Title: \quad Encoding Additional Mathematical Symbols in Unicode (revised) Source: Ken Whistler, Asmus Freytag, AMS (STIX)
Status: Working Document (and Summary Proposal Form)
Action: For review and comment by UTC and L2
Distribution: Members of UTC and L2

Introduction

This document constitutes the consolidated proposal for completion of the set of mathematical symbols encoded in ISO/IEC 10646. It is an update of WG2 N2191R, which was reviewed and approved by WG2 in Beijing last month.

Additional alphanumeric symbols were added to the CD for 10646-2, and have been under ballot. This proposal provides for the complementary set - those math symbols, operators, and delimiters that are currently missing from the repertoire of math symbols encoded in the BMP of 10646-1.

This proposal is the culmination of a several-year process of collation and review of mathematical symbols, with close cooperation between the Unicode Technical Committee and the STIX Project, involving extensive expertise from the mathematical, scientific, and technical publishing industry. In our opinion, this proposal is now quite mature, having passed the technical scrutiny of the mathematicians and technical publishing experts of the STIX Project, and the character encoding scrutiny of the UTC. We urge consideration for a new subdivision of work for an Amendment to 10646-1 to add this repertoire to the UCS, to meet the expressed needs of the international mathematical, scientific, and technical publishing industry for the representation of mathematics using the ISO/IEC 10646 character encoding.

The document we present here is divided into six parts:

- Introduction, background, rationale, and references
- Annex 1: Proposal summary form
- Annex 2: Draft charts and names list, enumerating the proposed repertoire
- Annex 3: (dropped - no longer needed, since Annex 2 is complete)
- Annex 4: Symbol variants defined using a Variation Selector (VS)
- Annex 5: Letters of support from major mathematical organizations

Background

This proposal originated as the work of the STIX Project (Scientific and Technical Information eXchange), a working group reporting to STIPUB, a consortium of publishers of mathematical, scientific, and technical books and journals. The ultimate product of the STIX group will be the creation of one comprehensive set of fonts for scientific and technical publishing. This set of fonts should be adopted and supported by all major STM (scientific, technical, and mathematics) publishers internationally. It will also be made available for general use under license but free of charge, with the explicit aim to ease and foster the uninhibited flow, exchange, and linking of scientific information worldwide.

The symbol complement of the STIX font set will be based on the symbols in this proposal along with many other symbols already encoded in ISO/IEC 10646, as well as variant forms not included here (because they are required by publishing house styles without different meaning from symbols included above). Additional technical symbols from areas other than mathematics will also be included in the font definitions.

More information about the STIX Project can be found at the STIX web site, hosted by the American Mathematical Society (AMS): http://www.ams.org/STIX/

The Unicode Technical Committee worked closely with the STIX Project over the past two years, to refine the proposal into a character encoding proposal, suitable for addition to ISO/IEC 10646. During this process, duplicates have been identified and removed, and clarification of distinctions between characters, glyphs, and variants has been made. The original proposal was divided into two large portions: a proposal for the addition of alphanumeric symbols (under ballot for the CD for 10646-2), and this proposal for the addition of other mathematical symbols.

As this proposal has developed, it has been connected to other standardization efforts, which are now interdependent on the completion of mathematical symbol encoding in ISO/IEC 10646. In particular, the special problems of handling technical texts have been examined in detail by the W3C HTML Math Working Group; their MathML proposal, which is interdependent with this proposed repertoire of math symbols for ISO/IEC 10646, was accepted as a W3C Recommendation on 7 April 1998 [see http://www.w3c.org/Math]. The work of the HTML Math Working Group is also related to the work of the OpenMath Consortium. Major vendors of mathematical formatting software are also dependent on the resolution of the encoding of additional mathematical symbols in ISO/IEC 10646-1.

Rationale

Scientific communication and publication via the World Wide Web are currently hindered by the absence both of suitable symbol fonts and of recognized methods of indicating particular symbols and their relationships to one another.

The availability of a complete UCS character encoding of mathematical symbols, and of a correlated universal font set for their rendering will benefit scientific and technical publishing in several ways:

- Elimination of certain legal problems with distributing PDF files and publishing on the World Wide Web
- Ease of exchange of documents from different publishers
- Simpler and more robust re-use of archived material

The STIX Project group has agreed that the basis for the organization of such a font set should be ISO/IEC 10646/Unicode. ISO/IEC 10646 is the reference character set for XML, and therefore for MathML as well. It is the character set of the programming language Java and underlies all current Windows operating systems, as well as many others. In XML documents, and most importantly for use in MathML, one must be able to identify all notation, either by numerical character reference or by entity reference. But numerical character references are ISO/IEC 10646 numbers, since that is the character set underlying XML. If entity names are used, they must still be mapped to something that applications will be able to handle and render. All of these considerations argue very strongly that the set of mathematical symbols encoded in the UCS should be completed, so as to enable the representation and presentation of mathematics and other technical materials dependent on mathematics - both for the World Wide Web and for data interchange dependent on XML.

In the charts and lists shown in the Annexes, we have included only what we believe to be unique symbols not currently covered by the repertoire of ISO/IEC 10646. The language of mathematics is fluid, and symbols are defined in context to represent particular mathematical concepts. The tool set of an active mathematician ideally consists of several alphabets, whose members can be distinguished from one another, to represent various classes of variables and constants, and a fairly extensive collection of similarly-sized shapes to represent various operations or delimitation of expressions. There are of course many fully standardized shapes that are now used almost exclusively to represent particular operations and relations, but even these are sometimes adopted in fields where they are not already in use and redefined to have some other particular meaning. For this reason, the names suggested for the symbols listed here are in some cases not functionally precise; where multiple varying meanings are possible, or a single precise meaning is not available, the name simply describes the shape of the proposed character.

Variants

Many math symbols occur in two or more variant forms, with the same or similar meanings usually, but not always, attached to both. In order to accommodate the sometimes strong preferences of authors and publishers, a single Variation Selector (VS) is recommended, to be applied to a fixed list of symbols with predetermined results. The Variation Selector follows the symbol whose variant it specifies. As a character by itself, the Variation Selector has no independent appearance; it only functions to choose a particular variant for the character it follows. Only combinations defined by the standard should be meaningful. In any other context, the Variation Selector character should be ignored.

The Variation Selector (VS) in this proposal is completely analogous to the Mongolian Free Variation Selector (MVS) characters already in ISO/IEC 10646. The difference is merely that the MVS characters are only meaningful in combination with other Mongolian characters, to select variants of those characters. The VS is separately proposed, for use in combination with mathematical symbol characters, to select variants of those characters.

The exact list of variants currently known to be required for mathematical, scientific, and technical publishing is shown in Annex 4.

Letter-like Symbols

For a mathematician or other scientist, alphabets provide the symbols to represent ad hoc variables as well as a number of more well-defined concepts. Different styles of alphabets have different meanings, some of which have been formally standardized in some disciplines, but many of which follow only the strength of custom, or even current necessity.

The CD for ISO/IEC 10646-2 includes sets of mathematical alphanumeric symbols that are regularly used in mathematical and technical literature; those alphabets and digits will not be further dealt with here.

There remain, however, some individual letters from or related to these alphabets that are routinely used in a turned or inverted orientation, as well as a few symbols in the style of a particular math alphabet but not part of its normal alphabetic complement. These are considered distinct letter-like symbols, and are therefore candidates for code assignments. They are included in this proposal, along with the larger collection of general mathematical symbols and operators.

Brace Parts

A small collection of brace and bracket parts has also been included in this proposal. These characters are intended to complete the coverage of the PostScript symbol set, as well as some character-like entities used by TeX and other technical typesetting systems. These brace parts are explicitly intended as compatibility characters to match those preexisting repertoires. Their inclusion facilitates the interconversion of data from such systems with systems using the ISO/IEC 10646 character encoding.

References

International Organization for Standardization, ISO 31/XI-1992. Mathematical signs and symbols for use in the physical sciences and technology, 2nd edition, 1992. (by ref. in ANSI/IEEE P1324)

American Society of Mechanical Engineers, ANSI Y10.20-1975. Mathematical signs and symbols for use in physical sciences and technology, 1975.

Institute of Electrical and Electronics Engineers, ANSI/IEEE P1324 (draft revision of Y10.20), Draft standard mathematical signs and symbols for use in physical sciences and technology, 1992.

ISO/IEC 8879:1986, Information Processing --- Text and Office Systems --- Standard Generalized Markup Language (SGML), Annex D: Public text

ISO/IEC 9573-13, Information Technology --- SGML Support Facilities --- Techniques for Using SGML --- Part 13: Public entity sets for mathematics and science

Stepney, Susan (editor), Proposal to add the ISO Standard Z character set to Unicode/ISO-IEC 10646
SC2 N3393, Committee Draft ISO/IEC CD 10646-2.
L2/98-405, Request for assignment of codes to mathematical and technical symbols that do not appear in Unicode 2.0 or ISO/IEC 10646

L2/98-406, Proposal to encode mathematical variant tags
L2/99-045, Proposal to encode mathematical alphanumeric symbols
L2/99-049, Addendum to L2/98-405: Request for assignment of codes to mathematical and technical symbols
L2/99-159, Request for assignment of codes to mathematical and technical symbols that do not appear in Unicode 2.0 or ISO/IEC 10646 (revised)

L2/99-160, Proposal to encode mathematical variant tags
L2/99-195, Proposal to encode mathematical alphanumeric symbols
L2/99-199, Mathematical Alphabets (for L2/99-195)

L2/99-244R, Request for assignment of codes to mathematical and technical symbols that do not appear in Unicode 2.0 or ISO/IEC 10646

L2/99-346, Mathematical brace pieces.
L2/00-002, Request for assignment of codes to mathematical and technical symbols that do not appear in Unicode 2.0 or ISO/IEC 10646 (supersedes L2/99-244R)

WG2 N2191R, Proposal for Encoding Additional Mathematical Symbols in the BMP (supersedes L2/00-002R).

ISO/IEC JTC 1/SC 2/WG 2 PROPOSAL SUMMARY FORM TO ACCOMPANY SUBMISSIONS FOR ADDITIONS TO THE REPERTOIRE OF ISO/IEC 10646

Please fill Sections A, B and C below. Section D will be filled by SC 2/WG 2.
For instructions and guidance for filling in the form please see the document " Principles and Procedures for Allocation of New Characters and Scripts" (http://www.dkuug.dk/JTC1/SC2/WG2/prot)

A. Administrative

1. Title: Proposal for Encoding Additional Mathematical Symbols in the BMP
2. Requester's name: U.S.
3. Requester type (Member body/Liaison/Individual contribution): Member body
4. Submission date: 2000-03-14
5. Requester's reference (if applicable): WG2 N2191
6. This is a complete proposal.

B. Technical - General

[^0]b. The proposal is for addition of character(s) to an existing block.

Name of the existing block:
Greek and Coptic (3)
General Punctuation (14)
Combining Diacritical Marks for Symbols (4)
Letterlike Symbols (15)
Arrows (12)
Mathematical Operators (14)
Miscellaneous Technical (29)
Geometric Shapes (8)
Supplemental Arrows [New block 2900..297F] (128)
Miscellaneous Math Symbols [New block 2980..29FF] (117)
Supplemental Math Operators [New block 2A00..2AFF] (247)
Note that the proposed new blocks are conceptually extensions of the existing Arrows and Mathematical Operators blocks, and do not constitute new scripts.
2. Number of characters in proposal: 951

3. Proposed category (see section II, Character Categories):

4. Proposed Level of Implementation (see clause 15, ISO/IEC 10646-1): Level 3

Is a rationale provided for the choice? Yes
If Yes, reference:
The repertoire includes 4 combining characters, which can be used in free combinations with other existing 10646 characters. Many relational operators are intended to be usable with overlaid combining marks U+0338 COMBINING LONG SOLIDUS OVERLAY or U+20D2 COMBINING LONG VERTICAL LINE OVERLAY to productively indicate negation. Finally, the mathematical repertoire in general is intended for complex rendering, with the productive application of other combining marks to indicate derivatives, vectors, and many other concepts.

Limited subsets of the mathematical symbols can, of course, be used for Level 1 implementations, but the repertoire addressed by this proposal is aimed at full and complete mathematical rendering and interchange. (Note that this proposal encompasses the symbols needed for mathematical content, but is not intended to cover mathematical markup languages or layout controls.)
5. Is a repertoire including character names provided? Yes. See Annex 2.
a. If YES, are the names in accordance with the 'character naming guidelines' in Annex K of ISO/IEC 10646-1? Yes
b. Are the character shapes attached in a reviewable form? Yes. See Annexes 2 and 3.
6. Who will provide the appropriate computerized font (ordered preference: True Type, PostScript or $96 x 96$ bitmapped format) for publishing the standard?

The Unicode Consortium, working in collaboration with STIPUB and various professional font vendors.
If available now, identify source(s) for the font (include address, e-mail, ftp-site, etc.) and indicate the tools used:

7. References:

a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided? Yes
c. Are published examples (such as samples from newspapers, magazines, or other sources) of use of proposed characters attached?

No, not in WG2 N2191. However, a very large collection of source citations has been collected by the STIX Project group of STIPUB. That group constitutes a consortium of mathematical, scientific, and technical publishers who have refined this repertoire on the basis of their publication requirements for symbol usage.
8. Special encoding issues:

Use of a VARIATION SELECTOR. The use of this character is described in the proposal.
Does the proposal address other aspects of character data processing (if applicable) such as input, presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)? Yes

There are no new input or presentation issues not already present for the existing repertoire of math symbols. Sorting, indexing, and transliteration are generally not an issue for math symbols. Some special letterlike symbols are provided in the repertoire to facilitate searching for some common key mathematical concepts in text documents.

C. Technical - Justification

1. Has this proposal for addition of character(s) been submitted before? No (with a few exceptions)

If YES explain.
Note that a few individual characters among the repertoire of 951 may appear in other proposals before WG2. For example, the Q-shaped koppa letters have independently been requested. Several arrow characters from a recent Japanese proposal for symbols to cover JIS X 0213 are also included. The vast majority of the 951 characters in this proposal are requested here for the first time.

[^1]If YES, with whom?

STIPUB (Scientific and Technical Information Publishing Consortium), representing mathematical and other major technical publishing interests. American Mathematical Society. International Mathematical Union. major mathematical software vendors. W3C MathML participants.

If YES, available relevant documents? See the references and appended approval letters in the proposal.
3. Information on the user community for the proposed characters (for example: size, demographics, information technology use, or publishing use) is included?

The repertoire is intended for all international mathematical information technology use and for mathematical, scientific, and technical publishing worldwide. It is intended to complete the base symbol set for MathML. It is also intended as the underlying symbol encoding for all major mathematical layout software programs.

Reference:
4. The context of use for the proposed characters (type of use; common or rare):

Common to rare, depending on the particular subfield of mathematics involved.
Reference:
5. Are the proposed characters in current use by the user community? Yes

If YES, where?
Books, journals, articles, online documents. Reference: STIPUB can provide voluminous references. This constitutes the complete world community of mathematical users: all books, journals, magazines, and other publications in mathematics and scientific and technical disciplines that make use of mathematics, worldwide.
6. After giving due considerations to the principles in N 1352 must the proposed characters be entirely in the BMP? Yes

If YES, is a rationale provided? Yes
If YES, reference: See WG2 N2191.
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)? Yes and No.

Exact details of the proposed distribution of the characters into existing and new blocks of 10646 are provided in Annex 2.
8. Can any of the proposed characters be considered a presentation form of an existing character or character
sequence? Yes (a few)
If YES, is a rationale for its inclusion provided? No
In these instances, the precedents are already clearly established in the standard. For example, a quadruple integral character is requested; the double and triple integral are already encoded as characters.

If YES, reference:
9. Can any of the proposed character(s) be considered to be similar (in appearance or function) to an existing character? Yes

If YES, is a rationale for its inclusion provided? No, not in detail.
There are numerous instances among mathematical symbols where one symbols is generically similar to another in appearance, but where it is well understood in mathematical practice to not be the same symbol. Annex 2 provides a number of cross-references, where there might be confusions regarding the distinctiveness of a particular character, either with respect to existing encoded characters in 10646, or with respect to other characters in this proposal. Mathematical symbols are also replete with examples where the same function can be represented by different symbols. Multiplication, for example, can already be represented by U+00D7 MULTIPLY or U+2219 BULLET OPERATOR. However, it can also be represented by a zero-width operator, such as in $x y$ where this expression represents the variable x multiplied by the variable y. Multiple symbols corresponding to the same abstract mathematical functions are requested for encoding as separate characters when their form is distinct in different mathematical traditions or subfields.

If YES, reference:
WG2 2191 does provide a detailed rationale for the request for two additional sets of squares as geometric shape characters.
10. Does the proposal include use of combining characters and/or use of composite sequences (see clause 4.11 and 4.13 in ISO/IEC 10646-1)? Yes

If YES, is a rationale for such use provided? Yes
If YES, reference: See B. 4 above.
Is a list of composite sequences and their corresponding glyph images (graphic symbols) provided? No
Such a list would be unmanageably long, since combining marks are intended for productive use in mathematics.

If YES, reference:
11. Does the proposal contain characters with any special properties such as control function or similar semantics?
Yes

If YES, describe in detail (include attachment if necessary)
The VARIATION SELECTOR is described in WG2 N2191, and the list of variants it selects is detailed in

Annex 4.

D. SC 2/WG 2 Administrative (To be completed by SC 2/WG 2)

1. Relevant SC 2/WG 2 document numbers:
2. Status (list of meeting number and corresponding action or disposition):
3. Additional contact to user communities, liaison organizations etc:
4. Assigned category and assigned priority/time frame:

Math Symbols Proposal

Second Draft MTHM000417．Ist

Revised with feedback from AMS experts．
Deleted 2050 こ TWO DOT LEADE［ R ON EM
29E6 こ moved to 2050 こ and renamed to CLOSE UP
2052 d through 2055 （ moved to 29F67 through 29F9 \}
Added 29F5 0 SET DIFFERENCE
Moved 2056］TURNED AMPERSAND to 214B $\mathcal{\gamma}$
Deleted 2997 l and 2998 ／moustaches
Deleted 29D8 \sim through 29DB \cong and 2A6E \cong controversial lazy s＇s

File Statistics：

Total Characters： 584Lines in file： 842
＋Generated： 8
Name lines： 592
Characters： 584
Reserved： 0
Unassigned： 8
Secondary lines： 201
Aliases： 36
Comments： 26
Cross Refs： 122
Can．Decomps： 0
Compatibility： 17
Ignored：Header Lines： 57
Blocks：57
Subheaders： 44
Notices： 0
Title lines 1
Subtitles：Page breaks： 0
Empty lines： 0
Iso Comments 0
AnnexP Notes 0

Archaic Greek letters

03D8 Q GREEK LETTER Q-SHAPED KOPPA
03D9 Q GREEK SMALL LETTER Q-SHAPED KOPPA

- the Q-shaped koppas are the ordinary alphabetic letters

Greek symbol

03F4 Θ GREEK CAPITAL THETA SYMBOL WITH STRAIGHT BAR
$\rightarrow 0472 \Theta$ cyrillic capital letter fita $\approx 03 \mathrm{~B} 8 \theta$

Punctuation

204E * LOW ASTERISK
204F : REVERSED SEMICOLON
\rightarrow 003B ; semicolon
2050 こ CLOSE UP

- editing mark

2051 * TWO ASTERISKS ALIGNED VERTICALLY
$2052 \mathbb{Q}$ <reserved>
$2053 \mathbb{\otimes}$ <reserved>
$2054 \mathbb{Q}$ <reserved>
$2055 \mathbb{Q}$ <reserved>
$2056 \mathbb{Q}$ <reserved>
2057 " "' QUADRUPLE PRIME
≈ 2035 `2035` 2035 `2035`
Space
205F MEDIUM MATHEMATICAL SPACE

- four-eighteenths of an em
$\approx 0020 \mathrm{sp}$

Invisible operators

2061 FUNCTION APPLICATION

- contiguity operator indicating application of a function
2062 x INVISIBLE TIMES
- contiguity operator indicating multiplication

Variation selector

2063 [vs VARIATION SELECTOR

- in conjunction with preceding character indicates variant choice

Combining Symbols
20E5 \& COMBINING REVERSE SOLIDUS OVERLAY
20E6 \# COMBINING DOUBLE VERTICAL STROKE OVERLAY
$=\mathrm{z}$ notation finite function
20E7 व COMBINING ANNUITY SYMBOL
= actuarial bend
20E8 ‥ COMBINING TRIPLE UNDERDOT


```
Letterlike symbols
213B \epsilon GREEK SYMBOL STRAIGHT EPSILON
    \approx< 03B5 &
213C э GREEK SYMBOL REVERSED
    STRAIGHT EPSILON
213D \gamma OPEN-FACE GREEK SMALL GAMMA
    \approx<\mathrm{ font> 03B3 }\gamma
213E \Gamma OPEN-FACE GREEK CAPITAL GAMMA
    \approx<\mathrm{ font> }0393 \Gamma
213F II OPEN-FACE GREEK CAPITAL PI
    \approx 03A0 П
2140 \Sigma OPEN-FACE GREEK CAPITAL SIGMA
    \approx 03A3 \Sigma
2141 ๑ TURNED SANS SERIF CAPITAL G
        = game
2142 7 TURNED SANS SERIF CAPITAL L
2143 」 REVERSED SANS SERIF CAPITAL L
2144 人 INVERTED SANS SERIF CAPITAL Y
2145 DD CAPITAL DIFFERENTIAL D
    \approx }0044\textrm{D
2146 d DIFFERENTIAL D
        \approx<\mathrm{ font> }0064 d
2147 e EXPONENTIAL E
        \approx 0065 e
2148 i IMAGINARY I
    \approx }0069\mathrm{ i
2149 j IMAGINARY J
    \approx<\mathrm{ font> 006A j}
214A < <reserved>
214B }\mathcal{\gamma}\mathrm{ TURNED AMPERSAND
    - used in linear logic
        O026 & ampersand
```


Arrows

21F4 DOWNWARDS WHITE ARROW WITH CORNER LEFTWARDS
= return
\rightarrow 21B5 downwards arrow with corner leftwards
21F5 \uparrow DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW
21F6 引 THREE RIGHTWARDS ARROWS
21F7 + LEFTWARDS ARROW WITH
VERTICAL STROKE
21F8 \rightarrow RIGHTWARDS ARROW WITH
VERTICAL STROKE
$=\mathrm{z}$ notation partial function
21F9 \leftrightarrow LEFT RIGHT ARROW WITH VERTICAL STROKE
$=\mathrm{z}$ notation partial relation
21FA \# LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE
21FB \quad RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE
$=\mathrm{z}$ notation finite function
21FC ω LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE
= z notation finite relation
21FD \leftarrow LEFTWARDS OPEN-HEADED ARROW
21FE \rightarrow RIGHTWARDS OPEN-HEADED ARROW
21FF \leftrightarrow LEFT RIGHT OPEN-HEADED ARROW

Mathematical operators

$22 F 2 \in$ ELEMENT OF WITH LONG HORIZONTAL STROKE
22F3 \in ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22F4 \& SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22F5 $\dot{\epsilon}$ ELEMENT OF WITH DOT ABOVE
$22 F 6 \bar{\epsilon}$ ELEMENT OF WITH OVERBAR
$22 F 7 \bar{\epsilon}$ SMALL ELEMENT OF WITH OVERBAR
22F8 \subseteq ELEMENT OF WITH UNDERBAR
22F9 \in ELEMENT OF WITH TWO HORIZONTAL STROKES
22FA \ni CONTAINS WITH LONG HORIZONTAL STROKE
22FB 日 CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22FC ョ SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
22FD $₹$ CONTAINS WITH OVERBAR
22FE $э$ SMALL CONTAINS WITH OVERBAR
22FF E Z NOTATION BAG MEMBERSHIP

Miscellaneous technical

237C $\&$ RIGHT ANGLE WITH DOWNWARDS ZIGZAG ARROW

Brace pieces
239B (LEFT PARENTHESIS UPPER HOOK
239C | LEFT PARENTHESIS EXTENSION
239D (LEFT PARENTHESIS LOWER HOOK
239E) RIGHT PARENTHESIS UPPER HOOK
239F | RIGHT PARENTHESIS EXTENSION
23A0 RIGHT PARENTHESIS LOWER HOOK
23A1 LEFT SQUARE BRACKET UPPER CORNER
23A2 | LEFT SQUARE BRACKET EXTENSION
23A3 L LEFT SQUARE BRACKET LOWER CORNER
23A4 \rceil RIGHT SQUARE BRACKET UPPER CORNER
23A5 | RIGHT SQUARE BRACKET EXTENSION
23A6 」 RIGHT SQUARE BRACKET LOWER CORNER
23A7 (LEFT CURLY BRACKET UPPER HOOK
23A8 \{ LEFT CURLY BRACKET MIDDLE PIECE
23A9 LEFT CURLY BRACKET LOWER HOOK
23AA | CURLY BRACKET EXTENSION
23AB) RIGHT CURLY BRACKET UPPER HOOK
23AC $\}$ RIGHT CURLY BRACKET MIDDLE PIECE
23AD J RIGHT CURLY BRACKET LOWER HOOK
23AE | INTEGRAL EXTENSION
23AF HORIZONTAL LINE EXTENSION
23B0 / UPPER LEFT OR LOWER RIGHT CURLY BRACKET SECTION = left moustache
23B1 I UPPER RIGHT OR LOWER LEFT CURLY BRACKET SECTION = right moustache
Summation sign parts
23B2 SUMMATION TOP
23B3 SUMMATION BOTTOM

Vertical brackets

23B4 - TOP SQUARE BRACKET
23B5 - BOTTOM SQUARE BRACKET
23B6 \leftrightharpoons BOTTOM SQUARE BRACKET OVER TOP SQUARE BRACKET

Geometric shapes

25F8 ∇ UPPER LEFT TRIANGLE
25F9 ∇ UPPER RIGHT TRIANGLE
25FA \triangle LOWER LEFT TRIANGLE
25FB \square WHITE MEDIUM SQUARE
25FC BLACK MEDIUM SQUARE
25FD - WHITE VERY SMALL SQUARE
25FE • BLACK VERY SMALL SQUARE
$25 F F \diamond$ WHITE DIAMOND WITH CENTRED DOT

	291	292	${ }^{293}$	294	295	296	${ }^{29}$
\rightarrow	\rightarrow	$\stackrel{ }{ }$ -	x	0	\square	1	\bigcirc
+	\rightarrow	s	x	O	1	J	=
\#	${ }_{\text {s }}$	${ }_{\text {com }}$	${ }_{20}$	$\underset{\text { mo }}{\stackrel{\text { m }}{\sim}}$	\vdash		$\stackrel{ }{ }$
\#	1	5	\sim	\leftrightarrows	\rightarrow	11	$\stackrel{\sim}{*}$
¢	や	\checkmark	1	$\stackrel{ }{+}$	T	\Rightarrow	
\mapsto	${ }^{24}$	${ }^{\text {ces }}$		$\stackrel{\text { an }}{\stackrel{204}{ }}$	1	$\stackrel{14}{ }$	$\vec{\approx}$
\Leftrightarrow							
¢		\checkmark	${ }_{\text {max }}$	\leftarrow			\leq
ڤ	\cdots	x	4	*	\rightarrow	$=$	\leftarrow
¢		X	2	(\rightarrow	T	=	\geq
F	-	x		${ }^{\text {f }}$	1		\bigcirc
${ }^{11}$	\succ	$\underset{\text { xa }}{ }$	\sim	$\stackrel{\square}{\text { mam }}$	4	${ }_{z a n}$	$\underset{\substack{\text { an }}}{\in}$
B	-	\times	\checkmark	-	-	$=$	2
-		\times	\sim	5		=	${ }_{6}$
${ }^{\text {axc }}$		${ }_{\text {nac }}$		${ }^{20}$			
\rightarrow	\leftarrow	x	${ }_{4}^{4}$	1	I	$=$	- ${ }_{\text {an }}$
${ }^{20}$							${ }^{20}$
$\xrightarrow{-}$	$\cdot \mathrm{H}$	χ	4	1	\square	J	

```
Supplemental arrows
\(2900 \rightarrow\) RIGHTWARDS TWO-HEADED ARROW
        WITH VERTICAL STROKE
        = z notation partial surjection
2901 ㅇ RIGHTWARDS TWO-HEADED ARROW
        WITH DOUBLE VERTICAL STROKE
        = z notation finite surjection
2902 LEFTWARDS DOUBLE ARROW WITH
        VERTICAL STROKE
\(2903 \Rightarrow\) RIGHTWARDS DOUBLE ARROW WITH
        VERTICAL STROKE
2904 LEFT RIGHT DOUBLE ARROW WITH
        VERTICAL STROKE
\(2905 \leftrightarrow\) RIGHTWARDS TWO-HEADED ARROW
        FROM BAR
        \(=\) maps to
2906 LEFTWARDS DOUBLE ARROW FROM
        BAR
        = maps from
\(2907 \Leftrightarrow\) RIGHTWARDS DOUBLE ARROW
        FROM BAR
        = maps to
\(2908 \pm\) DOWNWARDS ARROW WITH
        HORIZONTAL STROKE
2909 ₹ UPWARDS ARROW WITH
        HORIZONTAL STROKE
290A II UPWARDS TRIPLE ARROW
290B \| DOWNWARDS TRIPLE ARROW
290 C -- LEFTWARDS DOUBLE DASH ARROW
290D \(\rightarrow\) RIGHTWARDS DOUBLE DASH
    ARROW
290E \(--\quad\) LEFTWARDS TRIPLE DASH ARROW
290F \(\rightarrow\) RIGHTWARDS TRIPLE DASH ARROW
\(2910>\) RIGHTWARDS TWO-HEADED TRIPLE
        DASH ARROW
\(2911 \rightarrow\) RIGHTWARDS ARROW WITH DOTTED
        STEM
2912 T UPWARDS ARROW TO BAR
\(2913 \downarrow\) DOWNWARDS ARROW TO BAR
2914 > RIGHTWARDS ARROW WITH TAIL
    WITH VERTICAL STROKE
    = z notation partial injection
2915 (\# RIGHTWARDS ARROW WITH TAIL
    WITH DOUBLE VERTICAL STROKE
    \(=\mathrm{z}\) notation finite injection
\(2916 \rightarrow\) RIGHTWARDS TWO-HEADED ARROW
    WITH TAIL
    \(=\) bijective mapping
2917 (\% RIGHTWARDS TWO-HEADED ARROW
    WITH TAIL WITH VERTICAL STROKE
    = z notation surjective injection
2918 /m RIGHTWARDS TWO-HEADED ARROW
        WITH TAIL WITH DOUBLE VERTICAL
        STROKE
        = z notation finite surjective injection
2919 孔 LEFTWARDS ARROW-TAIL
291A \(\leftharpoondown\) RIGHTWARDS ARROW-TAIL
291B \(\rightarrow\) LEFTWARDS DOUBLE ARROW-TAIL
```

291C * RIGHTWARDS DOUBLE ARROW-TAIL
291D • LEFTWARDS ARROW TO FILLED DIAMOND
291E \rightarrow RIGHTWARDS ARROW TO FILLED DIAMOND
291F \rightarrow LEFTWARDS ARROW FROM BAR TO FILLED DIAMOND
2920 ↔ RIGHTWARDS ARROW FROM BAR TO FILLED DIAMOND
2921 \& NORTH WEST AND SOUTH EAST ARROW
2922 ~ NORTH EAST AND SOUTH WEST ARROW
2923 s NORTH WEST ARROW WITH HOOK
2924 _ NORTH EAST ARROW WITH HOOK
2925 \& SOUTH EAST ARROW WITH HOOK
2926 , SOUTH WEST ARROW WITH HOOK
$2927 \times$ NORTH WEST ARROW AND NORTH EAST ARROW
$2928 \times$ NORTH EAST ARROW AND SOUTH EAST ARROW
$2929 \times$ SOUTH EAST ARROW AND SOUTH WEST ARROW
292A x SOUTH WEST ARROW AND NORTH WEST ARROW
292B \times RISING DIAGONAL CROSSING FALLING DIAGONAL
$292 C \times$ FALLING DIAGONAL CROSSING RISING DIAGONAL
292D \times SOUTH EAST ARROW CROSSING NORTH EAST ARROW
292E * NORTH EAST ARROW CROSSING SOUTH EAST ARROW
292F \times FALLING DIAGONAL CROSSING NORTH EAST ARROW
2930 » RISING DIAGONAL CROSSING SOUTH EAST ARROW
2931 x NORTH EAST ARROW CROSSING NORTH WEST ARROW
2932 x NORTH WEST ARROW CROSSING NORTH EAST ARROW
$2933 \sim$ WAVE ARROW POINTING DIRECTLY TO THE RIGHT \rightarrow 219D ~ rightwards wave arrow
2934 s ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS
2935 ح ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS
2936 ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS
2937 ᄂ ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS
2938 2 RIGHT-SIDE ARC CLOCKWISE ARROW
2939 \& LEFT-SIDE ARC ANTICLOCKWISE ARROW
293A ~ TOP ARC ANTICLOCKWISE ARROW
293B ~ BOTTOM ARC ANTICLOCKWISE ARROW

```
293C ~ TOP ARC CLOCKWISE ARROW WITH
    MINUS
293D ¢ TOP ARC ANTICLOCKWISE ARROW
    WITH PLUS
293E ~ LOWER RIGHT SEMICIRCULAR
    CLOCKWISE ARROW
293F u LOWER LEFT SEMICIRCULAR
    ANTICLOCKWISE ARROW
2940 O ANTICLOCKWISE CLOSED CIRCLE
    ARROW
    O20DA o combining anticlockwise ring
        overlay
2941 O CLOCKWISE CLOSED CIRCLE ARROW
    ~20D9 o combining clockwise ring
        overlay
2942 }\vec{~}\mathrm{ RIGHTWARDS ARROW ABOVE SHORT
        LEFTWARDS ARROW
2943 ` LEFTWARDS ARROW ABOVE SHORT
        RIGHTWARDS ARROW
2944 \rightleftarrows SHORT RIGHTWARDS ARROW ABOVE
    LEFTWARDS ARROW
2945 }->\mathrm{ RIGHTWARDS ARROW WITH PLUS
    BELOW
2946 ヶ LEFTWARDS ARROW WITH PLUS
    BELOW
2947 * RIGHTWARDS ARROW THROUGH X
2948 LEFT RIGHT ARROW THROUGH
    SMALL CIRCLE
2949 & UPWARDS TWO-HEADED ARROW
    FROM SMALL CIRCLE
294A ఒ LEFT BARB UP RIGHT BARB DOWN
    HARPOON
294B - LEFT BARB DOWN RIGHT BARB UP
    HARPOON
294C । UP BARB RIGHT DOWN BARB LEFT
        HARPOON
294D 1 UP BARB LEFT DOWN BARB RIGHT
        HARPOON
294E ~ LEFT BARB UP RIGHT BARB UP
        HARPOON
294F I UP BARB RIGHT DOWN BARB RIGHT
        HARPOON
2950 - LEFT BARB DOWN RIGHT BARB
        DOWN HARPOON
2951 1 UP BARB LEFT DOWN BARB LEFT
        HARPOON
2952 r LEFTWARDS HARPOON WITH BARB
    UP TO BAR
2953 -> RIGHTWARDS HARPOON WITH BARB
        UP TO BAR
2954 ¡ UPWARDS HARPOON WITH BARB
    RIGHT TO BAR
2955 & DOWNWARDS HARPOON WITH BARB
        RIGHT TO BAR
2956 \vdash LEFTWARDS HARPOON WITH BARB
    DOWN TO BAR
2957 -> RIGHTWARDS HARPOON WITH BARB
    DOWN TO BAR
```

2958 T UPWARDS HARPOON WITH BARB LEFT TO BAR
$2959 \perp$ DOWNWARDS HARPOON WITH BARB LEFT TO BAR
295A \rightarrow LEFTWARDS HARPOON WITH BARB UP FROM BAR
295B \triangleright RIGHTWARDS HARPOON WITH BARB UP FROM BAR
295C 1 UPWARDS HARPOON WITH BARB RIGHT FROM BAR
295D I DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR
295E \rightarrow LEFTWARDS HARPOON WITH BARB DOWN FROM BAR
$295 \mathrm{~F} \curvearrowleft$ RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR
29601 UPWARDS HARPOON WITH BARB LEFT FROM BAR
2961 J DOWNWARDS HARPOON WITH BARB LEFT FROM BAR
$2962=$ LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN
2963 ^ UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON
WITH BARB RIGHT
$2964 \Rightarrow$ RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
2965 』 DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
$2966 \leftrightharpoons$ LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP
$2967=$ LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
$2968 \geq$ RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP
$2969=$ RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN
$296 \mathrm{~A}=$ LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
296B $=$ LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
296C $=$ RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
$296 \mathrm{D}=$ RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
296E 11 UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
296F if DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

```
2970 = RIGHT DOUBLE ARROW WITH
    ROUNDED HEAD
    ->2283 \supset superset of
2971 }=>\mathrm{ EQUALS SIGN ABOVE RIGHTWARDS
    ARROW
2972 工 TILDE OPERATOR ABOVE
        RIGHTWARDS ARROW
2973 }~\mathrm{ LEFTWARDS ARROW ABOVE TILDE
        OPERATOR
2974 # RIGHTWARDS ARROW ABOVE TILDE
        OPERATOR
2975 }=>\mathrm{ RIGHTWARDS ARROW ABOVE
        ALMOST EQUAL TO
2976 < LESS-THAN ABOVE LEFTWARDS
        ARROW
2977 < LEFTWARDS ARROW THROUGH
        LESS-THAN
2978 < GREATER-THAN ABOVE
        RIGHTWARDS ARROW
2979 \leftrightharpoons SUBSET ABOVE RIGHTWARDS
        ARROW
297A }\in\mathrm{ LEFTWARDS ARROW THROUGH
        SUBSET
297B }\supsetneq SUPERSET ABOVE LEFTWARD
        ARROW
297C & LEFT FISH TAIL
297D 子 RIGHT FISH TAIL
297E r UP FISH TAIL
297F 」 DOWN FISH TAIL
```

	298	299	29A	29B	29C	29D	29E	29F
0		$\begin{gathered} 7 \\ \\ 2990 \end{gathered}$	$29 \mathrm{AO}$	Q 29B0	\leqslant 29 CO	$\underset{\text { 29D0 }}{ }$	\square 29E0	$\underset{29 F 0}{\longrightarrow}$
1		\langle	$\not \forall$	$\bar{\gtrless}$	$29 \mathrm{C} 1$		$\underline{\boldsymbol{U}}$	29F1
2	0 2982	.	$\begin{gathered} 7 \\ 29 \mathrm{~A} 2 \end{gathered}$	29B2	29 C 2		$\begin{aligned} & \text { لـلـا } 29 \mathrm{E} 2 \end{aligned}$	$\underset{\text { 9F2 }}{\text { 丁 }}$
3	$\{\underset{2983}{ }$	$\underset{2993}{\mathcal{F}}$	$\frac{\Delta}{29 \mathrm{~A} 3}$	$\ddot{\square}$			$\begin{aligned} & \text { \# } \\ & 29 \mathrm{E} 3 \end{aligned}$	工
4		$>$	$\frac{L}{29 A 4}$	$\stackrel{\leftarrow}{29 B 4}$	\square 29 C 4		\tilde{H}	$: \rightarrow$ 29F4
5	$\mathscr{2 9 8 5}$	\not	$\underset{29 A 5}{\perp}$	\bigcirc	Δ 29 C 5	$\underset{\substack{29 D 5}}{>}$	$\begin{aligned} & \text { 击 } \\ & \text { 29E5 } \end{aligned}$	
6	1 2986	\＃ 2996	29A6	0	* $29 C 6$	$\underset{29 D 6}{\boldsymbol{X}}$		$\overline{29 F 6}$
7	$\begin{array}{r} V \\ 2987 \end{array}$		${ }_{2}$	（II） 29B7			\neq	$\underset{2977}{\underset{29}{ }+1}$
8	$\begin{gathered} 1 \\ 2988 \\ \hline \end{gathered}$		$\underset{29 A 8}{\star}$	$\underbrace{}_{29 B 8}$	$\begin{array}{r} \square \\ \hline \\ \hline \end{array}$		$\begin{gathered} \nabla \\ 29 E 8 \\ \hline \end{gathered}$	$\begin{aligned} & \text { 29F8 } \\ & \hline \end{aligned}$
9	\downarrow 2989	2999	\triangle 29A9	（1） 29B9				$\underset{29 F 9}{ }$
A	$\begin{gathered} \nu \\ 298 \mathrm{~A} \end{gathered}$	$\begin{gathered} \xi \\ 299 \mathrm{~A} \end{gathered}$	$\begin{array}{r} \underset{\text { 29AA }}{\boldsymbol{X}} \\ \hline \end{array}$	29BA			29EA	
B	$\underset{298 \mathrm{~B}}{\underline{L}}$	$\underset{299 B}{x}$	$\begin{gathered} \square \\ 29 \mathrm{AB} \end{gathered}$	\varnothing 29BB	29CB		29EB	
C	$\underset{298 \mathrm{C}}{\underset{29}{]}}$	6 299C	$\begin{aligned} & \nabla^{\pi} \\ & 29 \mathrm{AC} \end{aligned}$	$\underset{29 B C}{ }$	$\underset{29 C c}{\Delta s}$	$\begin{aligned} & \propto \\ & 29 D C \end{aligned}$		
D	$\sum_{298 D}$	ம.	$\underset{\substack{\text { 29AD }}}{\boldsymbol{r}}$			$\begin{array}{r} \infty \\ 29 D D \end{array}$		
E	$\underset{298 \mathrm{E}}{]_{2}}$	$\angle \mathrm{s}$ 299E	Δ 29AE	(O)	乌	o 29DE	29EE	
F	${\underset{208 F}{ }}_{L_{298}}$	$\underset{299 F}{K}$	$\underbrace{\boldsymbol{A}}_{29 \mathrm{AF}}$	29BF	$\underset{\text { 29CF }}{<1}$	$\begin{aligned} & 0-0 \\ & \text { 29DF } \\ & \hline \end{aligned}$	ـ 29EF	

	2 A 8	2 A 9	2AA	2 AB	2AC	2AD	2AE	2AF
0	$\underset{2 A 80}{\geqslant}$	$\underset{2 A 90}{\gtrless}$	$\underset{2 A A O}{\mathbb{Z}}$		$\underset{+}{?}$	2ADO	$\frac{\perp}{2 \text { LE }}$	$\underset{2 A F 0}{6}$
1	$\underset{2 A 81}{*}$	$\underset{2 A 91}{\lessgtr}$	$\underset{2 A A 1}{<}$	$\underset{2 A B 1}{ }$	$\underset{\times}{C_{x}}$	2AD1	$\frac{\mid \mathbf{S}}{2 A E 1}$	б
2	\geqslant 2A82	$\sum_{\underline{2 A 92}}$		$\underset{\text { 2AB2 }}{\gtrless}$	$\begin{gathered} \underset{\times}{7} \\ 2 A C 2 \end{gathered}$	$\underset{2 A D 2}{D}$	$\begin{gathered} \text { E } \\ \text { 2AE2 } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { 2AF2 } \\ \hline \end{gathered}$
3	$\underset{2 A 83}{\leqslant}$	$\underset{2 A 93}{\underset{\gtrless}{\gtrless}}$		$\underset{2}{\underline{Z}}$		$\underset{2 A D 3}{5}$	$\underset{2 А Е 3}{ }-1$	$\begin{gathered} \sharp \\ \text { 2AF3 } \\ \hline \end{gathered}$
4	\geqslant	$\underset{2 A 94}{\gtrless}$	K 2AA4		$\underset{2 \mathrm{AC} 4}{\boldsymbol{\supseteq}}$	$\underset{2 \mathrm{AD} 4}{\boldsymbol{C}}$	$\underset{2 A E 4}{ }$	2AF4
5	$\underset{2 A 85}{\approx}$	$\sum_{2 A 95}$	$><$	$\underset{\text { 2AB5 }}{\boldsymbol{F}}$	$\underset{2 \mathrm{AC5}}{\overline{=}}$	$\underset{2 \mathrm{AD5}}{\subset}$	$\underset{\text { 2AE5 }}{ }$	$\begin{gathered} \text { HI } \\ \text { 2AF5 } \end{gathered}$
6		$\$$	$<$	$\underset{2}{7}$	$\underset{2 A C 6}{\supseteq}$	$\underset{2 A D 6}{?}$	$\begin{aligned} & \nmid=1 \\ & 2 A E 6 \end{aligned}$	2AF6
7	$\underset{\sim}{\mathcal{F} 887}$	$\sum_{2 A 97}^{<}$		$2 \mathrm{AB} 7$	$\underset{2 A C 7}{\sim}$	$\begin{aligned} & \supset \subset \\ & 2 \mathrm{AD7} \end{aligned}$	$\begin{aligned} & \bar{T} \\ & \text { 2AE7 } \end{aligned}$	
8	$\underset{2 A B 8}{>}$		\leqslant	2AB8	$\underset{2 A C 8}{\sim}$	$\begin{aligned} & \text { Fモ } \\ & \text { 2AD8 } \end{aligned}$	$\underset{\text { 2AE8 }}{\underline{ـ}}$	
9	$\underset{2}{\boldsymbol{\chi}}$	$\bar{\sum}$		2AB9	$\underset{2 A C 9}{\approx}$		$\begin{gathered} \frac{1}{T} \\ 2 A E 9 \end{gathered}$	
A	$\underset{Z}{2 A B A}$	$\underset{2 A 9 A}{>}$	\leftarrow 2AAA	$\underset{\text { 2ABA }}{\star}$	$\underset{2 A C A}{\underset{\sim}{2}}$	$\boldsymbol{\prod}$	\prod	
B	$\underset{2 A 8 B}{\sum}$	$\underset{2 A 9 B}{<}$	$\gg 2$	$\underset{2 A B B}{K}$	$\begin{gathered} \underset{F}{\mp} \\ 2 A C B \end{gathered}$	$\prod_{2 A D B}$	$\underset{\text { 2AEB }}{\downarrow}$	
C	$\underset{2 A B C}{\gtrless}$	$\$$ 2A9C	$\underset{2 A A C}{ }$	\gg 2ABC	$\begin{gathered} \supsetneq \\ \neq 2 \mathrm{CCC} \end{gathered}$	\nsucc 2ADC	$\begin{gathered} 7 \\ \text { 2AEC } \end{gathered}$	
D	$\underset{2 A 8 D}{\sim}$	$\underset{2 A 9 D}{\gtrless}$	\geq	$\stackrel{\bullet}{2 A B D}$	$2 \mathrm{ACD}$	\downarrow 2ADD	$\begin{aligned} & \text { Г } \\ & \text { 2AED } \end{aligned}$	
E	$\underset{2 A 8 E}{Z}$	$\widetilde{\Sigma}$	$\begin{aligned} & \underline{\underline{\sim}} \\ & 2 \mathrm{ZAE} \end{aligned}$	$\stackrel{-}{-}$ 2ABE	2ACE	$\underset{2 A D E}{ }$	$\underset{2 A E E}{1}$	
F	\sum	$\underset{2 A 9 F}{\rightleftarrows}$	\leq	$\underset{+}{\underset{+}{C}}$		$\begin{gathered} \hline \mathbf{T} \\ 2 A D F \end{gathered}$	9 2AEF	

N -ary operators	
2A00	\odot N-ARY CIRCLED DOT OPERATOR $\rightarrow 2299 \odot$ circled dot operator
2A01	\oplus N-ARY CIRCLED PLUS OPERATOR $\rightarrow 2295 \oplus$ circled plus
2A02	\otimes N-ARY CIRCLED TIMES OPERATOR $\rightarrow 2297 \otimes$ circled times
2A03	\cup N-ARY UNION OPERATOR WITH DOT
2A04	\uplus N-ARY UNION OPERATOR WITH PLUS $\rightarrow 228 \mathrm{E} \uplus$ multiset union
2A05	Π N-ARY SQUARE INTERSECTION OPERATOR $\rightarrow 2293$ \quad square cap
$2 A 06$	N-ARY SQUARE UNION OPERATOR $\rightarrow 2294 \sqcup$ square cup
2 A 07	A TWO LOGICAL AND OPERATOR = merge $\rightarrow 2$ A55 A two intersecting logical and
$2 A 08$	* TWO LOGICAL OR OPERATOR $\rightarrow 2 A 56 \mathbb{W}$ two intersecting logical or
2A09	\times N-ARY TIMES OPERATOR $\rightarrow 00 \mathrm{D} 7 \times$ multiplication sign
Summations and integrals	
2A0A	Σ MODULO TWO SUM $\rightarrow 2211 \sum$ n-ary summation
	\& SUMMATION WITH INTEGRAL
	$\iiint \int$ QUADRUPLE INTEGRAL OPERATOR
2AOD	FINITE PART INTEGRAL
	INTEGRAL WITH DOUBLE STROKE
	f INTEGRAL AVERAGE WITH SLASH
	\oint CIRCULATION FUNCTION
	f ANTICLOCKWISE INTEGRATION
2A12	f LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE
2A13	f LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE
	§ LINE INTEGRATION NOT INCLUDING THE POLE
2A15	$\oint \begin{aligned} & \text { INTEGRAL AROUND A POINT } \\ & \text { OPERATOR }\end{aligned}$
2A16	¢ QUATERNION INTEGRAL OPERATOR
2A17	\oint INTEGRAL WITH LEFTWARDS ARROW WITH HOOK
2A18	f INTEGRAL WITH TIMES SIGN
2A19	\oint INTEGRAL WITH INTERSECTION
2A1A	¢ INTEGRAL WITH UNION
2A1B	\bar{J} INTEGRAL WITH OVERBAR
2A1C	$\underline{\int}$ INTEGRAL WITH UNDERBAR
Miscellaneous large operators	
2A1D D \triangle JOIN $=$ large bowtie - relational databas $\rightarrow 22 \mathrm{C} 8 \bowtie$ bowtie	

2A00 $\odot \mathrm{N}$-ARY CIRCLED DOT OPERATOR
$\rightarrow 2299 \odot$ circled dot operator
$2 A 01 \oplus \mathrm{~N}$-ARY CIRCLED PLUS OPERATOR
$\rightarrow 2295 \oplus$ circled plus
$2 A 02 \otimes \mathrm{~N}$-ARY CIRCLED TIMES OPERATOR
$\rightarrow 2297 \otimes$ circled times
2A03 \cup N-ARY UNION OPERATOR WITH DOT
2A04 \biguplus N-ARY UNION OPERATOR WITH PLUS
$\rightarrow 228 \mathrm{E} \uplus$ multiset union
2A05 \quad N-ARY SQUARE INTERSECTION OPERATOR
$\rightarrow 2293 \sqcap$ square cap
$\rightarrow 2294 \sqcup$ square cup
$=$ merge
$\rightarrow 2$ A55 \mathbb{A} two intersecting logical and
TWO LOGICAL OR OPERATOR
$\rightarrow 2 A 56 \mathbb{W}$ two intersecting logical or
$\rightarrow 00 \mathrm{D} 7 \times$ multiplication sign
Summations and integrals
2A0A \sum MODULO TWO SUM
$\rightarrow 2211 \sum$ n-ary summation
2AOB \ddagger SUMMATION WITH INTEGRAL
2AOC $\iiint \int$ QUADRUPLE INTEGRAL OPERATOR
$\approx 222 \mathrm{~B}$ • 222B • 222B • 222B \int
2AOD f FINITE PART INTEGRAL
2AOE f INTEGRAL WITH DOUBLE STROKE
2AOF f INTEGRAL AVERAGE WITH SLASH
2A10 \oint CIRCULATION FUNCTION
2A11 f ANTICLOCKWISE INTEGRATION
2A12 $ز$ LINE INTEGRATION WITH
RECTANGULAR PATH AROUND POLE
LINE INTEGRATION WITH
SEMICIRCULAR PATH AROUND POLE
LINE INTEGRATION NOT INCLUDING THE POLE
O. INEGRAL AROUND A POINT OPERATOR
2A16 $\boldsymbol{\phi}$ QUATERNION INTEGRAL OPERATOR
2A17 $\oint ~ I N T E G R A L ~ W I T H ~ L E F T W A R D S ~$ ARROW WITH HOOK
2A18 f INTEGRAL WITH TIMES SIGN
2A19 \oint INTEGRAL WITH INTERSECTION
2A1A $\underset{f}{ }$ INTEGRAL WITH UNION
2A1B $\bar{\int}$ INTEGRAL WITH OVERBAR
2A1C $\underline{\int}$ INTEGRAL WITH UNDERBAR
Miscellaneous large operators
2A1D $\searrow \triangleleft$ JOIN
= large bowtie
$\rightarrow 22 \mathrm{C} 8 \bowtie$ bowtie

2A1E \triangleleft LARGE LEFT TRIANGLE OPERATOR

- relational database theory
$\rightarrow 25 \mathrm{C} 1 \triangleleft$ white left-pointing triangle
$2 A 1 F: Z$ NOTATION SCHEMA COMPOSITION
\rightarrow 2A3E ; z notation relational composition
2A20 > Z NOTATION SCHEMA PIPING
$\rightarrow 226 \mathrm{~B} \gg$ much greater-than
2A21 \upharpoonright Z NOTATION SCHEMA PROJECTION
\rightarrow 21BE \upharpoonright upwards harpoon with bar rightwards

Plus and minus sign operators

$2 A 22$ ํ PLUS SIGN WITH SMALL CIRCLE ABOVE
2 A23 \uparrow PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE
2A24 \tilde{f} PLUS SIGN WITH TILDE ABOVE
$2 \mathrm{~A} 25+$ PLUS SIGN WITH DOT BELOW
$\rightarrow 2214+$ dot plus
2A26 \pm PLUS SIGN WITH TILDE BELOW
2A27 t_{2} PLUS SIGN WITH SUBSCRIPT TWO = nim-addition
2A28 * PLUS SIGN WITH FILLED TRIANGLE
2A29 \sim MINUS SIGN WITH COMMA ABOVE
2A2A - MINUS SIGN WITH DOT BELOW $\rightarrow 2238$ - dot minus
2A2B \div MINUS SIGN WITH FALLING DOTS
2A2C \div MINUS SIGN WITH RISING DOTS
2A2D + PLUS SIGN IN LEFT HALF CIRCLE
2A2E \rightarrow PLUS SIGN IN RIGHT HALF CIRCLE

Multiplication and division sign operators

2A2F \times VECTOR OR CROSS PRODUCT
\rightarrow 00D7 \times multiplication sign
2 A30 \times MULTIPLICATION SIGN WITH DOT ABOVE
2A31 \underline{x} MULTIPLICATION SIGN WITH UNDERBAR
2A32 \times SEMIDIRECT PRODUCT WITH BOTTOM CLOSED
2A33 * SMASH PRODUCT
2A34 ® MULTIPLICATION SIGN IN LEFT HALF CIRCLE
2A35 × MULTIPLICATION SIGN IN RIGHT HALF CIRCLE
2A36 $\hat{\otimes}$ CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT
2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE
2A38 \odot CIRCLED DIVISION SIGN
Miscellaneous math operators
2A39 4 PLUS SIGN IN TRIANGLE
2A3A \triangle MINUS SIGN IN TRIANGLE
2A3B \triangle MULTIPLICATION SIGN IN TRIANGLE

```
2A3C 」 INTERIOR PRODUCT
    ->230B」right floor
2A3D - RIGHTHAND INTERIOR PRODUCT
    230AL left floor
    ->2319 - turned not sign
2A3E ; Z NOTATION RELATIONAL
    COMPOSITION
    ~2A1F; z notation schema composition
2A3F U AMALGAMATION OR COPRODUCT
    \rightarrow 2 2 1 0 ~ 山 ~ n - a r y ~ c o p r o d u c t ~
Intersections and unions
2A40 ค INTERSECTION WITH DOT
2A41 }\forall\mathrm{ UNION WITH MINUS SIGN
    = z notation bag subtraction
    \rightarrow 2 2 8 E \cup ~ m u l t i s e t ~ u n i o n
2A42 U UNION WITH OVERBAR
2A43 INTERSECTION WITH OVERBAR
2A44 @ INTERSECTION WITH LOGICAL AND
2A45 U UNION WITH LOGICAL OR
2A46 \breve{UNION ABOVE INTERSECTION}
2A47 O INTERSECTION ABOVE UNION
2A48 \breve{n} UNION ABOVE BAR ABOVE
    INTERSECTION
2A49 0 INTERSECTION ABOVE BAR ABOVE
    UNION
2A4A u UNION BESIDE AND JOINED WITH
    UNION
2A4B m INTERSECTION BESIDE AND JOINED
    WITH INTERSECTION
2A4C ס CLOSED UNION WITH SERIFS
    ->222A U union
2A4D a CLOSED INTERSECTION WITH SERIFS
    \rightarrow 2 2 2 9 ~ \cap ~ i n t e r s e c t i o n
2A4E ש DOUBLE SQUARE INTERSECTION
2A4F |ा DOUBLE SQUARE UNION
2A50 © CLOSED UNION WITH SERIFS AND
    SMASH PRODUCT
```


Logical ands and ors

```
2A51 i LOGICAL AND WITH DOT ABOVE
2A52 \dot{ LOGICAL OR WITH DOT ABOVE}
2A53 ^ DOUBLE LOGICAL AND
2A54 * DOUBLE LOGICAL OR
2A55 A TWO INTERSECTING LOGICAL AND
    \rightarrow 2 A 0 7 ~ \mathbb { A ~ t w o ~ l o g i c a l ~ a n d ~ o p e r a t o r }
2A56 w TWO INTERSECTING LOGICAL OR
    TA08\mathbb{*}\mathrm{ two logical or operator}
2A57 v SLOPING LARGE OR
2A58 ^ SLOPING LARGE AND
2A59 < LOGICAL OR OVERLAPPING LOGICAL
    AND
2A5A ^ LOGICAL AND WITH MIDDLE STEM
2A5B \vee LOGICAL OR WITH MIDDLE STEM
2A5C A LOGICAL AND WITH HORIZONTAL
    DASH
```

2A5D \forall LOGICAL OR WITH HORIZONTAL DASH
2A5E $\overline{\bar{\wedge}}$ LOGICAL AND WITH DOUBLE OVERBAR
$\rightarrow 2306$ ㅊ perspective
2A5F \wedge LOGICAL AND WITH UNDERBAR
$2 A 60 \wedge$ LOGICAL AND WITH DOUBLE UNDERBAR
$\rightarrow 2259 \wedge$ estimates
2A61 v SMALL VEE WITH UNDERBAR
2A62 $\overline{\bar{v}}$ LOGICAL OR WITH DOUBLE OVERBAR
2A63 $\underline{\underline{V}}$ LOGICAL OR WITH DOUBLE UNDERBAR
$\rightarrow 225 \mathrm{~A} \cong$ equiangular to
Miscellaneous math operators
2A64 $\&$ Z NOTATION DOMAIN ANTIRESTRICTION
2A65 \Rightarrow Z NOTATION RANGE ANTIRESTRICTION
$\rightarrow 2332$ • conical taper
Relational operators
2 A66 $\quad=$ EQUALS SIGN WITH DOT BELOW
$\rightarrow 2250 \doteq$ approaches the limit
2 A67 \doteq IDENTICAL WITH DOT ABOVE
2A68 \＃TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE
＝identical and parallel to
\rightarrow 22D5 \＃equal and parallel to
$\rightarrow 29 \mathrm{E} 5$ \＃congruent and parallel to
$2 A 69$ \＃TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE
2A6A $\dot{\sim}$ TILDE OPERATOR WITH DOT ABOVE
2A6B \div TILDE OPERATOR WITH RISING DOTS
$\rightarrow 223 B \div$ homothetic
2A6C \approx SIMILAR MINUS SIMILAR
2A6D \doteq CONGRUENT WITH DOT ABOVE
$\rightarrow 2245 \cong$ approximately equal to
2A6E \mathbb{Q}＜reserved＞
2A6F $\hat{\approx}$ ALMOST EQUAL TO WITH
CIRCUMFLEX ACCENT
$2 A 70 \cong$ APPROXIMATELY EQUAL OR EQUAL TO
$2 A 71 \bar{\mp}$ EQUALS SIGN ABOVE PLUS SIGN
2A72 \pm PLUS SIGN ABOVE EQUALS SIGN
2A73 \equiv EQUALS SIGN ABOVE TILDE OPERATOR
2A74 ：：＝DOUBLE COLON EQUAL $\approx 003 \mathrm{~A}: 003 \mathrm{~A}: 003 \mathrm{D}=$
2A75＝＝TWO CONSECUTIVE EQUALS SIGNS $\approx 003 \mathrm{D}=003 \mathrm{D}=$
$2 A 76===$ THREE CONSECUTIVE EQUALS SIGNS $\approx 003 \mathrm{D}=003 \mathrm{D}=003 \mathrm{D}=$
2 A77 \because EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW


```
2AB2 }\ddagger SUCCEEDS ABOVE SINGLE-LINE NOT
    EQUAL TO
2AB3 \leqq PRECEDES ABOVE EQUALS SIGN
2AB4 }\geqq\mathrm{ SUCCEEDS ABOVE EQUALS SIGN
2AB5 \supsetneqq PRECEDES ABOVE NOT EQUAL TO
2AB6 }\supsetneqq SUCCEEDS ABOVE NOT EQUAL TO
2AB7 § PRECEDES ABOVE ALMOST EQUAL
    TO
2AB8 \gtrsim SUCCEEDS ABOVE ALMOST EQUAL
    TO
2AB9 æ PRECEDES ABOVE NOT ALMOST
    EQUAL TO
2ABA æ SUCCEEDS ABOVE NOT ALMOST
    EQUAL TO
2ABB < DOUBLE PRECEDES
2ABC > DOUBLE SUCCEEDS
```


Subset and superset relations

2ABD © SUBSET WITH DOT
2ABE \bigcirc SUPERSET WITH DOT
$2 \mathrm{ABF} \subsetneq$ SUBSET WITH PLUS SIGN BELOW
2ACO ？SUPERSET WITH PLUS SIGN BELOW
2AC1 ¢ SUBSET WITH MULTIPLICATION SIGN BELOW
2AC2 ₹ SUPERSET WITH MULTIPLICATION SIGN BELOW
2AC3 $\dot{\leq}$ SUBSET OF OR EQUAL TO WITH DOT ABOVE
2AC4 $\grave{\text { ̇ }}$ SUPERSET OF OR EQUAL TO WITH DOT ABOVE
2AC5 § SUBSET OF ABOVE EQUALS SIGN
2AC6 \geqq SUPERSET OF ABOVE EQUALS SIGN
2AC7 〔 SUBSET OF ABOVE TILDE OPERATOR
2AC8 $\supseteq ~ S U P E R S E T ~ O F ~ A B O V E ~ T I L D E ~ R ~$ OPERATOR
2AC9 § SUBSET OF ABOVE ALMOST EQUAL TO
 EQUAL TO
2ACB $\risingdotseq ~ S U B S E T ~ O F ~ A B O V E ~ N O T ~ E Q U A L ~ T O ~$
2ACC \neq SUPERSET OF ABOVE NOT EQUAL TO
2ACD \sqsubset SQUARE LEFT OPEN BOX OPERATOR
2ACE \sqsupset SQUARE RIGHT OPEN BOX OPERATOR
2ACF－CLOSED SUBSET
$\rightarrow 2282$ C subset of
2ADO D CLOSED SUPERSET
$\rightarrow 2283$ כ superset of
2AD1＠CLOSED SUBSET OR EQUAL TO
2AD2 D CLOSED SUPERSET OR EQUAL TO
2AD3 〕 SUBSET ABOVE SUPERSET
2AD4 ᄅ SUPERSET ABOVE SUBSET
2AD5 ε SUBSET ABOVE SUBSET
2AD6 3 SUPERSET ABOVE SUPERSET
2AD7 x SUPERSET BESIDE SUBSET
2AD8 \because SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

Forks
2AD9 \cap ELEMENT OF OPENING DOWNWARDS
$\rightarrow 2208 \in$ element of
2ADA \pitchfork PITCHFORK WITH TEE TOP
\rightarrow 22D4 \pitchfork pitchfork
2ADB \pitchfork TRANSVERSAL INTERSECTION
\rightarrow 22D4 \pitchfork pitchfork
2ADC \star FORKING
－symbol is slashed although positive
2ADD \downarrow NONFORKING
－symbol is negative although not slashed
Tacks and turnstiles
2ADE \dashv SHORT LEFT TACK
$\rightarrow 22 A 3-1$ left tack
2ADF т SHORT DOWN TACK
\rightarrow 22A4 T down tack
$2 A E 0 \perp$ SHORT UP TACK
$\rightarrow 22 \mathrm{~A} 5 \perp$ up tack
2AE1 s s PERPENDICULAR WITH S
2AE2 三 VERTICAL BAR TRIPLE RIGHT
TURNSTILE
＝ordinarily satisfies
2AE3－n DOUBLE VERTICAL BAR LEFT
TURNSTILE
\rightarrow 22A9 $1-$ forces
2AE4 $=$ VERTICAL BAR DOUBLE LEFT
TURNSTILE
$\rightarrow 22 A 8 \vDash$ true
2AE5＝\｜DOUBLE VERTICAL BAR DOUBLE
LEFT TURNSTILE
2AE6 H LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL
$\rightarrow 22 A 9 \Vdash$ forces
2AE7 $₹$ SHORT DOWN TACK WITH OVERBAR
\rightarrow 22A4 T down tack
$\rightarrow 2351 \top$ apl functional symbol up tack overbar
$2 A E 8 \perp$ SHORT UP TACK WITH UNDERBAR
$\rightarrow 22 A 5 \perp$ up tack
$\rightarrow 234 \mathrm{~A} \perp$ apl functional symbol down tack underbar
$2 A E 9 \stackrel{\text { SHORT UP TACK ABOVE SHORT }}{\perp}$
DOWN TACK
2AEA π DOUBLE DOWN TACK
2AEB \Perp DOUBLE UP TACK
＝independence
－probability theory
2AEC \Rightarrow DOUBLE STROKE NOT SIGN
\rightarrow 00AC \neg not sign
2AED＝REVERSED DOUBLE STROKE NOT SIGN
$\rightarrow 2310$ r reversed not sign
Vertical line operators
2AEE $~$ DOES NOT DIVIDE WITH REVERSED NEGATION SLASH
$\rightarrow 2224$ ł does not divide

```
2AEF i VERTICAL LINE WITH CIRCLE ABOVE
2AFO d VERTICAL LINE WITH CIRCLE
    BELOW
2AF1 J DOWN TACK WITH CIRCLE BELOW
2AF2 # PARALLEL WITH HORIZONTAL
    STROKE
    ->2226 # not parallel to
2AF3 # PARALLEL WITH TILDE OPERATOR
2AF4 I| TRIPLE VERTICAL BAR BINARY
    RELATION
    = interleave
    ->2980 Ill triple vertical bar delimiter
2AF5 # TRIPLE VERTICAL BAR WITH
    HORIZONTAL STROKE
Miscellaneous math operator
2AF6 \vdots TRIPLE COLON
    - logic
    ->22EE : vertical ellipsis
```

```
@@ 2980 Miscellaneous Math Symbols 29FF
@ Miscellaneous math symbols
2980 TRIPLE VERTICAL BAR DELIMITER
    x (triple vertical bar binary relation - 2AF4)
2981 Z NOTATION SPOT
    * medium-sized filled circle
    x (bullet operator - 2219)
    x (black circle - 25CF)
2982 Z NOTATION TYPE COLON
    x (tibetan sign rnam bcad - OF7F)
        Brackets
2983 LEFT WHITE CURLY BRACKET
2984 RIGHT WHITE CURLY BRACKET
2985 LEFT WHITE PARENTHESIS
2986 RIGHT WHITE PARENTHESIS
    * used for Bourbakist intervals
2987 Z NOTATION LEFT IMAGE BRACKET
2988 Z NOTATION RIGHT IMAGE BRACKET
2989 Z NOTATION LEFT BINDING BRACKET
298A Z NOTATION RIGHT BINDING BRACKET
298B LEFT SQUARE BRACKET WITH UNDERBAR
298C RIGHT SQUARE BRACKET WITH UNDERBAR
298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER
298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER
2991 LEFT ANGLE BRACKET WITH DOT
2992 RIGHT ANGLE BRACKET WITH DOT
2993 LEFT ARC LESS-THAN BRACKET
2994 RIGHT ARC GREATER-THAN BRACKET
2995 DOUBLE LEFT ARC GREATER-THAN BRACKET
2996 DOUBLE RIGHT ARC LESS-THAN BRACKET
@ Fences
2999 DOTTED FENCE
    * four close dots vertical
299A VERTICAL ZIGZAG LINE
    x (wavy line - 2307)
@ Angles
299B MEASURED ANGLE OPENING LEFT
    x (measured angle - 2221)
299C RIGHT ANGLE VARIANT WITH SQUARE
    x (right angle - 221F)
299D MEASURED RIGHT ANGLE WITH DOT
299E ANGLE WITH S INSIDE
299F ACUTE ANGLE
29A0 SPHERICAL ANGLE OPENING LEFT
    x (spherical angle - 2222)
29A1 SPHERICAL ANGLE OPENING UP
29A2 TURNED ANGLE
    x (angle - 2220)
29A3 REVERSED ANGLE
29A4 ANGLE WITH UNDERBAR
29A5 REVERSED ANGLE WITH UNDERBAR
29A6 OBLIQUE ANGLE OPENING UP
29A7 OBLIQUE ANGLE OPENING DOWN
29A8 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND TO THE RIGHT
29A9 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND TO THE LEFT
29AA MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND TO THE
RIGHT
```

```
29AB
29AC
29AD
29AE
29AF
@
29B0
29B1
29B2 EMPTY SET WITH SMALL CIRCLE ABOVE
29B3 EMPTY SET WITH RIGHT ARROW ABOVE
29B4 EMPTY SET WITH LEFT ARROW ABOVE
Circle symbols
    CIRCLE WITH HORIZONTAL BAR
    x (circled minus - 2296)
29B6 CIRCLED VERTICAL BAR
29B7 CIRCLED PARALLEL
29B8 CIRCLED REVERSE SOLIDUS
29B9 CIRCLED PERPENDICULAR
29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR
29BB CIRCLE WITH SUPERIMPOSED X
    x (circled times - 2297)
29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN
29BD UP ARROW THROUGH CIRCLE
29BE CIRCLED WHITE BULLET
    x (circled ring operator - 229A)
    x (apl functional symbol circle jot - 233E)
    x (bullseye - 25CE)
29BF CIRCLED BULLET
    x (fisheye - 25C9)
29CO CIRCLED LESS-THAN
29C1 CIRCLED GREATER-THAN
29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT
29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT
    Square symbols
@
29C
29C5
29C6 SQUARED ASTERISK
29C7 SQUARED SMALL CIRCLE
    x (apl functional symbol quad circle - 233B)
29C8 SQUARED SQUARE
29C9 TWO JOINED SQUARES
@ Triangle symbols
29CA TRIANGLE WITH DOT ABOVE
29CB TRIANGLE WITH UNDERBAR
29CC S IN TRIANGLE
29CD TRIANGLE WITH SERIFS AT BOTTOM
    x (white up-pointing triangle - 25B3)
29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE
29CF LEFT TRIANGLE BESIDE VERTICAL BAR
29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE
@ Bowtie symbols
29D1 LEFT FILLED BOWTIE
    x (bowtie - 22C8)
29D2 RIGHT FILLED BOWTIE
29D3 FILLED BOWTIE
```

```
29D4 LEFT FILLED TIMES
    x (left normal factor semidirect product - 22C9
29D5 RIGHT FILLED TIMES
    x (right normal factor semidirect product - 22CA)
29D6 WHITE HOURGLASS
    = vertical bowtie
    = white framus
    x (hourglass - 231B)
29D7 FILLED HOURGLASS
@
29DC
    INCOMPLETE INFINITY
    = ISOtech entity &iinfin;
    x (infinity - 221E)
29DD TIE OVER INFINITY
29DE INFINITY NEGATED WITH VERTICAL BAR
29DF DOUBLE-ENDED MULTIMAP
    x (multimap - 22B8)
29EO SQUARE WITH CONTOURED OUTLINE
    = D'Alembertian
    x (lower right drop-shadowed white square - 274F)
29E1 INCREASES AS
    x (normal subgroup of or equal to - 22B4)
29E2 SHUFFLE PRODUCT
    x (z notation bag membership - 22FF)
29E3 EQUALS SIGN AND SLANTED PARALLEL
    x (number sign - 0023)
    x (equal and parallel to - 22D5)
29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE
29E5 IDENTICAL TO AND SLANTED PARALLEL
    x (triple horizontal bar with double vertical stroke - 2A68)
29E7 THERMODYNAMIC
    * vertical bar crossed by two horizontals
    x (not equal to - 2260)
29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK
    x (up-pointing triangle with left half black - 25ED)
29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK
    x (up-pointing triangle with right half black - 25EE)
29EA FILLED DIAMOND WITH DOWN ARROW
29EB FILLED LOZENGE
    x (lozenge - 25CA)
29EC CIRCLE WITH DOWN ARROW
29ED FILLED CIRCLE WITH DOWN ARROW
    Error bar symbols
29EE ERROR-BARRED WHITE SQUARE
29EF ERROR-BARRED FILLED SQUARE
29FO ERROR-BARRED WHITE DIAMOND
29F1 ERROR-BARRED FILLED DIAMOND
29F2 ERROR-BARRED WHITE CIRCLE
29F3 ERROR-BARRED FILLED CIRCLE
@ Miscellanous math symbols
29F4 RULE-DELAYED
    = colon right arrow
29F5 SET DIFFERENCE
    = ISOamsb entity &ssetmn; or &sbsol;
    * glyph is distinctively flatter than a reverse solidus or set minus
    x (reverse solidus - 005C)
    x (set minus - 2216)
29F6 SOLIDUS WITH OVERBAR
29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE
```

$29 F 9$ BIG REVERSE SOLIDUS
$=z$ notation schema hiding
x (set minus - 2216)

Symbol variants defined using a Variation Selector (VS)

- $2268 \varsubsetneqq+$ VS $\rightarrow \npreceq$ less-than and not double equal - with vertical stroke
- $2269 \supsetneqq+$ VS $\rightarrow \geqq$ greater-than and not double equal - with vertical stroke
- 22DA $\lesseqgtr+$ VS $\rightarrow \lessgtr$ less-than above slanted equal above greater-than
- 22DB $\gtreqless+V S \rightarrow \gtrless$ greater-than above slanted equal above less-than
- $2272 \lesssim+$ VS $\rightarrow \lesssim$ less-than or similar - following the slant of the lower leg
- $2273 \gtrsim+$ VS $\rightarrow \geqslant$ greater-than or similar - following the slant of the lower leg
- 2A9D $\approx+$ VS $\rightarrow \approx$ similar - following the slant of the upper leg - or less-than
- $2 \mathrm{~A} 9 \mathrm{E} \Im+\mathrm{VS} \rightarrow \lessgtr$ similar - following the slant of the upper leg - or greater-than
- 2AAC $\leq+$ VS $\rightarrow \leq$ smaller than or slanted equal
- 2AAD $\geqq+$ VS $\rightarrow \geqslant$ larger than or slanted equal
- 228A $\subsetneq+$ VS $\rightarrow \mp$ subset not equals - variant with stroke through bottom members
- 228B $\supsetneq+$ VS $\rightarrow \supseteq$ superset not equals - variant with stroke through bottom members
- 2 ACB $\varsubsetneqq+$ VS $\rightarrow \varsubsetneqq$ subset not two-line equals - variant with stroke through bottom members
- 2ACC $\supsetneqq+$ VS $\rightarrow \supsetneqq$ superset not two-line equals - variant with stroke through bottom members
- 2A3B $\rightarrow+$ VS $\rightarrow 」$ interior product - tall variant with narrow foot
- 2A3C $\llcorner+V S \rightarrow L$ righthand interior product - tall variant with narrow foot
- $2295 \bigoplus+$ VS $\rightarrow \oplus$ circled plus with white rim
- $2297 \otimes+$ VS $\rightarrow \otimes$ circled times with white rim
- 229C $\Theta+$ VS $\rightarrow \ominus$ equal sign inside and touching a circle
- 2225 || + VS \rightarrow // slanted parallel
- // + VS + 20E5 $\backslash \rightarrow$ X slanted parallel with reverse slash
** $\cdot 222 \mathrm{~A} \cup+\mathrm{VS} \rightarrow \cup$ union with serifs
** - $2229 \cap+$ VS $\rightarrow \cap$ intersection with serifs
** $2293 \sqcap+$ VS $\rightarrow \Pi$ square intersection with serifs
** $2294 \sqcup+\mathrm{VS} \rightarrow \sqcup$ square union with serifs

Notes:
** The shape is incorrect, owing to unavailability of a suitable font; the correct shape will be provided as soon as possible. The associated text correctly describes the desired shape.

March 13, 2000

Ms. Darbara Beetun
Amoriran Mathematical Suciety
201 Charles Street
Providence, RI 020012297
USA
Fax No. 001/401/331-3842

Datum

Dear Barbara Beetun:

In addition to disseminating mathematies electronically and in print, the German Mathematical Society (DMV) is actively involved in various activitios concerning the presentation of mathemntica on the Wels. We are vecy unhoppy about the current situation with regard to the eneoding of mathematical symbols. In order fior mallenalaics to be communicaled eflectively and accurately on the Web, there is a vilal need for unambiguous encoding of mathematical notation so that there is no coniusion to the reader as to what a text meght mean. Mathematics. with it: highly condensed symbolisma and its trend to irredundant presentations, needs a very prepise symbinlism The German Mathematical Snriety hopes that. InNonnf. can provide encoding that eliminates the ambiguity of the current schernes.

By glancing through the UnicoDe proposale, my colleagues and I noticed that many symbols used m mathematical publishny do not occur in UNicoDe. and thus. canmot be represented directly in many Web-based documents. We do hope that this situation ran be rhangert so that mathematic's car be cormermumicated fuently on the Well.

I am writing this letter to you with the hope that you will be able to distribute it to the committees and persons mvolved and to make the position of the German Mathematical Society known to those responsible for the development of Unicone. 'I'he (hermath Mathematical Gociely would apprefiate consideration of our point of view.

Sincerely

Gernot Stroth
f'restent of the German Marhmatical Society

Poranzehrif: Ociusp fialle (fosie) Mausanschnti:	Prof.Dr. Cernot Stroth		c mall: stresh@coxeter. untiverimetil, unialmalte.de.	
		(0) A3: $5-24610$		
	Pax	(1)3 451 55-2 7002	interner:	coxeter.mathemadk.

Mr. Mike Ksar

1501 Page Mill Road
MS: 5UL
Pall Alto, CA 94304
Dear Mr. Ksar:
The mathematically-oriented scientific community uses various styles of letters and symbols to concisely represent functions, variables, operations and other mathematical objects that comprise the language of mathematics. This presents an especially subtle problem because two different styles of the same letter or symbol can have completely different meanings. Thus it is very important to the community that there is a universally accepted standard encoding for the various styles of letters and symbols it uses in its publications. If multiple versions of these were being used in the literature, rather than a universally accepted version, it would significantly complicate the communication between researchers, especially in the Web environment.

It is for this reason that the American Mathematical Society has devoted significant resources to gathering the documentation for alpha/numeric and mathematical symbols and submitting it to the Unicode Technical Committee for its acceptance. Now that this has been accomplished we hope very much that they will be accepted by WG2.

Sincerely yours,

[^2]
[^0]: 1. (Choose one of the following:)
[^1]: 2. Has contact been made to members of the user community (for example: National Body, user groups of the script or characters, other experts, etc.)? Yes
[^2]: John Ewing

