
L2/99-286
US comments to the PDTR ballot on TR 14652

Documents: SC22 N2955 (SC22/WG20 N690, L2/99-209)
September 24, 1999

1. General Comments

The US is in favor of the change of status of this document from a
draft standard to a draft technical report, which seems appropriate
under ISO directives, given the disagreements within the committee
regarding how to proceed and the lack of consensus to make the
document an International Standard. However, the conversion from
a draft standard to a draft technical report does not seem to have
been completed. Two issues stand out:

1. There are a number of places in the document where it refers to
itself as a "standard". These must, of course, all be corrected.
Places we noted were: p. iv, lines 77, and 110 (two times) and
p. 3, line 268. The entire document should be searched to guarantee
that no other instances occur.

2. While it is not unheard of for a Technical Report to contain
a conformance clause, and makes a certain amount of sense, given
the history of this document, it is still unusual. Furthermore, the
language throughout the Technical Report is expressed in terms that
express conformance: "...shall be used as...", "...shall contain...",
and so on. The more appropriate rhetorical structure for a Technical
Report is simply to describe and specify things, rather than
strive to sound as if it is a standard even when it isn't. To
pick a typical example from page 7 of the document:

 "The FDCC-set definition text shall contain one or more FDCC-set
 category source definitions, and shall not contain more than one
 definition for the same FDCC-set category."

That is a prescriptive specification, tied to the conformance clause.
The descriptive reformulation would be:

 "The FDCC-set definition contains one or more FDCC-set category
 source definitions, and does not contain more than one definition
 for the same FDCC-set category."

We would prefer that the text be rewritten to remove its prescriptive
character. But failing that, it would make sense to at least add a
prominent paragraph to the Forward that describes the origin
of the document, explains why it is written *like* a standard, but
is not actually a standard. What is there now is just directives
boiler plate, but does not explain why the text is still written
in its prescriptive manner and why it still has a conformance clause.

2. Technical Comments

2.1. p. v, line 126

 "A standard set of values for all the categories has been defined
 covering the repertoire of ISO/IEC 10646-1."

 This may not be correct, depending on what is meant by "covering
 the repertoire". LC_COLLATE, by reference to FCD3 14651, does indeed
 provide full coverage for 10646-1 (plus Amendments 1-7), plus
 two characters from Amendment 18. LC_CTYPE also intends to cover
 the same repertoire, although it is difficult to determine whether
 it is actually complete. In any case, PDTR 14652 is insufficiently
 precise in defining the repertoire to be covered, since the
 "repertoire of ISO/IEC 10646-1" is constantly changing.

 It would be helpful to refer to specific versions of the Unicode
 Standard to define repertoire, rather than 10646-1 plus amendments,
 since that would be more precise (and mechanically checkable, since
 a fixed, machine-readable data file exists for each Unicode version).
 For example, 10646-1 plus Amendments 1-7 (or 1-9, for that matter,
 since Amendments 8 and 9 did not add characters), corresponds
 to Unicode 2.0.0. But the addition of the euro sign and object
 replacement character can be specified exactly as Unicode 2.1.9,
 but does not correspond to any particular configuration of 10646-1:1993
 plus amendments.

2.2. p. 1, line 169 in Normative References

 This lists 10646-1:1993 as the normative reference. We think this
 is a mistake. Given the timing of this Technical Report, it is
 clear that the reference should be to 10646-1:2000, the
 second edition. Then the specification of the particular repertoire
 of that standard to be covered should be by reference to
 a particular version (or versions) of the Unicode Standard,
 or by reference to the numbered collections of the standard
 (e.g. collection BMP-AMD.7 is explicitly provided in 10646-1:2000
 to specify the repertoire that matches Unicode 2.0.0.).

2.3. p. 3, line 270, section 3.2.1 Notation for defining syntax.

 This entire syntax is unhelpful and could easily be dispensed
 with if the thrust of this document were not to maintain
 upward compatibility with POSIX specifications. In a
 descriptive specification of cultural conventions, it is
 far better to simply specify a tagged format of some sort.
 This would allow dispensing with the superfluous C-style
 printf specifiers and "\n" line terminators, etc. Such a
 format would be more useful to other users of the
 cultural conventions, and if properly designed could be
 easily converted to XML, where it could be transmitted
 and verified in standard ways.

 Furthermore, use of the printf argument specifiers in this
 meta-syntax conflicts with the definition of other
 similar format specifiers for date, time, and other

 format specifications within particular FDCC-set categories.
 This is most confusing in a Technical Report. The TR
 should describe the specification for cultural conventions
 in an implementation neutral but clear way -- and then the
 POSIX++ implementation is free to make use of printf-style
 specifiers for its actual implementation on UNIX platforms.

2.4. p. 4, line 304, section 3.2.3 Portable character set.

 This is completely unnecessary for the specification of
 cultural conventions. A neutral specification would simply
 make use of the UCS identifications of characters. The
 requirement to specify the Portable character set is a
 POSIX artifact that should itself be restricted to the
 POSIX specifications.

2.5. p. 7, line 491ff

 The definition of category body is not consistent with the
 allowance for comment lines at any point.

2.6. p. 9, line 585

 "Concatenated constants can include a mix
 of the above character representations."

 This is just a silly idea. At the very least this should
 be deprecated.

2.7. p. 11, line 677ff,

 Section 4.2 LC_IDENTIFICATION
 "All keywords are mandatory unless otherwise noted, and
 the operands are strings."

 This is a *good* example of how the specification should
 work. This should be carried through for all the other
 FDCC-set categories, so that the printf-style format
 specifications can be dropped.

2.8. p. 11, line 717

 "i18n:1999" ==> "i18n:2000"

2.9. p. 12, line 738,

 the "i18n" LC_IDENTIFICATION category.

 "ISO" does not match the spec for territory, which
 required this to be a 2-letter 3166 code.

2.10. p. 12, line 740ff.

 Update all 1999's to 2000's.

2.11. p. 13, line 795ff.

 The "double increment hexadecimal symbolic ellipses" are
 a clever, but still goofy convention. They make the
 tables for LC_CTYPE less mind-numbing, but a better
 strategy is to define all such property categories by
 reference to a specified level of the UnicodeData.txt
 database, and then to define only the deltas from that
 to satisfy the committee on certain categories that might
 differ in usage from that specified in UnicodeData.txt.
 This would be far, far easier to verify and to
 implement than what is currently provided.

2.12. p. 14, line 874ff, xdigit

 It is an incredibly bad idea to allow hex digits to
 have script variants. xdigit should always refer to
 0..9, a..f, A..F, period, full stop. Anything else is
 inviting implementation disasters.

2.13. p. 15, line 926 map

 The "map" keyword is an unnecessary extension of the concept
 of an FDCC-set. The FDCC-set is not the place that all
 possible relations between characters are defined. The
 concept of an FDCC-set should be restricted to the
 specification of *cultural* practices for formatting
 quantities, names, addresses, and such, which are
 clearly relevant to localization of software. Mixing it
 all up with an architecturally unsound approach to the
 specification of character encodings and character semantics
 is a very, very, bad idea. This should just be removed.

2.14. p. 16, line 976ff,

 section 4.3.2 Character string transliteration

 It is no more acceptable to have a bad transliteration
 specification tucked away inside the LC_CTYPE category
 than it was to have it specified as a separate category.
 In fact, it is even less coherent than before, when
 treated as a part of the LC_CTYPE specifications of
 cultural conventions. This section should be removed, as
 it has nothing to do with the specification of cultural
 conventions.

 By the way, if this is included in the Technical Report, it
 is quite likely that it will be widely ignored by those
 implementing transliteration (outside the POSIX community
 at least), and will just make the committee look silly.

2.15. p. 18, line 1091.

 <U3200>..<UFAFF> is not the correct
 range for ideographic characters in UCS, in whatever
 version.

2.16. p. 19, line 1108ff "i18n" LC_CTYPE category.

 Once again, for the Technical Report to try to define all this
 is an incredible waste of time and error-prone. Now that
 14652 is a Technical Report and not an International Standard,
 the allergy it has previously shown towards referring to
 the industry standard implementation of these properties
 should be shrugged off in favor of a more useful and
 accurate approach.

 We have not tried to locate *every* error in these tables, but
 some examples will show the problem.

 For the "upper" category: 01A6 should be added; 01C5, 01C8,
 01CB, 01F2 should be removed (those are titlecase, not uppercase);
 all the IPA extensions should be removed (the IPA small-caps
 letters are notionally lowercase, and should not be included
 in the "upper" category); 03D2..03D4 should be added;
 the range <U03E3>..(2)..<U03EF> has the wrong start point --
 it should be <U03E2>, ... and so on.

 On p. 21, line 1315,
 the CJK unified ideographs range starts
 at the wrong point. It should be 4E00, not 4E01.

 On p. 22, line 1369,
 the cntrl range is <U007F>..<U009F>,
 not <U0077>..<U009F>.

 For the "punct" category on p. 22, this departs very strongly
 from the UnicodeData definition of punctuation. "punct" here
 includes currency signs and miscellaneous symbols as well
 as true punctuation. This should be justified or corrected.

2.17. LC_CTYPE category (continued)

 By the way, the consistent use of UCS designations to refer
 to characters in the "i18n" LC_CTYPE specification puts the
 lie to the usefulness and requirement for 14652 to define
 and make use of the bizarre repertoiremap of section 6 of
 14652 (p. 62 ff). Consistent use of ASCII characters as
 themselves, a judicious use of a few other symbolic names
 for the few other characters explicitly referred to in
 ways where that would help (e.g. for examples for
 collation, etc.) and use of UCS symbolic names for everything
 else would be far, far preferable for this Technical Report,
 to the way it currently stands.

2.18. p. 28, line 1848

 "This ordering is used by regular expressions...
 also as the collation weight to be used in sorting."

 The intent of this sentence is unclear. What is the
 effect on pattern matching if collation weights *are*
 explicitly specified? This item must be clarified.

2.19. p. 29, line 1888

 "This value is elsewhere referred [to] as
 the COLL_WEIGHT_MAX limit." (also on p. 33, line 2081)

 Where is this elsewhere? Either specify the elsewhere, or
 drop this non sequitur.

2.20. p. 31, line 1964

 "lower than the coded character set value"

 Since this is talking about a *symbolic* ellipsis here,
 should this be lower in the sequence of symbolic names,
 rather than lower in the *coded character set value* ?

2.21. p. 31 ff., general

 All this specification of *how* to assign weights and deal
 with the IGNORE's, and so on should be left to 14651, and
 acquired in 14652 by reference. This discussion here is
 just inviting inconsistencies in implementation. The appropriate
 scope for 14652 is to specify the additions to the LC_COLLATE
 syntax over and above 14651, i.e. specification of limits
 on numbers of levels, introduction of the symbol-equivalence
 keyword, and use of the copy keyword.

2.22. p. 32, line 2014.

 "A <comment_character> occurring where
 the delimiter ";" may occur, terminates the collating
 statement."

 This is a *good* example of the way the entire text of the TR
 should be written. This is descriptive, and does not resort
 to the prescriptive "shall" when describing a format.

2.23. p. 34, line 2121 Note.

 This claim is not generally true. It depends on what type of
 decomposition is done. This claim is for canonical decomposition.
 Clarify the text if this note is to remain.

2.24. p. 35, line 2203 F and B, and B and P

 The way these "and"s are used here, this claim is very difficult
 to parse and understand. This should be broken out to explicit
 single statements about what terms are mutually exclusive.

2.25. p. 36, line 2226 ".

..and shall be present in the source FDCC-set
 copied via the "copy" keyword."

 This is not required by 14651, and should not be, because it
 restricts tailorings unnecessarily. The point is, that a
 <collating-symbol> has to be defined before it is referred
 to by a reorder-after statement, but there is no reason why
 that definition has to come from a particular FDCC-set copied
 via the "copy" keyword. If this is POSIX-specific stuff, once
 again, the implementation details should be elsewhere, and not
 in the neutral specification of FDCC-sets for cultural
 conventions.

2.26. p. 37, line 2293, section 4.4.12.1 section reordering statements

 This syntax extends the syntax of 14651 for this statement type.
 That should be explicitly pointed out and explained, since it
 is not going to be the expectation of those using the TR.

2.27. p. 38 ff., "i18n" LC_COLLATE category

 The long list of collating symbols is not needed here. This
 completely duplicates the list present in the 14651 common
 tailorable template, but with the introduction of just
 four collating-symbols: <BLANK>, <CAPITAL-SMALL>, <SMALL-CAPITAL>,
 and <BOTH>. The introduction of <BLANK> is not necessary.
 That is the result of an error in the 14651 table for two
 entries, where "<BLANK>" should be corrected to "<BASE>".
 The other three are simply unexplained additions by the
 editor. And even *if* they were needed for some further
 purpose, the correct specification for 14652 is simply to
 specify the 3 additional collating-symbols, along with
 any desired symbol-equivalences, rather than duplicating
 the rest of the list in 14652.

2.28. p. 53, line 3277 ff. "i18n" LC_MESSAGES

 Why is "[+1]" and "[-0]" suggested as the default
 definition for yes and no in the "i18n" LC_MESSAGES category?
 "[1]" and "[0]" might make some sense, though "y" and "n"
 would be better, given the status of English as the
 international language. But at the very least, the
 minus sign on the zero makes no sense and should be
 removed.

2.29. p. 53, line 3237, Section 4.9 LC_PAPER

 Paper size conventions certainly are cultural conventions,
 but there is a mismatch between what the requirements should
 be for specifying these cultural conventions and what is
 presented here.

 For the U.S., for example, paper size conventions are

 "letter" (8-1/2"x11") and "legal" (8-1/2"x14"), whereas
 for the U.K., normal printing paper is A4 (210mm x 297mm).
 In addition to the metric series defined in DIN 66008,
 there may be other local traditional sizes not defined in
 terms of the metric system, as for example, traditional
 sizes used in book publishing.

 A specification for cultural conventions should allow the
 expression of all this, and not attempt to reduce everything
 to one height and one width expressed in millimeters (which
 won't even be accurate for U.S. paper sizes, by the way).

 This FDCC-set category seems to be, instead,
 another implementation-driven category that could be used
 transiently to convey some "locale-based" information to
 a printing process through some API. Effectively, the
 FDCC-set is being conceived of a one gigantic C struct
 for storing anything an application might ever conceivably
 need for cultural adaptability for access to an API, rather than
 as a "specification for cultural conventions", which is
 nominally what this Technical Report is about.

2.30. p. 54, line 3262, Section LC_NAME

 This entire specification is very weak and basically useless.
 The list of keywords provided is Western-centric.

 This is a good example of a category that should be
 reorganized to *first* provide a discursive listing of
 name formatting and salutation conventions in different
 cultures, before trying to invent a syntax to make it
 machine-readable. Otherwise this is "standards-fishing"--
 promulgating a standard syntax in the hope that it may
 be sufficient and implementable, but in the absence of
 evidence of use or enough data to demonstrate its appropriateness
 to the field of application.

2.31. p. 54, line 3298 %m Middle names

 It is unclear whether this is intended to be one string
 associated with potentially multiple names. If so, this
 should be clarified. Also, what is the relationship between
 the potentially multiple names of %m and the apparent
 single initial letter of %M "Middle initial"?

2.32. p. 54, line 3200 %p Profession.

 This is also unclear as to intent. Does this, combined
 with the "i18n" LC_NAME category value for name_fmt
 imply that "Lawyer John C. Smith" and
 "Assistant Manager at McDonald's James T. Peabody" are
 valid formatted names?

2.33. p. 54, line 3274 name_gen

 The example given for the use of Japanese "-sama" as a

 salutation is incorrect. While it is true that "-sama" is
 not gender-specific, it is not appropriate "for all
 persons", and certainly not in all contexts. Furthermore,
 it is an honorific, and not a salutation, since it cannot
 be used independently of a name.

2.34. p. 55, line 3305

 "The va[lu]e may be stored in the database
 with the person information."

 What database? Once again, this specification is referring
 to some unclear context outside the scope of the document,
 with the implication that this is designed for some particular
 implementation, rather than standing independently as a
 specification. Either delete the reference to "the database"
 or make it clear in this document what is intended by it.

2.35. p. 55, line 3318 name_fmt specification

 This is essentially just a mask definition for a format.
 It would be better stated explicitly as a mask, rather than as a
 printf style format string. And there is nothing gained
 by use of the symbolic name "<p>", rather than just "p";
 this just clutters the specification and makes it hard
 to read.

 The same comment applies to the format masks for
 LC_ADDRESS pos.al.fmt (p. 56, line 3400), and the
 LC_TELEPHONE tel_int_fmt (p. 57, line 3443).

2.36. p. 55, section 4.11 LC_ADDRESS

 There is no justification for why the LC_ADDRESS category,
 which should be focussed on specification of cultural
 specifications for addresses, is cluttered up with a bunch
 of keywords related to ISO 3166 country codes, motor
 vehicle country codes, ISO 2108 ISBN codes, and ISO 639
 language codes. Once again this looks like a case of
 tossing in the kitchen sink, rather than designing the
 category appropriate to its usage. All of these superfluous
 keywords should be removed from the category. If an
 FDCC-set needs to specify any of this information, it
 should be elsewhere, and not just tossed into LC_ADDRESS
 for no apparent reason.

 The Rationale for this category in Annex B does not
 discuss this, either.

2.37. p. 57, section 5. CHARMAP

 As we have indicated before, specification of a CHARMAP
 is completely out of scope for cultural conventions.
 This is just a bad design that continues the way POSIX
 deals with implementation of character set encodings.
 There is no good reason for the 14652 Technical Report

 on the specification method for cultural conventions to
 be continuing and expanding on this bad design. It
 should be removed. (See further comments on the Annex B
 Rationale below.)

2.38. p. 58, line 3502, <escseq>

 Even with the example now provided on p. 61, this
 explanation for <escseq> is still almost incomprehensible.
 The same applies to the discussion of operands for
 the <include> keyword on p. 59, which also refer to
 "the g-set or c-set to be defined" and the "range
 of characters in the referenced charmap". This is
 another reason why this entire section should be dropped
 from the TR.

2.39. p. 60, line 3593 ff.,

 "The encoding part shall be expressed as..."

 Even if this is specified for upward compatibility with
 existing POSIX practice, it is ridiculous in this day
 and age to be encourage the use of octal or decimal
 in the specification of character encoding values.
 Hexadecimal is clearly the radix of choice, and should
 be encouraged by the technical report. The others should
 be deprecated.

2.40. p. 61, line 3625 ff.,

 "Example of using ISO 2022 techniques"

 These examples do now provide enough information to be
 able to make a guess at how the CHARMAP keyword "<escseq>"
 is intended to be used. But the examples also illustrate
 the reason why this entire CHARMAP section should be
 removed from the Technical Report. This is an implementation
 format for extension of the POSIX architecture for
 character set encoding definitions, rather than any
 information useful for the specification of cultural
 conventions. Anyone wanting to understand the structure
 of these character encodings would be far better off going
 to the easily available (and far more complete and accurate)
 book by Ken Lunde on CJKV Information Processing. And as
 for cultural conventions, this section of CHARMAP (as well
 as the subsequent one on REPERTOIREMAP) just get in the
 way and confuse the issues.

2.41. p. 61, lines 3661, 3662.

 If the CHARMAP section and examples stay in, at the very
 least, the example characters used should be legal,
 assigned characters. The comment says "the character
 codes are only examples", but in fact <U0365> and <U0744>
 are not valid, assigned characters in the version of
 10646-1 normatively referred to by the Technical Report.

 At the least, make the effort to use assigned characters.

2.42. p. 62, Section 6 REPERTOIREMAP

 Once again, we object to this ridiculous REPERTOIREMAP,
 which does not belong in 14652. It should be removed.

 The justification on p. 63 keeps getting longer, but is
 no more convincing than before. The *concept* of a
 repertoiremap is prior art, but the wholesale extension
 of that prior art to include thousands of the editor's
 whole cloth inventions can hardly be characterized as
 prior art. It is simply an example of dogged persistence.

 At most, perhaps 100 or so of these symbols beyond
 the range of Latin-1 characters have any usefulness.
 The rest are just the result of a mediocre concept
 extended at least two standard deviations beyond the
 range of reasonableness. Why would anyone want to
 use the symbol "<W*;?J>" instead of "<U1FAF>" to
 refer to U+1FAF GREEK CAPITAL LETTER OMEGA WITH DASIA AND
 PERISPOMENI AND PROSGEGRAMMENI? Or "<_./>//>" instead
 of "<U25E2>" for U+25E2 BLACK LOWER RIGHT TRIANGLE?

 The silliness of this REPERTOIREMAP, which takes up nearly
 one quarter of a 114 page Technical Report, is illustrated
 by its incompleteness. After inventing 2318 of these
 symbols, the editor apparently ran out of gas, and didn't
 extend them to cover Georgian, Thai, Lao, or any of the
 Indic scripts. He included symbols for compatibility
 Arabic positional shape characters, but not symbols for
 compatibility fullwidth ASCII or halfwidth katakana
 characters. Why? And it is completely unclear how this
 mechanism would be extended, except by more arbitrary
 and nearly random string assignments, to cover the
 repertoire of Unicode 3.0 (with 1165 Yi syllables and
 630 Canadian Aboriginal Syllabics syllables, just to name
 the most problematical).

2.43. p. 64, line 3823 - 3848

 The introduction of these "<a8>" .. "<z8>" symbols
 here is problematical. First of all, these are intended
 for use with LC_COLLATE for tailoring of the table from
 14651, but that is not explained here or anywhere.

 Second, the particular assignments of these symbol
 weights to particular Unicode characters is invalid
 in general. There is nothing that ensures that U+0252
 is going to be the "last A" in the common tailorable
 template table. This could be affected either by a
 revision of that table or the addition of new characters
 to 10646 that get incorporated into the table. It is
 inadvisable in any case to tie a hack for tailoring
 Latin characters to particular Unicode values. The
 proper way to do this is to introduce "<a8>", etc.
 as collating-symbols in LC_COLLATE and then introduce
 the appropriate tailoring with reorder-after statements

 based on a particular version of the 14651 table.

2.44. p. 92 Annex B (informative) Rationale

 The entire Technical Report now is informative. Restructuring
 the document as a Technical Report should move most of this
 material into the main body of the text. There is no
 rhetorical reason why it should be separated off in
 an annex, since it provides explanatory material that
 is often needed at the point where concepts are introduced.

 In particular, the LC_MONETARY Rationale (B.1.4) is a
 better start toward what the Technical Report *should*
 contain about monetary formatting than the definition
 of the LC_MONETARY category itself.

2.45. p. 92, line 6183

 "an ISO/IEC 10646 system that has
 defined 16-bit bytes may..."

 There is no reason for the document to be obtuse about
 this. No Unicode (or 10646) system implements 16-bit
 characters by defining 16-bit bytes. "Byte" in the
 industry has an unshakeable meaning of an 8-bit quantity.
 It is only character standards diehards who keep insisting
 that "byte" is variable width and refers to the width
 in bits that a character is encoded in. The entire
 industry has chosen the other route, and measures data
 in bytes, which is a fixed-size quantity. The days when
 bytes did differ in size on different machine architecture
 are long gone.

2.46. p. 93, Section B.1.3 LC_COLLATE Rationale

 Most of this discussion is out of scope. It is arguing
 about 14651, rather than providing the particulars for
 the rationale for the LC_COLLATE category.

2.47. p. 94, line 6286

 "The syntax for the LC_COLLATE
 category source is the result of a cooperative effort
 between representatives for many countries and organizations
 working with international issues, such as UniForum, X/Open,
 and ISO, ..."

 If this rationale is to contain all the general discussion
 about collation weighting and contents relevant to 14651,
 rather than just the discussion of the specific keywords
 for the LC_COLLATE category in the FDCC-set, then why
 is not the Unicode Consortium on that list? Either add
 it or remove all the out-of-scope discussion of 14651-
 related issues from this rationale.

2.48. p. 95, line 6315

 "It is estimated that the Technical
 Report covers the requirements for all European languages,
 and no particular problems are anticipated for Cyrillic
 or Middle Eastern scripts."

 First of all, it is not PDTR 14652 that covers these
 requirements, but FCD3 14651 that does. PDTR 14652 simply
 provides the metasyntactic shell to incorporate the
 14651 framework inside the LC_COLLATE category.

 Secondly, 14651 *does* cover Cyrillic, Arabic, and Hebrew,
 as well as the rest of the scripts included in Unicode 2.0,
 so there is no reason to make this imprecise statement
 about anticipations.

2.49. p. 98, Section B.1.3.3

 Sample FDCC-set specification for Danish.

 line 6485: The symbol "<SPECIAL>" is not defined.

 In general, the introduction of the particular symbols
 needed for this Danish collation specification should be
 done *here*, and not in the "i18n" LC_COLLATE category
 definition on p. 38 and in the "i18nrep" REPERTOIREMAP
 on p. 64.

2.50. p. 103, line 6753.

 "It is expected that National Standards
 Bodies will provide specifications."

 This seems a rather forlorn hope, given a bad format
 metasyntax in the first place.

 And why insert a plaintive cry for other NB's to do the
 work, instead of just digging into the IBM Green Book
 discussion of Date Format as a starting point?

2.51. p. 103, line 6762.

 "The internationalization working
 group is developing an interface..."

 Who? What internationalization working group, affiliated
 with whom? This is not made clear in the document.

2.52. p. 104, Section B.2 Character Set Rationale

 This rationale is completely unconvincing as a rationale
 for including the CHARMAP mechanism in the Technical
 Report 14652.

 In particular, the claim that the "charmap was introduced
 to resolve problems with the portability of, especially,
 FDCC-set sources" should have been addressed simply by
 using 10646 (i.e. Unicode) as the *reference* character
 set for the Technical Report. This is the obvious solution,
 as taken by the HTML and XML standards. This approach allows for
 a source document to be represented in any character encoding,
 but it is interpreted *as if* it were converted to the
 reference character set, i.e., the UCS. In fact, most
 implementations will *actually* convert the source document
 to Unicode, to simplify their parsing/lexing engines.
 The same approach should now be taken towards all such
 specifications, including that of 14652, now that the UCS
 is a reality. Continuing to fob off this old model of
 "source portability" from POSIX on new standards and
 technical reports does a disservice to those who are trying
 to understand and implement them. Instead of assisting in
 source portability, it really only succeeds again and again
 in unnecessarily importing all the complexities of legacy
 character encodings into standards and technical reports
 that have nothing to do with the details of character
 encoding.

2.53. p. 105, Section B.3 Repertoiremap Rationale

 "The repertoiremap was introduced to make FDCC-sets
 independent of the availability of charmaps."

 Once again, this entire argument would be obviated by making
 the UCS the reference character set for the document. All
 the complexity of CHARMAP and REPERTOIREMAP would be
 pushed off to where it belongs, in POSIX implementations
 of the technical report, rather than in the technical report
 itself.

Technical Comments re Section 4.5 LC_MONETARY

We consider the specification in section 4.5 to illustrate the
nature of the technical problems endemic to the TR's entire
approach to the specification of cultural conventions. The
metasyntax provided for LC_MONETARY is designed to be an
extension of existing POSIX implementations of currency formatting.
However, the extensions are:

A. Over-elaborate in terms of particular parameter specifications.

B. Insufficiently precise to be well-defined or to avoid undecidable
 cases of conflicting parameter specifications.

C. Result in specifications of cultural conventions for monetary
 formatting that are incomprehensible to the human reader, but
 rather are designed to facilitate a programmers task of
 parsing out parameters and setting a number of boolean settings
 in a localedef implementation.

D. Have a "data normalization" problem forced by insisting that
 a single FDCC-set must have *two* monetary formats specifiable--

 one for the "local" currency and one for the "international"
 currency. This is the Unix euro hack. It seriously complicates
 specification of cultural conventions by pushing the euro
 problem onto the procrustean bed of the single locale. This
 is another sign of implementation considerations driving a
 complex and unclear specification, rather than considerations
 of clear and simple exposition driving the specification.

We consider the third problem to be particularly egregious, since it
means that registered FDCC-set's will be effectively incomprehensible
in the registry and be unmaintainable by visual inspection. This is
likely to result in duplicate, overlapping, and/or mistaken registrations,
where the formatting intent of the human trying to produce these
FDCC-set definitions may not match the behavior of the implementations
using them.

The problems can be illustrated by examining the "i18n" FDCC-set
definition proposed for LC_MONETARY, and then by giving another
example where the mind flows freely, posing an outlandish case
to see what the metasyntax allows (and thereby what it *requires* of
implementations).

LC_MONETARY
% This is the 14652 i18n fdcc-set definition for
% the LC_MONETARY category.
%
int_curr_symbol ""
currency_symbol ""
mon_decimal_point "<,>"
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
%
END LC_MONETARY

O.k., but what does this mean? It apparently is an attempt to provide
a vanilla default that effectively does nothing except specify that
"," is the decimal separator. But rather than being conceived in
terms of a visual international currency format that would make any
sense whatsoever, it is conceived in terms of the implementation of
localedef, with values to match variable initializations in that
program (null strings, unused values undefined). But if you think in
terms of actual formatting recommendations, this implies that
the currency number 1000 would format as:

 "1000"

(or possibly "1000,0" or "1000,00" or ..., since frac_digits in not
specified!)

But the negative value for a currency number -1000 would *also* format as:

 "1000"

(or possibly "1000,0" or "1000,00" or ...)

We don't think it was the intention of the editor of 14652 to recommend
that positive and negative currency values be formatted exactly the
same, but that is the implication of this LC_MONETARY definition. So
an unreasonable default has crept in, simply because thinking in terms
of program parameter initialization for setting values in a cryptic
metasyntax does not lend itself to specification of real formats that
would make sense as defaults or recommendations.

By the way, there is a definite technical problem which *must* be
addressed to even make the specification comprehensible. The meaning
of -1 as an argument value for int_frac_digits, frac_digits, p_cs_precedes,
etc. through n_sep_by_space, is not defined in the TR. So as it stands,
the LC_MONETARY definition is anomalous. It doesn't mean anything to
have a negative one number of fractional digits to the right of a
decimal separator, for example.

Now for the overpermissiveness and imprecision of the metasyntax
suggested. Let's consider the case of Lower Slobovia. Lower Slobovia
used the tugrik as its local currency until the end of 1998, but
had an unplanned currency reform starting earlier this year. Things
being rather chaotic in Lower Slobovia, the currency reform didn't
complete until 1999-09-16, when Lower Slobovia officially declared the
slobovik as its currency and established the conversion rate of
1 slobovik for 9 tugrik, suggested by the court astrologer because
the King of Slobovia has 9 daughters. Now since Lower Slobovia
derives most of its income by rather shady money-laundering, they
have adopted the USD as their international money formatting
convention. This tends to obscure the conversions back and forth
from dollars to sloboviks (or tugriks). Lower Slobovia has chosen
to register the following LC_MONETARY specification to reflect
their local cultural conventions:

LC_MONETARY
% This is the official Lower Slobovian fdcc-set definition for
% the LC_MONETARY category.
%
valid_from ;"19990916"
valid_to "19981231";
conversion_rate 1;9
int_curr_symbol "USD$";"USD!"
currency_symbol "<tugrik>";<slobovik>"
% For <tugrik> substitute U+20AE.
% For <slobovik> substitute U+2445 (chosen to honor the
% King of Lower Slobovia's sartorial style)
mon_decimal_point "?"
mon_thousands_sep "6"
% The use of "6" as a thousands separator was dictated by
% the king's astrologer for its felicitous sound, but has
% proven quite profitable when foreign computers unfamiliar
% with our conventions misinterpret it as a digit when
% parsing out tugriks and sloboviks.
mon_grouping 1;2;3;2;1
positive_sign "-"

negative_sign "+"
int_frac_digits 6;1
frac_digits 4;9
p_cs_precedes 0
p_sep_by_space 2
n_cs_precedes 0;1
n_sep_by_space 0;1
int_p_cs_precedes 1;0
int_p_sep_by_space 2;0
int_n_cs_precedes 0;1
int_n_sep_by_space 0;2
p_sign_posn 0;1
n_sign_posn 2;4
int_p_sign_posn 1;3
int_n_sign_posn 3
%
END LC_MONETARY

The implication for valid_from and valid_to is that the tugrik was valid from
"the beginning of time" to 19981231, and that the slobovik is valid from
19990916 to "the end of time". (The metasyntax for valid_from and valid_to
in fuzzy on this point, so this is just a stab at what it might mean to
make use of those implicit infinities when defining more than own currency
in the LC_MONETARY specification.) What an implementation will do when
faced with a currency formatting for a date in between is unclear --
but perhaps that is o.k., since Lower Slobovia was in a state of financial
chaos at the time, anyway.

O.k., now let's see what happens to the currency values when we
use this definition to describe a money-laundering operation that
had a credit of a little over 2 billion tugrik last year (2,000,600,609
to be exact) and then had to enter a negative value in the books for
the same amount today. When you work it all out, the fully formatted
currency strings come out to be:

Positive amount in 1998:

Local format: "(260600660066069?0000 <tugrik>)"

Internat format: "- USD$ 260600660066069?0"

Negative amount today:

Local format: "<slobovik>+ 2622628869566?566666666"

Internat format: "2622628869566?6+!USD"

Is this absurd? Well, of course. But it is *allowed* by the current
specification. That means, in principle, that implementations of this
specification have to be able to produce garbage like this without
choking on various bizarre combinations of parameters. And legions
of programmers are going to be scratching their heads over such things
as what to do with the fourth character of the int_curr_symbol which
"shall be the character used to separate the international currency
symbol from the monetary quantity" when int_p_cs_precedes specifies
that the currency sign goes to the *right* of the monetary quantity
and int_p_sep_by_space specifies that a *space* is used for
separation. Hmm.

To avoid this kind of nonsense, a usable specification should be
constraining the allowable values for parameters and not allowing any
possible combination in the forlorn hope of not offending the Lower Slobovians
when they finally come to register their cultural conventions and find that
their system wasn't accounted for by some constraint on allowed
values.

It would be far, far better to specify in detail the *actual*
cultural conventions for currency formatting, with a clear method
for *describing* those conventions in detail. The IBM Green Book
(August 1994, pp. 11 - 19) does so already in great detail in a far
more useful format for implementers. That actual number of combinations
in use is far, far less than an unconstrained metasyntax such as
that of section 4.5 of PDTR 15642 allows. A better approach would
be to simply define a hierarchy of:

 A. Unsigned positive numeric formats.

 B. Positive and negative signed numeric formats.

 C. Currency sign placements in A. and B.

 D. A list of known local currency signs with their country
 association and relation to official international banking
 signs.

From that, any competent software designer can create a mechanism
for formatting and parsing currency strings that is adaptive to
local cultural conventions. And it can be related to the TR's
specification of values for A, B, C, and D above, so that
one implementer of A:2;B:3;C:1;D:Pts can relate that to another
implementation of the same format.

But PDTR 14652 is attempting something quite different -- it is
attempting to *standardize* the Son-of-POSIX specification for
LC_MONETARY to support portable implementations of localdef for
Linux.

It is our opinion that the two goals--clear and effective
exposition of cultural conventions versus extension of POSIX
mechanisms for portable implementations on UNIX systems--
are effectively at odds, and that the technical quality of
PDTR 14652 is suffering from mixing of incompatible goals.

Minor Technical Comments re Section 4.5 LC_MONETARY

p. 41, line 2616 and line 2621.
The definition of "the beginning
of time" and "the end of time" is not clear here. As a cultural
convention, these should just be UNSPECIFIED. It is then up
to implementations to decide what to do about that. A reasonable
option, of course, is to equate UNSPECIFIED time with either the
first possible or last possible "time" value in a machine
implementation of time, but that is platform-specific in terms
of actual dates that get associated with those values.

p. 41, line 2622ff.

The convention for using two integers
in a specification of conversion rate also seems implementation-driven,
rather than designed for clarity. If a conversion rate is set
at 1.86301 (not at all unusual as a possibility), why should not
a cultural specification be able to use "1.86301" to express that,
rather than 186301;100000 ? This has to do with avoiding
float parsing complications on Unix rather than with clarity
of specification.

3. Editorial Comments

1. p. iv, line 84 cultural ==> culturally

2. p. iv, line 104 become ==> becomes

3. p. iv, line 116 backwards ==> upward (cf. usage on p. 1, line 137)

4. p. iv, line 117 particulary ==> particularly

5. p. 2, line 221 Change final quotation mark to "."

6. p. 4, line 290 represent ==> represents

7. p. 10, line 652 indicate ==> indicates

8. p. 20, line 1167 does ==> do

9. p. 29, line 1883 reorder-sections-after ==> reorder-section-after
 line 1884 reorder-sections-end ==> reorder-section-end

 (This mistake is made many times on subsequent pages. The entire
 document should be searched and all instances fixed. See, for
 example, p. 33, lines 2075, 2089; p. 37 multiple times, etc.)

10. p. 29, line 1888 referred as ==> referred to as

11. p. 30, line 1925 replace-after ==> reorder-after
 line 1934 (same mistake -- search entire document)

12. p. 30, line 1941 " specified by its place." Add
 "in the list of collating statements." to the end of
 the sentence.

13. p. 31, line 1962 ellipsises ==> ellipses

14. p. 33, line 2078 & line 2084 col_weight_max ==> coll_weight_max

15. p. 33, line 2097 with the ==> within the

 (Same error on p. 34, lines 2136 and 2157)

16. p. 34, line 2155 collating-symbol-2 ==> collating-symbol-1

17. p. 36, line 2236 on ==> in

18. p. 55, line 3305 vaule ==> value

19. p. 56, line 3391 start ==> starting

20. p. 58, line 3512 added the ==> added to the

21. p. 90, line 6091 done ==> made

22. p. 90, line 6129 introduce ==> introduced

23. p. 91, line 6132 elipsises ==> ellipses

Editorial Comments re Section 4.5 LC_MONETARY

p. 41, line 2601 "is taken" ==> "is implied"

p. 43, line 2680 For consistency, "int_curr_symbol" should be
in double quotes.

end of document

