The Unicode Stability Policy

October 18, 2002

The Unicode Standard Stability Policy

Unlike many other standards, the Unicode Standard is continually expanding: new characters are added to meet a variety of uses, ranging from technical symbols to letters for archaic languages. Character properties are also expanded to meet implementation requirements.

In each new version of the Unicode Standard, the Unicode Consortium may add characters or make certain changes in characters that were encoded in a previous version of the standard. To minimize the impact on existing implementations, however, there are limitations imposed by the consortium on the types of changes that can be made. (For further information, see Versions of the Unicode Standard, Where is my Character?, and Frequently Asked Questions.)

This document lists the policies of the Unicode Consortium regarding character encoding stability.

1. Encoding. Once a character is encoded, it will not be moved or removed.

This ensures that implementers can always depend on each version of the Unicode Standard being a superset of the previous version. The Unicode Standard may deprecate the character (that is, formally discourage its use), but it will not reallocate, remove or reassign the character.

Note: Ordering of characters is handled via collation, not by moving characters to different codepoints. For more information, see UTS #10: Unicode Collation Algorithm and the Unicode FAQ.

2. Name. Once a character is encoded, its character name will not be changed.
The character names are used to distinguish between characters, and do not always express the full meaning of each character. They are designed to be used programmatically, and thus must be stable.

In some cases the original name chosen to represent the character is inaccurate in one way or another. Any such inaccuracies are dealt with by adding annotations to the character name list (which is printed in the Unicode Standard and provided in a machine-readable format), or by adding descriptive text to the standard.

Note: It is possible to produce translated names for the characters, to make the information conveyed by the name accessible to non-English speakers.

3. Normalization. Once a character is encoded, its canonical combining class and decomposition mapping will not be changed in a way that will destabilize normalization. In particular, the following constraints will be maintained under all circumstances:
Decomposition Mapping

a. no character will be given a decomposition mapping when it did not previously have one

b. no decomposition mapping will be removed from a character

c. decomposition mappings will not change in type (canonical to compatibility or vice versa)

d. the number of characters in a decomposition mapping will not change

Canonical Combining Class

e. no character with a canonical combining class of zero will be given a non-zero combining class

f. the order relation (greater than, equal to, or less than) of the canonical combining classes of any two characters will never change

The decomposition mapping may only be changed at all in the following exceptional set of circumstances:

· when there is a clear and evident mistake identified in the Unicode Character Database (such as a typographic mistake), and

· when that error constitutes a clear violation of the identity stability policy (#4), and

· when the correction of such an error does not violate constraints (a)-(d)

If a string contains only characters from a given version* of the Unicode Standard (e.g., Unicode 3.1.1), and it is put into a normalized form in accordance with that version of Unicode, then it will be in normalized form according to any past or future versions of Unicode.

Note: If an implementation normalizes a string that contains characters that are not assigned in the version of Unicode that it supports, that string might not be in normalized form according to a future version of Unicode. For example, suppose that a Unicode 3.0 program normalizes a string that contains new Unicode 3.1 characters. That string might not be normalized according to Unicode 3.1.
* where the version is 3.1.0 or later.

4. Identity. Once a character is encoded, its properties may still be changed, but not in such a way as to change the fundamental identity of the character.
The consortium will endeavor to keep the values of the other properties as stable as possible, but some circumstances may arise that require changing them. Particularly in the situation where the Unicode Standard first encodes less-well documented characters and scripts, the exact character properties and behavior initially may not be well known. As more experience is gathered in implementing the characters, adjustments in the properties may become necessary. Examples of such properties include, but are not limited to, the following:

· General category

· Case mappings

· Bidi properties

· Compatibility decomposition tags
(e.g. vs. <compat>)

· Representative glyphs

However, character properties will not be changed in a way that would affect character identity. For example, the representative glyph for U+0061 "A" cannot be changed to "B"; the general category for U+0061 "A" cannot be changed to Ll (lowercase letter); and the decomposition mapping for U+00C1 (Á) cannot be changed to <U+0042, U+0301> (B, ´).

5. Property Value. The structure of certain property values in the Unicode Character Database will not be changed:
Further description of these invariants is provided in described in UnicodeData.html:

· The General Category values will not be further subdivided.

· The Bidi Category values will not be further subdivided.

· Combining classes are limited to the values 0 to 255.

· All characters other than those of General Category M* have the combining class 0.

· Canonical and Compatibility mappings are always in canonical order, and the resulting recursive decomposition will also be in canonical order.

· Canonical mappings are always limited either to a single value or to a pair. The second character in the pair cannot itself have a canonical mapping.

	

[image: image2.png]

Last updated: - Friday, October 18, 2002 15:46:41
3

