UTF-8 file could have had CRLF sequences introduced at every 80 bytes by a bad mailer program. This could result in some UTF-8 byte sequences being interrupted by CRLFs, producing illegal byte sequences. This mangled text is no longer UTF-8. It is permissible for a conformant program to repair such text, recognizing that the mangled text was originally well-formed UTF-8 byte sequences. However, such repair of mangled data is a special case, and shall not be used in circumstances where it would cause security problems. 

Delete the second sentence in the note under D32: 

For example, UTF-8 allows nonshortest code value sequences to be interpreted: a UTF-8 conformant mayt map the code value sequence C0 80 (110000002 100000002) to the Unicode value U+0000, even though a UTF-8 conformant process shall never generate that code value sequence -- it shall generate the sequence 00 (000000002) instead. 

Modify D36 as follows, and add a note:
  

	D36
	(a) UTF-8 is the Unicode Transformation Format that serializes a Unicode code point as a sequence of one to four bytes, as specified in Table 3.1.
(b) Any UTF-8 byte sequences that do not match the patterns listed in Table 3.1B, Legal UTF-8 Byte Sequences are illegal.
(c) An irregular code unit sequence in UTF-8 is a six-byte sequence where the first three bytes correspond to a high surrogate, and the next three bytes correspond to a low surrogate. As a consequence of C12, these irregular UTF-8 sequences shall not be generated by a conformant process.


· The problematic "non-shortest form" byte sequences in UTF-8 were those where BMP characters could be represented in two or more ways. These sequences are illegal, since they are not allowed by Table 3.1B. 

Delete the two text paragraphs after Table 3.1. The relevant portions have been elevated into definitions or conformance clauses.
When converting a Unicode scalar value to UTF-8, the shortest form that can represent those values shall be used. This practice preserves uniqueness of encoding. For example, the Unicode binary value <0000000000000001> is encoded as <00000001>, not as <11000000 10000001>. The latter is an example of an irregular UTF-8 byte sequence. Irregular UTF-8 sequences shall not be used for encoding any other information. 

When converting from UTF-8 to a Unicode scalar value, implementations do not need to check that the shortest encoding is being used. This simplifies the conversion algorithm. 

Replace them by the following table and text:
  

	Table 3.1B. Legal UTF-8 Byte Sequences

	 Code Points
	1st Byte
	2nd Byte
	3rd Byte
	4th Byte

	U+0000..U+007F
	00..7F
	 
	 
	 

	U+0080..U+07FF
	C2..DF
	80..BF 
	 
	 

	U+0800..U+0FFF
	E0
	A0..BF
	80..BF 
	 

	U+1000..U+FFFF
	E1..EF
	80..BF
	80..BF 
	 

	U+10000..U+3FFFF
	F0
	90..BF
	80..BF
	80..BF

	U+40000..U+FFFFF
	F1..F3
	80..BF
	80..BF
	80..BF

	U+100000..U+10FFFF
	F4
	80..8F
	80..BF 
	80..BF


Table 3.1B. lists all of the byte sequences that are legal in UTF-8. A range of byte values such as A0..BF indicates that any byte from A0 to BF (inclusive) is legal in that position. Any byte value outside of the ranges listed is illegal. For example, the byte sequence <C0, AF> is illegal since C0 is not legal in the 1st Byte column. The byte sequence <E0, 9F, 80> is illegal since in the row where E0 is legal as a first byte, 9F is not legal as a second byte. The byte sequence <F4, 80, 83, 92> is legal, since every byte in that sequence matches a byte range in a row of the table (the last row). 

· Cases where a trailing byte range is limited from the 80..BF range are underlined in the table to call them to the reader's attention. These occur only in the second byte of a sequence. 

3

