Two Bytes of the Cherry: Unicode and Mac OS X, Part 1

 by Matt Neuburg <matt@tidbits.com>

 If you're using Mac OS X, a massive revolution is proceeding

 unnoticed on your computer. No, I don't mean Unix, preemptive

 multitasking, or any other familiar buzzwords. I'm talking about

 text.

 How can text be revolutionary? Text is not sexy. We take text for

 granted, typing it, reading it, editing it, storing it. Text is

 one of the main reasons most people bought computers in the first

 place. It's a means, a medium; it's not an end, not something

 explicit. The keyboard lies under our hands; strike a key and the

 corresponding letter appears. What could be simpler?

 But the more you know about text and how it works on a computer,

 the more amazing it is that you can do any typing at all. There

 are issues of what keyboard you're using, how the physical keys

 map to virtual keycodes, how the virtual keycodes are represented

 as characters, how to draw the characters on the screen, and how

 store information about them in files. There are problems of

 languages, fonts, uppercase and lowercase, diacritics, sort order,

 and more.

 In this article I'll focus on just one aspect of text: Unicode.

 Whether or not you've heard of Unicode, it affects you. Mac OS X

 is a Unicode system. Its native strings are Unicode strings. Many

 of the fonts that come with Mac OS X are Unicode fonts.

 But there are problems. Mac OS X's transition to Unicode is far

 from complete. There are places where Unicode doesn't work, where

 it isn't implemented properly, where it gets in your way. Perhaps

 you've encountered some of these, shrugged, and moved on, never

 suspecting the cause. Well, from now on, perhaps you'll notice the

 problems a little more and shrug a little less. More important,

 you'll be prepared for the future, because Unicode is coming. It's

 heavily present on Mac OS X, and it's only going to become more

 so. Unicode is the future - your future. And as my favorite movie

 says, we are all interested in the future, since that is where we

 shall spend the rest of our lives.

ASCII No Questions -- To understand the future, we must start

 with the past.

 In the beginning was writing, the printing press, books, the

 typewriter, and in particular a special kind of typewriter for

 sending information across electrical wires - the teletype.

 Perhaps you've seen one in an old movie, clattering out a news

 story or a military order. Teletype machines worked by encoding

 typed letters of the alphabet as electrical impulses and decoding

 them on the other end.

 When computers started to be interactive and remotely operable,

 teletypes were a natural way to talk to them; and the first

 universal standard computer "alphabet" emerged, not without some

 struggle, from how teletypes worked. This was ASCII (pronounced

 "askey"), the American Standard Code for Information Interchange;

 and you can still see the teletype influence in the presence of

 its "control codes," so called because they helped control the

 teletype at the far end of the line. (For example, hitting

 Control-G sent a control code which made a bell ring on the

 remote teletype, to get the operator's attention - the ancestor

 of today's alert beep.)

 The United States being the major economic and technological force

 in computing, the ASCII characters were the capital and small

 letters of the Roman alphabet, along with some common typewriter

 punctuation and the control codes. The set originally comprised

 128 characters. That number is, of course, a power of 2 - no

 coincidence, since binary lies at the heart of computers.

 When I got an Apple IIc, I was astounded to find ASCII extended

 by another power of 2, to embrace 256 characters. This made sense

 mathematically, because 256 is 8 binary bits - a byte, which was

 the minimum unit of memory data. This was less wasteful, but it

 was far from clear what to do with the extra 128 characters, which

 were referred to as "high ASCII" to distinguish them from the

 original 128 "low ASCII" characters. The problem was the

 computer's monitor - its screen. In those days, screen

 representation of text was wired into the monitor's hardware,

 and low ASCII was all it could display.

Flaunt Your Fonts, Watch Your Language -- When the Macintosh

 came along in 1984, everything changed. The Mac's entire screen

 displayed graphics, and the computer itself, not the monitor

 hardware, had the job of constructing the letters when text was

 to be displayed. At the time this was stunning and absolutely

 revolutionary. A character could be anything whatever, and for

 the first time, people saw all 256 characters really being used.

 To access high ASCII, you pressed the Option key. What you saw

 when you did so was amazing: A bullet! A paragraph symbol!

 A c-cedilla! Thus arrived the MacRoman character set to which

 we've all become accustomed.

 Since the computer was drawing the character, you also had a

 choice of fonts - another revolution. After the delirium of

 playing with the Venice and San Francisco fonts started to

 wear off, users saw that this had big consequences for the

 representation of non-Roman languages. After all, no law tied

 the 256 keycodes to the 256 letters of the MacRoman character set.

 A different font could give you 256 _more_ letters - as the Symbol

 font amply demonstrated. This, in fact, is why I switched to a

 Mac. In short order I was typing Greek, Devanagari (the Sanskrit

 syllabary), and phonetic symbols. After years of struggling with

 international typewriters or filling in symbols by hand, I was

 now my own typesetter, and in seventh heaven.

Trouble in Paradise -- Heaven, however, had its limits.

 Suppose I wanted to print a document. Laser printers were

 expensive, so I had to print in a Mac lab where the computers

 didn't necessarily have the same fonts I did, and thus couldn't

 print my document properly. The same problem arose if I wanted to

 give a file to a colleague or a publisher who might not have the

 fonts I was using, and so couldn't view my document properly.

 Windows users posed yet another problem. The Windows character

 set was perversely different from the Mac. For example, WinLatin1

 (often referred to, somewhat inaccurately, as ISO 8859-1) places

 the upside-down interrogative that opens a Spanish question at

 code 191; but that character is 192 on Mac (where 191 is the

 Norwegian slashed-o).

 And even among Mac users, "normal" fonts came in many linguistic

 varieties, because the 256 characters of MacRoman do not suffice

 for every language that uses a variation of the Roman alphabet.

 Consider Turkish, for instance. MacRoman includes a Turkish

 dotless-i, but not a Turkish s-cedilla. So on a Turkish Mac the

 s-cedilla replaces the American Mac's "fl" ligature. A parallel

 thing happens on Windows, where (for example) Turkish s-cedilla

 and the Old English thorn characters occupy the same numeric

 spot in different language systems.

Tower of Babel -- None of this would count as problematic were

 it not for communications. If your computing is confined to your

 own office and your own printer and your own documents, you can

 work just fine. But cross-platform considerations introduce a

 new twist, and of course the rise of the Internet really brought

 things to a head. Suddenly people whose base systems differed

 were sending each other email and reading each other's Web pages.

 Conventions were established for coping, but these work only to

 the extent that people and software obey them. If you've ever

 received email from someone named "=?iso-8859-1?Q?St=E9phane?=,"

 or if you've read a Web page where quotes appeared as a funny-

 looking capital O, you've experienced some form of the problem.

 Also, since fonts don't travel across the Internet, characters

 that depend on a particular font may not be viewable at all. HTML

 can ask that certain characters should appear in a certain font

 on your machine when you view my page, but a fat lot of good that

 will do if you don't have that font.

 Finally, there is a major issue I haven't mentioned yet: for some

 writing systems, 256 characters is nowhere near enough. An obvious

 example is Chinese, which requires several thousand characters.

 Enter Unicode.

The Premise and the Promise -- What Unicode proposes is simple

 enough: increase the number of bytes used to represent each

 character. For example, if you use two bytes per character,

 you can have 65,536 characters - enough to represent the Roman

 alphabet plus various accents and diacritics, plus Greek, Russian,

 Hebrew, Arabic, Devanagari, the core symbols of various Asian

 languages, and many others.

 What's new here isn't the codification of character codes to

 represent different languages; the various existing character sets

 already did that, albeit clumsily. Nor is it the use of a double-

 byte system; such systems were already in use to represent Asian

 characters. What's new is the grand unification into a single

 character set embracing all characters at once. In other words,

 Unicode would do away with character set variations across

 systems and fonts. In fact, in theory a single (huge) font

 could potentially contain all needed characters.

 It turns out, actually, that even 65,536 symbols aren't enough,

 once you start taking into account specialized scholars'

 requirements for conventional markings and historical characters

 (about which the folks who set the Unicode standards have often

 proved not to be as well informed as they like to imagine).

 Therefore Unicode has recently been extended to a potential 16

 further sets of 65,536 characters (called "supplementary planes");

 the size of the potential character set thus approximates a

 million, with each character represented by at most 4 bytes. The

 first supplementary plane is already being populated with such

 things as Gothic; musical and mathematical symbols; Mycenean

 (Linear B); and Egyptian hieroglyphics. The evolving standard

 is, not surprisingly, the subject of various political, cultural,

 technical, and scholarly struggles.

<http://www.unicode.org/>

<http://www.unicode.org/unicode/standard/principles.html>

 What has all this to do with you, you ask? It's simple. As I

 said at the outset, if you're a Mac OS X user, Unicode is on

 your computer, right now. But where? In the second half of

 this article, I'll show you.

Two Bytes of the Cherry: Unicode and Mac OS X, Part 2

 by Matt Neuburg <matt@tidbits.com>

 In the first part of this article, I introduced you to Unicode, a

 grand unification scheme whereby every character in every writing

 system would be represented by a unique value, up to a potential

 one million distinct characters and symbols. Mac OS X has Unicode

 built in. In this concluding part of the article, we'll look for

 it.

<http://db.tidbits.com/getbits.acgi?tbart=06774>

Forced Entry -- To prove to yourself that Unicode is present

 on your computer, you can type some of its characters. Now,

 clearly you won't be able to do this in the ordinary way, since

 the keyboard keys alone, even including the Option and Shift

 modifiers, can't differentiate even 256 characters. Thus there

 has to be what's called an "input method." Here's a simple one:

 open the International preferences pane of Mac OS X's System

 Preferences, go to the Keyboard Menu tab, and enable the Unicode

 Hex Input checkbox. Afterwards, a keyboard menu will appear in

 your menu bar (on my machine this looks, by default, like an

 American flag).

 Now we're ready to type. Launch TextEdit from your Applications

 folder. From the keyboard menu, choose Unicode Hex Input. Now

 hold down the Option key and type (without quotes or spaces)

 "042E 0440 0438". You'll see the Russian name "Yuri" written

 as three Cyrillic characters. The values you typed were the

 Unicode hexadecimal (base-16) numeric codes for these

 characters.

<http://www.unicode.org/charts/PDF/U0400.pdf>

 Observe that if you now select "Yuri" and change the font, it

 still reads correctly. Is this because every font in Mac OS X

 includes Cyrillic letters? No! It's because, if the characters

 to be displayed aren't present in the font you designate, Mac OS X

 automatically hunts through your installed fonts to find any font

 that includes them, and uses that instead. That's important,

 because a font containing all Unicode characters would be

 huge, not to mention a lot of work to create. This way, font

 manufacturers can specialize, and each font can contribute

 just a subset of the Unicode repertoire.

 Now, Unicode Hex Input, though it can generate any Unicode

 character if you happen to know its hex code, is obviously

 impractical. In real life, there needs to be a better way of

 typing characters. One way is through keyboard mappings. A

 keyboard mapping is the relationship between the key you type

 and the character code you generate. Normally, of course, every

 key generates a character from the ASCII range of characters. But

 consider the Symbol font. In Mac OS 9, the Symbol font was just an

 alternative set of characters superimposed on the ASCII range. In

 Mac OS X, though, Symbol characters are Unicode characters; they

 aren't in the ASCII range at all. So to type using the Symbol

 font, you must use a different keyboard mapping: you type in the

 ordinary way, but your keystrokes generate different keycodes

 than they normally would, so you reach the area of the Unicode

 repertoire where the Symbol characters are.

 To see this, first enable the Symbol mapping in the International

 preference pane. Next, open Key Caps from the Application folder's

 Utilities folder, and choose Symbol from the Font menu. Now play

 with the keyboard menu. If you choose the U.S. keyboard mapping,

 Key Caps displays much of the font as blank; if you choose the

 Symbol keyboard mapping, the correct characters appear. In fact,

 it's really the mapping (not the font) that's important, since

 the Symbol characters appear in many other fonts (and, as we saw

 earlier, Mac OS X fetches the right character from another font

 if the designated font lacks it).

 Another common keyboard mapping device is to introduce "dead"

 keys. You may be familiar with this from the normal U.S. mapping,

 which lets you access certain diacritical variations of vowels,

 such as grave, acute, circumflex, and umlaut, using dead keys.

 For example, in the U.S. mapping, typing Option-u followed by

 "u" creates u-umlaut; the Option-u tells the mapping to suspend

 judgment until the next typed input shows what character is

 intended. The Extended Roman keyboard mapping, which you can

 enable in the International preference pane, extends this

 principle to provide easy access to even more Roman diacritics;

 for example, Option-a becomes a dead key that puts a macron over

 the next vowel you type.

<http://homepage.mac.com/goldsmit/.Pictures/ExtendedRoman.jpg>

 Various other input methods exist for various languages, some

 of them (as for Japanese) quite elaborate. Unfortunately, Apple's

 selection of these on Mac OS X still falls short of what was

 available in Mac OS 9; for example, there is no Devanagari,

 Arabic, or Hebrew input method for Mac OS X. In some cases, the

 input method for a language won't appear in Mac OS X unless a

 specific font is also present; to get the font, you would install

 the corresponding Language Kit into Classic from the Mac OS 9 CD.

 In other cases, the material may be available through Software

 Update. I won't give further details, since if you need a specific

 input method you probably know a lot more about the language, and

 Unicode, than I do.

<http://docs.info.apple.com/article.html?artnum=106484>

<http://docs.info.apple.com/article.html?artnum=120065>

Exploring the Web -- An obvious benefit of Unicode

 standardization is the possibility of various languages and

 scripts becoming universally legible over the Web. For a taste

 of what this will be like, I recommend the UTF-8 Sampler page of

 Columbia University's Kermit project; the URL is given below.

 You'll need to be using OmniGroup's OmniWeb browser; this is the

 only browser I've found that renders Unicode fonts decently. For

 best results, also download James Kass's Code2000 font and drop

 it into one of your Fonts folders before starting up OmniWeb. (If

 you're too lazy to download Code2000 you'll still get pretty good

 results thanks to the Unicode fonts already installed in Mac OS X,

 but some characters will be replaced by a "filler" character

 designed to let you know that the real character is missing.)

<http://www.omnigroup.com/applications/omniweb>

<http://home.att.net/~jameskass/CODE2000.ZIP>

<http://www.columbia.edu/kermit/utf8.html>
 When you look at the Sampler using OmniWeb, you should see Runic,

 Middle English, Middle High German, Modern Greek, Russian,

 Georgian, and many others. One or two characters are missing,

 but the results are still amazingly good. The only major problem

 is that the right-to-left scripts such as Hebrew and Arabic are

 backwards (that is to say, uh, forwards). Note that you're not

 seeing pictures! All the text is being rendered character by

 character from your installed fonts, just as in a word processor.

 You may wonder how an HTML document can tell your browser what

 Unicode character to display. After all, to get an ordinary

 English "e" to appear in a Web page, you just type an "e" in

 the HTML document; but how do you specify, say, a Russian "yu"

 character? With Unicode, there are two main ways. One is to use

 the numbered entity approach; just as you're probably aware that

 you can get a double-quote character in HTML by saying """,

 so you can get a Russian "yu" by saying "ю" (because 1102

 is the decimal equivalent of that character's Unicode value).

 This works fine if a page contains just a few Unicode characters;

 otherwise, though, it becomes tedious for whoever must write and

 edit the HTML, and makes for large documents, since every such

 character requires six bytes. A better solution is UTF-8.

 To understand what UTF-8 is, think about how you would encode

 Unicode as a sequence of bytes. One obvious way would just be

 to have the bytes represent each character's numeric value. For

 example, Russian "yu" is hexadecimal 044E, so it could be

 represented by a byte whose value is 04 and a byte whose value

 is 4E. This is perfectly possible - in fact, it has an official

 name, UTF-16 - but it lacks backwards compatibility. A browser

 or text processor that doesn't do Unicode can't read any

 characters of a UTF-16 document - even if that document

 consists entirely of characters from the ASCII range. And

 even worse, a UTF-16 document can't be transmitted across

 the Internet, because some of its bytes (such as the 04 in

 our example) are not legal character values. What's necessary

 is a Unicode encoding such that all bytes are themselves

 legal ASCII characters.

 That's exactly what UTF-8 is. It's a way of encoding Unicode

 character values as sequences of Internet-legal ASCII characters -

 where members of the original ASCII character set are simply

 encoded as themselves. With this encoding, an application (such

 as a browser or a word processor) that doesn't understand UTF-8

 will show sequences of Unicode characters as ASCII - that is,

 as gibberish - but at least it will show any ordinary ASCII

 characters correctly. The HTML way to let a browser know that it's

 seeing a UTF-8 document is a <META> tag specifying the "charset"

 as "utf-8". OmniWeb sees this and interprets the Unicode sequences

 correctly. For example, the UTF-8 encoding of Russian "yu" is

 D18E. Both D1 and 8E are legal ASCII character bytes: on a Mac

 they're an em-dash followed by an e-acute. Indeed, you can just

 type those two characters into an HTML document that declares

 itself as UTF-8, and OmniWeb will show them as a Russian "yu".

 If you want to learn more about the Unicode character set and

 test your fonts against the standard, or if you'd like to focus

 on a particular language, Alan Wood's Web pages are an extremely

 well-maintained portal and an excellent starting point. And

 TidBITS reader Tom Gewecke (who also provided some great help

 with this article) maintains a page with useful information

 about the state of languages on the Mac, with special attention

 to Mac OS X and Unicode.

<http://www.hclrss.demon.co.uk/unicode/index.html>

<http://hometown.aol.com/tg3907/mlingos9.html>
Exploring Your Fonts -- Meanwhile, back on your own hard disk,

 you may be wondering what Unicode fonts you have and what Unicode

 characters they contain. Unfortunately, Apple provides no way

 to learn the answer. You can't find out with Key Caps, since

 the range of characters corresponding to keys and modifiers is

 minuscule in comparison with the Unicode character set. Most other

 font utilities are blind to everything beyond ASCII. One great

 exception is the $15 FontChecker, from WunderMoosen. This program

 lets you explore the full range of Unicode characters in any font,

 and is an absolute must if you're going to make any sense of

 Unicode fonts on your Mac. It also features drag-and-drop, which

 can make it helpful as an occasional input method. I couldn't

 have written this article without it.

<http://www.wundermoosen.com/wmXFCHelp.html>

 Also valuable is UnicodeChecker, a free utility from Earthlingsoft

 that displays every Unicode character. Unlike FontChecker, it

 isn't organized by font, but simply shows every character in

 order, and can even display characters from the supplementary

 planes. (Download James Kass's Code2001 font if you want to

 see some of these.)

<http://homepage.mac.com/earthlingsoft/apps.html#unicodechecker>

<http://www.unicode.org/Public/UNIDATA/>

<http://home.att.net/~jameskass/CODE2001.ZIP>

A Long Way To Go -- Unicode is still in its infancy; Mac OS X

 is too. So if this overview has given you the sense that Unicode

 on Mac OS X is more of a toy than a tool, you're right. There

 needs to be a lot of growth, on several fronts, for Mac OS X's

 Unicode support to become really useful.

 A big problem right now is the lack of Unicode support in

 applications. Already we saw that not all browsers are created

 equal; we had to use OmniWeb to view a Unicode Web page correctly

 (try the UTF-8 Sampler page in another browser to see the

 difference). And there's good reason why I had you experiment

 with typing Unicode using TextEdit and not some other word

 processor. Also, be warned that you can't necessarily tell

 from its documentation what an application can do. Software

 companies like to use the Unicode buzzword, but there's many

 a slip 'twixt the buzzword and the implementation. Microsoft

 Word X claims you can "enter, display, and edit text in all

 supported languages," but it doesn't accept the Unicode Hex

 Input method and often you can't paste Unicode characters into

 it. BBEdit can open and save Unicode text files, but its display

 of Unicode characters is poor - it often has layout problems,

 and it can display only a single font at a time (whereas, as

 we've seen, Unicode characters are typically drawn from various

 fonts). BBEdit also doesn't accept the Unicode Hex Input method,

 so you can't really use it to work with Unicode files.

 The operating system itself must evolve too. The Unicode standard

 has requirements about bidirectional scripts and combining

 multiple characters that Mac OS X doesn't yet fully handle. The

 installed fonts don't represent the full character set. More input

 methods are required, and Apple needs to provide utilities for

 creating keyboard mappings, and perhaps even simple input methods,

 so that users can start accessing their favorite characters

 easily. The Unicode standard, meanwhile, is itself constantly

 being revised and extended. At the same time, Windows users

 are getting built-in language and Unicode support that in some

 respects is light-years ahead of Mac OS X. The hope is that

 as things progress, Apple will catch up, and the Unicode promise

 of Mac OS X will start to be fulfilled. Then the Mac will be not

 just a digital hub, but a textual hub as well.

