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[This is a preliminary draft of a forthcoming Unicode TR on mathematics. 
Updates are being made continually, but people might find this draft of in-
terest.  At this stage, only a Word document is available, but a PDF ver-
sion will be made available when the document becomes more stable.] 

 
Starting with version 3.2, Unicode includes virtually all of the standard characters 

used in mathematics. This set supports a variety of math applications on computers, in-
cluding document presentation languages like TeX, math markup languages like MathML, 
computer algebra languages like OpenMath, internal representations of math in systems 
like Mathematica and MathCAD, computer programs, and plain text. In this paper, we 
describe the Unicode mathematics character groups and give some of their default math 
properties. Mathematicians and other scientists are continually inventing new mathemati-
cal symbols and the plan is to add them as they become accepted in the scientific 
communities. 

The paper starts with a discussion of the mathematics character repertoire incorpo-
rating the relevant block descriptions of The Unicode Standard [TUS].  Associated char-
acter properties are discussed next, including a number of properties that are not yet part 
of the Unicode Standard.  Character classifications by usage, by typography, and by 
precedence are given. Some implementation guidelines for input methods and use of 
Unicode math characters in programming languages are presented next.  The final section 
describes how many mathematical expressions can be rendered using a plain—or at least 
nearly plain—text format. Mathematical plain text can be handy for down-level text cop-
ies, e.g., in email, math input methods, computer programs, and in-line math display. 
Most mathematical expressions up through calculus can be represented unambiguously in 
Unicode plain text.  Note that the discussion is only intended to show how mathematical 
plain text might be useful.  It isn’t intended to be a complete specification or to be used 
for general information interchange at this stage in its development. 
 

1 Mathematical Character Repertoire 
Unicode 3.2 has a quite complete set of standard math characters to support math 

publication on and off the web. Specifically there are 591 new symbols (since Unicode 
3.0) and 996 new alphanumeric symbols in addition to 340 symbols already encoded in 
Unicode 3.0 for a total of 1927 math symbols. This repertoire is the result of input from 
many sources, notably from the STIX project, and enables one to display virtually all 
standard mathematical symbols. MathML is a major beneficiary of this support and 
lobbied in favor of the inclusion of the new characters. In addition, this math support 
lends itself to a useful plain-text encoding (see Sec. 4) that’s much more compact than 
MathML or TeX. 
 

1.1 Mathematical Alphanumeric Characters 
Mathematics uses the basic Latin letters and digits (a – z, A – Z, and 0 – 9), as well 

as the uppercase Greek letters Α-Ω (U+0391 - U+03A9), plus the nabla ∇ (U+2207) and 
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Θ variant (U+03F4), and the lowercase Greek α-ω (U+03B1 - U+03C9), plus the partial 
differential sign ∂ (U+2202) and the six glyph variants of ε, θ, κ, φ, ρ, and π, given by 
U+03F5, U+03D1, U+03F0, U+03D5, U+03F1, and U+03D6. For each of these six char-
acters, both glyph variants can appear in the same document with different meaning. 

Therefore the basic set of mathematical alphanumerical characters consists of 52 
Latin letters, ten digits, plus 24+2 uppercase Greek characters and 25+7 lowercase Greek 
characters.  In addition to this basic set, mathematics uses the four Hebrew-derived char-
acters (U+2135 – U+2138). Occasional use of Cyrillic uppercase Shah (U+0428) is also 
known as well as the Hiragana no (U+306E).  

 

1.2 Mathematical Alphabets 
Mathematics has need for a number of Latin and Greek alphabets that on first 

thought appear to be font variations of one another, e.g., normal, bold, italic and script H.  
However in any given document, these characters have distinct mathematical semantics.  
For example, a normal H represents a different variable from a bold H, etc.  If one drops 
these distinctions in plain text, one gets gibberish.  Instead of the well-known Hamilto-
nian formula 
 
 H = ∫dτ(εE² + µH²), 
 
you’d get the integral equation 
 

H = ∫dτ(εE² + µH²), 
 
although ordinarily the H and E would be italicized.  

Accordingly, Unicode includes the basic Latin and Greek alphabets in a number of 
specifically mathematical styles, such as normal, bold, italic, script, etc., as found in a 
comprehensive survey of the mathematical literature undertaken by the STIX project. 
Note that these alphabets encode only the semantic distinction, but not which normal, 
script, fraktur, double-struck, sans-serif, or monospace fonts are used, because this is be-
yond the scope of plain-text. The normal (that is upright serifed) letters have been unified 
with the existing characters in the Basic Latin and Greek blocks. There are 25 double-
struck, Fraktur and script characters that already exist in the Letterlike Symbols block 
(U+2100 – U+214F). These are explicitly unified with the characters in this block and 
corresponding holes have been left in the mathematical alphabets for the convenience of 
implementations. Only unaccented forms of the Latin letters are included, since general 
accents, e.g. the acute accent, would interfere with common mathematical diacritics, such 
as single or double dot above used commonly in physics to denote a derivative with re-
spect to the time variable. Such accented mathematical symbols are always represented 
by combining character sequences. 

When used with markup languages, for example with MathML <citation> the char-
acters are expected to be used directly, instead of indirectly via entity references or by 
composing them from base letters and style markup. For consistency, all mathematical 
alphanumerics have compatibility decompositions to the base Latin and Greek letters - 
folding away such distinctions, however, is usually not desirable. 
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The alphabetic symbols encountered in mathematics are given in the following ta-
ble: 
 

Math style Characters from basic set Plane 
normal (upright, serifed) Latin, Greek and digits BMP 
bold Latin, Greek and digits Plane 1 
italic Latin and Greek Plane 1* 
bold italic Latin and Greek Plane 1 
script (calligraphic) Latin Plane 1* 
bold script (calligraphic) Latin Plane 1 
fraktur Latin Plane 1* 
bold fraktur Latin Plane 1 
double-struck Latin and digits Plane 1* 
sans-serif Latin and digits Plane 1 
sans-serif bold Latin, Greek and digits Plane 1 
sans-serif italic Latin Plane 1 
sans-serif bold italic Latin and Greek Plane 1 
monospace Latin and digits Plane 1 

 
* Some of these alphabets have characters in the BMP as noted in the following section. 
  

To know if a character is a math alphanumeric character you can check for inclusion 
in the two ranges U+2100 – U+214F and U+1D400 – U+1D7FF.  In the programming 
language C, you can see if the character ch is in these ranges using the if() statement 

 
 if(IN_RANGE(0x2100, ch, 0x214F) || IN_RANGE(0x1D400, ch, 0x1D7FF)) {} 
 
where the macro IN_RANGE(n1, ch, n2) is defined by 
 
    #define IN_RANGE(n1, b, n2) ((unsigned)((b) - (n1)) <= unsigned((n2) - (n1))) 
 
This macro effectively has only one goto and is almost as fast as a single compare. With a 
single goto, the version IN_RANGE(0x2A00, ch | 0x200, 0x2AFF) matches all symbols 
in the Mathematical Operators and Supplemental Mathematical Operators blocks. 

Some duplicated Greek letters are U+00B5 µ MICRO SIGN, U+2126 Ω OHM SIGN, and 
several characters among the APL functional symbols in the Miscellaneous Technical 
block. 
 

1.3 Combining Marks 
Mathematical characters are often enhanced via use of combining marks in the 

ranges U+0300 – U+036F and the mathematical combining marks in the range U+20D0 – 
U+20FF.  These characters follow the base characters as in nonmathematical Unicode 
text. If a span of characters are enhanced by a combining mark, e.g., a tilde over AB, 
typically some kind of higher-level markup is needed as is done in MathML. Unicode 
does includes some combining marks that are designed to be used for pairs of characters, 
e.g., U+0360 through U+0362. 
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1.4 Operators 
The Unicode blocks U+2200 – U+22FF and U+2A00 – U+2AFF contain many 

mathematical operators, relations, geometric symbols and other symbols with special us-
ages confined largely to mathematical contexts.  In addition to the characters in these 
blocks, mathematical operators are also found in the Basic Latin (ASCII) and Latin-1 
Supplement Blocks. A few of the symbols from the Miscellaneous Technical block and 
characters from General Punctuation are also used in mathematical notation. 

Mathematical operators often have more than one meaning.  Therefore the encoding 
of these blocks is intentionally rather shape based, with numerous instances in which sev-
eral semantic values can be attributed to the same Unicode value.  For example, U+2218 
2218 ◦ RING OPERATOR may be the equivalent of white small circle or composite function or 
apl jot.  The Unicode Standard does not attempt to distinguish all possible semantic val-
ues that may be applied to mathematical operators or relational symbols.  The Standard 
does include many characters that appear to be quite similar to one another, since they 
may well convey different meaning in a given context.  Typically the choice of a vertical 
or forward-slanting stroke seems to be an aesthetic one, but both slants might appear in a 
given context and a back-slanted stroke always means something else. Accordingly Ver-
sion 3.2 of The Unicode Standard does not unify many characters that might appear to be 
only aesthetic variants of one another. 

On the other hand, mathematical operators such as implies ⇔ and if and only if ↔ 
have been unified with the corresponding arrows (U+21D2 RIGHTWARDS DOUBLE ARROW and 
U+2194 LEFT RIGHT ARROW, respectively) in the Arrows block. 

Several mathematical operators derived from Greek characters have been given 
separate encodings to match usage in existing standards.  These operators may occasion-
ally occur in context with Greek-letter variables. They include U+2206 ∆ INCREMENT, 
U+220F ∏ N-ARY PRODUCT, and U+2211 � N-ARY SUMMATION. 

Some typographical aspects of operators are discussed in Sec. 2.2.  For example, the 
n-ary operators are distinguished from letter variables by their larger size and the fact that 
they take limit expressions. 

The unary and binary minus sign is preferrably represented by U+2212 MINUS SIGN 
rather than by U+002D HYPHEN-MINUS, both because the former is unambiguous and be-
cause it is rendered with a more desirable length. (For a complete list of dashes in the 
Unicode Standard, see Table 6-2 in TUS).  U+22EE – U+22F1 are a set of ellipses used 
in matrix notation. 

 

1.5 Superscripts and Subscripts 
The Unicode block U+2070 – U+209F plus U+00B2, U+00B3, and U+00B9 con-

tain sequences of superscript and subscript digits and punctuation that can be useful in 
mathematics.  These characters are not used in MathML and TeX.  If they are used, it’s 
recommended that they be displayed with the same font size as other subscripts and su-
perscripts at the corresponding nested script level.  For example in the Unicode plain text 
approach of Sec. 4, a² and a↑2 should be displayed the same way when built up. 
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1.6 Arrows 
Arrows are used for a variety of purposes in mathematics and elsewhere, such as to 

imply directional relation, to show logical derivation or implication, and to represent the 
cursor control keys. Accordingly Unicode includes a fairly extensive set of arrows 
(U+2190 – U+21FF and U+2900 – U+297F), many of which appear in mathematics.   

 

1.7 Other Symbols 
Other symbols of use in mathematics are contained in the Miscellaneous Technical 

block (U+2300–U+23FF), the Geometric Shapes block (U+25A0–U+25FF), the Miscel-
laneous Symbols block (U+2600–U+267F), and the General Punctuation block 
(U+2000–U+206F). In particular, the Miscellaneous Technical block contains a set of 
brace pieces for building up large versions of (, ), [, ], {, }, ∑, and ∫ in a way that the dis-
played stem weights are compatible with the accompanying smaller characters.  These 
brace pieces are not used in stored mathematical text, but are often used in creating tech-
nical display and print drivers. 
[Add info from TUS] 
 

1.8 Other Characters 
These include all remaining Unicode characters.  They may appear in mathematical 

expressions, typically in spelled-out names for variables in fractions or simple formulae, 
but they most commonly appear in ordinary text.  An English example is the equation 
 

distance = rate × time, 
 
which uses ordinary ASCII letters to aid in recognizing sequences of letters as words in-
stead of products of individual symbols. Such usage corresponds to identifiers, discussed 
elsewhere.  
 

1.9 Variant Selector 
Another way to represent math alphanumerics in plain text was considered (but 

abandoned) that uses math variant tags that follow the appropriate base characters. This 
approach is more general than outright encoding since the variant tags could follow any 
characters in the BMP. However only certain characters should be eligible for these math 
styles, so one would have to have tables defining which combinations are legal and which 
should be discarded or ignored.  The approach was dropped because it was felt that it 
could be abused too easily for nonmath, rich-text purposes that would be better handled 
using markup. 

Nevertheless, the variant selector VS1 was introduced to get well-defined variants 
of particular math symbols.  The differences include: different slope of cancellation ele-
ment in some negated symbols, changed orientation of an equating or tilde operator ele-
ment, and some well-defined different shapes.  The characters defined for use with the 
variant selector are given in the following table 
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2268 + VS less-than and not double equal - with vertical stroke 
2269 + VS greater-than and not double equal - with vertical stroke 
22DA + VS less-than above slanted equal above greater-than 
22DB + VS greater-than above slanted equal above less-than 
2272 + VS less-than or similar - following the slant of the lower leg 
2273 + VS greater-than or similar - following the slant of the lower leg 
2A9D + VS similar - following the slant of the upper leg - or less-than 
2A9E + VS similar - following the slant of the upper leg - or greater-than 
2AAC + VS smaller than or slanted equal 
2AAD + VS larger than or slanted equal 
228A + VS subset not equals - variant with stroke through bottom members 
228B + VS superset not equals - variant with stroke through bottom members 
2ACB + VS subset not two-line equals - variant with stroke through bottom members 
2ACC + VS superset not two-line equals - variant with stroke through bottom members
2A3B + VS interior product - tall variant with narrow foot 
2A3C + VS righthand interior product - tall variant with narrow foot 
2295 + VS circled plus with white rim 
2297 + VS circled times with white rim 
229C + VS equal sign inside and touching a circle 
2225 + VS slanted parallel 
2225 + VS + 20E5 slanted parallel with reverse slash 
222A + VS union with serifs 
2229 + VS intersection with serifs 
2293 + VS square intersection with serifs 
2294 + VS square union with serifs 
 

1.10 Multiple Representations of the Same Character 
There have been many discussions as to various normalization forms for Unicode 

characters; Unicode Technical Report 15 discusses the subject in detail. Math characters 
are no exception: there are multiple ways of expressing various math characters. It would 
be nice to have a single way to represent any given character, since this would simplify 
recognizing the character in searches and other manipulations. Accordingly it’s worth-
while to give some guidelines. 

The first idea is to use the shortest form of a math operator symbol wherever possi-
ble. So U+2260 should be used for the not equal sign instead of the combining sequence 
U+003D U+0338.  

On the other hand, for alphabetic characters, use the fully decomposed sequence, 
e.g., use U+0061, U+0308 for ä, not U+00E4. Mathematics uses a multitude of combin-
ing marks that greatly exceeds the predefined composed characters in Unicode.  It’s better 
to have the math display facility handle all of these cases uniformly to give a consistent 
look between characters that happen to have a fully composed Unicode character and 
those that don’t. The combining character sequences also typically have semantics as a 
group, so it’s handy to be able to manipulate and search for them individually without 
having to have special tables to decompose characters for this purpose. 

MathML uses markup in some situations to allow multicharacter combining marks, 
such as a tilde over two or more characters, or an extended radical bar covering a mul-
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ticharacter expression.  Accordingly MathML does not use bicharacter combining marks 
like U+0360 through U+0362. 
 

1.11 Nonstandard Symbols 
Mathematicians are by their natures inventive people and will continue to invent 

new symbols to express their theories. Until these symbols are used by a number of peo-
ple, they shouldn’t be standardized.  Nevertheless, one needs a way to handle these sym-
bols in their initial nonstandard usage. 

The private use area (0xE000 – 0xF8FF) can be used for such nonstandard symbols.  
It’s a tricky business, since the PUA is used for many purposes.  For example, it’s used on 
Microsoft operating systems to round-trip codes that aren’t currently in Unicode, most 
notably many Chinese characters.  The precise usage may well change since many such 
symbols may be assigned to plane 2 (Extension B) and hence are standardized. 

When using the PUA, it’s a good idea to have higher-level backup to define what 
kind of characters are involved.  If they are used as math symbols, it would be good to 
assign them a math attribute that’s maintained in a rich-text layer parallel to the plain text. 
Such layers are used by rich-text programs such as Microsoft Word and Internet Explorer. 

 

2 Mathematical Character Properties 
Unicode assigns a number of mathematical character properties to aid in the default 

interpretation and rendering of these characters. Such properties include the classification 
of characters into operator, digit, delimiter, and variables. These properties may be over-
riden, or explicitly specified in some environments, such as MathML, which uses specific 
tags to indicate how Unicode characters are used, such as <mo> for operator, <md> for 
one or more digits comprising a number, and <mi> for identifier.  TeX is a higher-level 
composition system that uses implicit character semantics. In the following, we describe 
these properties in greater detail. 

In particular, many Unicode characters nearly always appear in mathematical ex-
pressions and are given the generic mathematics property.  They include the math opera-
tors in the ranges U+2200 – U+22FF and U+29B0 – U+2AFF, the math combining marks 
U+20D0 – U+20FF, the math alphanumeric characters (some of the Letterlike symbols 
and the mathematics alphanumerics range U+1D400 – U+1D7FF). The math property is 
useful in heuristics that seek to identify mathematical expressions in plain text.  [TODO: 
mention the new Unicode 3.2 symbol groups] 
 

2.1 Classification by Usage Frequency 

2.1.1 Strongly Mathematical Characters 
Strong mathematical characters are all characters that are primarily used for 

mathematical notation. This includes all characters with the math property [Sec. 4.9 of 
TUS] {check that this is true after extension of the properties to the new characters} with 
the following exceptions: 

002D HYPHEN-MINUS 
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and the following additions {any?} 

2.1.2 Weakly Mathematical Characters 
These characters often appear in mathematical expressions, but they also appear 

naturally in ordinary text. They include the ASCII letters, punctuation, as well as the ar-
rows and many of the geometric and technical shapes.  The ASCII hyphen minus 
(U+002D) is a weakly mathematical character that may be used for the subtraction opera-
tor, but U+2212 is preferred for this purpose and looks better. Geometric shapes are fre-
quently used as mathematical operators. 

2.1.3 Other 
All other Unicode characters. Many of these may occur in mathematical texts, 

though often not as part of the mathematical expressions themselves. 
 

2.2 Classification by Typographical Behavior 
Math characters fall into a number of subcategories, such as operators, digits, de-

limiters, and identifiers (constants and variables).  This section discusses some of the ty-
pographical characteristics of these subcategories.  These characteristics and classifica-
tions are useful in the absence of overriding information.  For example, there is at least 
one document that uses the letter P as a relational operator. 

2.2.1 Alphabetic 
In general italic Latin characters are used to represent single-character Latin vari-

ables.  In contrast, mathematical function names like sin, cos, tan, tanh, etc., are repre-
sented by upright serifed text to distinguish them from products of variables. Such names 
should not use the math alphanumeric characters. The upright uppercase Greek are fa-
vored over the italic ones. In Europe, upright d, D, e, and i are used for the two differen-
tial, exponential, and imaginary part functionalities, respectively.  In the USA, these 
quantities are represented by italic quantities. Products of italicized variables have 
slightly wider spacing than the letters in italicized words in ordinary  text. 

2.2.2 Operators 
Operators fall into one or more categories.  These include: 
 

binary some spacing around binary operators 
unary closer to modified character than binary operators 
n-ary often called “large” operators, take limits ordinarily above/below 

when displayed out-of-line and right to/bottom when displayed 
inline 

arithmetic includes binary and unary operators 
logical unary not and binary and, or, exclusive or in a host of guises 
set-theoretic inclusion, exclusion, in a variety of guises 
relational binary operators like less/greater than in many forms 
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2.2.3 Large Operator  
These include n-ary operators like summation and integration.  These may expand 

in size to fit their associated expressions. 

2.2.4 Digits 
Digits include 0-9 in various styles.  These have the same widths as one another. 

2.2.5 Delimiters 
Delimiters include punctuation, opening/closing delimiters such as parentheses and 

brackets, braces, and fences.  Opening and closing delimiters and fences may expand in 
size to fit their associated expressions.  Some bracket expressions don’t appear to be 
“logical”, e.g., ]x ,y[. 

2.2.6 Fences 
Fences are similar to opening and closing delimiters, but aren’t paired.  In addition, 

they include “mid” delimiters, which aren’t opening or closing ijn character. 

2.2.7 Combining Marks 
Where both long and short combining marks exist, use the long, e.g., use U+0338, 

not U+0337 and use U+20D2, not U+20D3. The actual shape is a typesetting problem.  
When using combining marks, the composite characters have the same typesetting class 
as the base character. 
 

2.3 Classification of Operators by Precedence 
Operator precedence reduces the notational complexity of expressions and is com-

monly used for this purpose in computer programming languages, calculus, and algebra.  
A simple precedence table is used in Sec. 4-2 to convert the Unicode plain-text notation 
into a prefix notation used in two-dimensional display code. Although that table has some 
unusual precedences, it shares with ordinary algebra the concept that addition and sub-
traction have lower precedence than multiplication and division.  Some display engines, 
e.g., TeX’s and MathML’s, do not use precedence and instead rely on complete specifica-
tion of operator order via explicit bracketing, either with {} as in TeX or XML tags as in 
MathML. 
 

3 Implementation Guidelines 

3.1 Input of Mathematical and Other Unicode Characters 
This leads to the important problem of input ease.  The ASCII math symbols are 

easy to find, e.g., + - / * [ ] ( ) { }, but often need to be used as themselves.  From a syn-
tax point of view, the official Unicode minus sign (U+2212) is certainly preferable to the 
ASCII hyphen-minus (U+002D) and the prime (U+2032) is preferable to the ASCII apos-
trophe (U+0027), but users may find the ASCII characters more easily.  Similarly it’s eas-
ier to type ASCII letters than italic letters, but when used as mathematical variables, such 
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letters are traditionally italicized in print.  Other post-entry enhancements include auto-
matic-ligature and left-right quote substitutions, which can be done automatically by 
some word processors.  Suffice it to say that intelligent input algorithms can dramatically 
simplify the entry of mathematical symbols. 

A special math shift facility for keyboard entry could bring up proper math symbols.  
The values chosen can be displayed on an on-screen keyboard.  For example, the left Alt 
key can access the most common mathematical characters and Greek letters, the right Alt 
key could access italic characters plus a variety of arrows, and the right Ctrl key could 
access script characters and other mathematical symbols.  The numeric key pad offers 
locations for a variety of symbols, such as sub/superscript digits using the left Alt key.  
Left Alt CapsLock could lock into the left-Alt symbol set, etc.  This approach yields what 
one might call a “sticky” shift. Other possibilities involve the NumLock and ScrollLock 
keys in combinations with the left/right Ctrl/Alt keys.  Pretty soon you realize that this 
approach rapidly approaches literally billions of combinations, i.e., several orders of 
magnitude more than Unicode can handle! 

The autocorrect feature of Microsoft Word 97 (and later) offers another way of en-
tering mathematical characters for people familiar with TeX.  For example, you type 
\alpha and shazaam!  It changes to α.  This approach is noticably faster than using menus. 

Pull-down menus are a popular method for handling large character sets, but they 
are slow.  A better approach is the symbol box, which is an array of symbols either chosen 
by the user or displaying the characters in a font.  Symbols in symbol boxes can be 
dragged and dropped onto key combinations on the on-screen keyboard(s), or directly 
into applications.  On-screen keyboards and symbol boxes are valuable for entry of 
mathematical expressions and of Unicode text in general. 

 

3.2 Use of Math Characters in Computer Programs 
It can be very useful to have typical mathematical symbols available in computer 

programs. Java has made an important step in this direction by allowing Unicode variable 
names. The math alphanumerics allow this approach to go further with relatively little 
effort for compilers.  A key point is that the compiler should display the desired charac-
ters in both edit and debug windows. A preprocessor can translate MathML, for example, 
into C++, but it won’t be able to make the debug windows use the math-oriented charac-
ters unless it can handle the underlying Unicode characters.  

The advantages of using the Unicode plain text in computer programs are at least 
threefold: 1) many formulas in document files can be programmed simply by copying 
them into a program file and inserting appropriate multiplication dots.  This dramatically 
reduces coding time and errors.  2) The use of the same notation in programs and the as-
sociated journal articles and books leads to an unprecedented level of self-documentation.  
3) In addition to providing useful tools for the present, these proposed initial steps should 
help us figure out how to accomplish the ultimate goal of teaching computers to under-
stand and use arbitrary mathematical expressions. 
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4 Unicode Plain Text Encoding of Mathematics 
Unicode plus a few special symbols can encode most mathematical expressions in 

readable plain text.  The format is linear, but can be displayed in built-up form.  The ap-
proach uses heuristics based on the Unicode math properties to recognize mathematical 
expressions without the aid of explicit math-on/off commands.  This is facilitated by Uni-
code’s new strong support for mathematical symbols.  This plain-text approach is com-
pared to the LaTeX dialect of TeX, “Unicode TeX”, and MathML.  The plain-text repre-
sentation is substantially more compact and easy to read.  Keyboard input methods are 
discussed.  One use of the plain-text format is as a math input method, both for search 
text and for general editing.  Most mathematical expressions up through calculus can be 
represented unambiguously in Unicode plain text.  Export to (La)TeX, MathML, C++, 
and symbolic manipulation programs is outlined. Note that the discussion is only in-
tended to show how mathematical plain text might be useful.  It isn’t intended to be a 
complete specification or to be used for general information interchange at this stage in 
its development. 

Given the power of Unicode relative to ASCII, how much better can a plain-text 
encoding of mathematical expressions look using Unicode?  The most well-known plain-
text ASCII encoding of such expressions is that of TeX, so we use it for comparison.  
MathML is considerably more verbose than TeX, so some of the comparisons apply to it 
as well.  Notwithstanding TeX’s phenomenal success in the science and engineering 
communities, a casual glance at its representation of mathematical expressions reveals 
that they don’t look very much like the expressions they represent. It’s certainly not easy 
to make algebraic calculations using TeX’s notation.  With Unicode, we can represent 
mathematical expressions more readably, and the resulting plain text can be used directly 
for such calculations. 

For example, one way to specify a TeX fraction numerator consists of the expres-
sion \frac{numerator}{denominator}.  In both the fraction and subscript/superscript cases, 
the { } are not printed.  These simple rules immediately give a “plain text” that is unambi-
guous, but looks quite different from the corresponding mathematical notation, thereby 
making it hard to read. 

Instead, suppose we define a simple operand to consist of all consecutive non-
operator characters.  We call this sequence of one or more characters a span of non-
operators.  As such, a simple numerator or denominator is terminated by any operator, 
including, for example, arithmetic operators, the blank operator, all Unicode characters 
with codes U+22xx, and a special argument “break” operator consisting of a small raised 
dot.  The fraction operator is given by the Unicode fraction slash operator U+2044, which 
we depict with the glyph //.  So the simple built-up fraction 

abc
d   . 

appears in plain text as abc//d. 
For more complicated operands (such as those that include operators), parentheses 

( ), brackets [ ], or braces { } can be used to enclose the desired character combinations.  
If parentheses are used and the outermost parenthesis set is preceded and followed by op-
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erators, that set is not displayed in built-up form, since usually one doesn’t want to see 
such parentheses.  So the plain text (a + b)//c displays as 

a + c
d   . 

In practice, this approach leads to plain text that is significantly easier to read than TeX’s, 
e.g., \frac{a + c}{d} , since in many cases, outermost parentheses are not needed, while 
TeX requires { }’s.  To force the display of an outermost parenthesis set, one encloses the 
set, in turn, within parentheses, which then become the outermost set.  A really neat fea-
ture of this notation is that the plain text is, in fact, a legitimate mathematical notation in 
its own right, so it’s relatively easy to read. In MathML, this fraction reads as 

<mfrac> 
  <mrow> 

<mi>a</mi> 
<mo>+</mo> 
<mi>c</mi> 

  </mrow> 
  <mrow> 

<mi>d</mi> 
  </mrow> 
 </mfrac> 

Nature isn’t so kind with subscripts and superscripts, but they’re still quite readable.  
Specifically, we introduce a subscript by a subscript operator with its own special glyph 
that resembles a subscripted down arrow ↓.  The subscript itself can be any operand as 
defined above. Another compound subscript is a subscripted subscript, which works us-
ing right-to-left associativity, e.g., a↓b↓c means abc

.  Similarly a↑b↑c means abc. 
As an example of a slightly more complicated example, consider the expression 

W δ1ρ1σ2
3β     has the plain-text format W↑3β↓δ1ρ1σ2. In contrast, for TeX, you type 

 
$W^{3\beta}_{\delta_1\rho_1\sigma_2}$ , 

 
which is hard to read.  The TeX version looks distinctly better using Unicode for the sym-
bols, namely $W^{3β}_{δ_1ρ_1σ_2}$ or $W^{3β}_{δ1ρ1σ2}$, since Unicode has a full 
set of decimal subscripts and superscripts.  However the need to use the {}, not to men-
tion the $’s, makes even the last of these harder to read than the plain-text version 
W↑3β↓δ1ρ1σ2. 

For the ratio 
α2

3

β2
3 + γ2

3  , 

 
the Unicode plain text reads α2

3//(β2
3 + γ2

3), while the standard TeX version reads as 
 

${\alpha^3_2 \over \beta^3_2 + \gamma^3_2}$· 
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The Unicode plain text is a legitimate mathematical expression, while the TeX version 
bears no resemblance to a mathematical expression. 
    TeX becomes very cumbersome for longer equations such as 
 

W δ1ρ1σ2
3β     = U δ1ρ1

3β     + 
1

8π2  
⌡


⌠

α1

α2

dα2´ 








U δ1ρ1

2β   - α2'U 1β
ρ1σ2

 U 0β
ρ1σ2

 . 

 
The Unicode plain-text version of this reads as 
 
W↑β↓δ1ρ1σ2 = U↑3β↓δ1ρ1 + 1/8π2 ∫↓α1

↑α2 dα2' [(U↑2β↓δ1ρ1 - α2'U↑1β↓ρ1σ2)/U↑0β↓ρ1σ2] 
 
while the standard TeX version reads as 
 
${W^{3\beta}_{\delta_1\rho_1\sigma_2} 
 = U^{3\beta}_{\delta_1\rho_1} + {1 \over 8\pi^2} 
 \int_{\alpha_1}^{\alpha_2} d\alpha_2’ \left[ 
 {U^{2\beta}_{\delta_1\rho_1} - \alpha_2’ 
 U^{1\beta}_{\rho_1\sigma_2} \over 
 U^{0\beta}_{\rho_1\sigma_2}} \right] }$ . 
 
In a “Unicoded” TeX, it could read as 
 
${W^{3β}_{δ1ρ1σ2} = U^{3β}_{δ1ρ1} + {1 / 8π2} 
 ∫_{α1}^{α2} dα2' \left[{U^{2β}_{δ1ρ1} - α2'U^{1β}_{ρ1σ2} 
 / U^{0β}_{ρ1σ2}} \right] }$ , 
 
which is significantly easier to read than the ASCII TeX version, although still much 
harder to read than the Unicode plain-text version. 

Brackets [ ], braces { }, and parentheses ( ) represent themselves in the Unicode 
plain text, and a word processing system capable of displaying built-up formulas should 
expand them to fit around what’s inside them.  Here we use U+2032 for \prime and 
U+2044 for \over. 
 

4.1 Recognizing Mathematical Expressions 
Unicode plain-text encoded mathematical expressions can be used “as is” for simple 

documentation purposes.  Use in more elegant documentation and in programming lan-
guages requires knowledge of the underlying mathematical structure.  This section de-
scribes some of the heuristics that can distill the structure out of the plain text. 

Many mathematical expressions patently identify themselves as mathematical, ob-
viating the need to declare them explicitly as such.  One of TeX’s greatest limitations is 
its inability to detect expressions that are obviously mathematical, but that are not en-
closed within $’s.  To complicate matters, the popular TeX dialects use the $ as a toggle, 
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which is a poor choice as a myriad TeX users will loudly testify!  It’s quite frustrating to 
leave out a $ by mistake and thereby receiving a slew of error messages because TeX in-
terprets subsequent text in the wrong mode.  An advantage of recognizing mathematical 
expressions without math-on/math-off syntax is that it is much more tolerant to user er-
rors of this sort.  Resyncing is automatic, while in TeX you basically have to start up 
again from the omission in question.  Furthermore, this approach should be useful in an 
important related endeavor, namely in recognizing and converting the mathematical lit-
erature that’s not yet available in an object-oriented machine-readable form, into that 
form.  A similar recognition problem exists for pen entry of equations. 

 It’s possible to use a number of heuristics for identifying mathematical expressions 
and treating them accordingly. These heuristics are not foolproof, but they lead to the 
most popular choices. Special commands can be used to overrule these choices. Ulti-
mately it could be used as an autoformat style wizard that tags expressions with a rich-
text math style.  The user could then override cases that were tagged incorrectly.  A math 
style would connect in a straightforward way to appropriate MathML tags. 

 The basic idea is that math characters identify themselves as such and potentially 
identify their surrounding characters as math characters as well.  For example, the frac-
tion (U+2044) and ASCII slashes, symbols in the range U+2200 through U+22FF, the 
symbol combining marks (U+20D0 - U+20FF), and in general, Unicode characters with 
the mathematics property, identify the characters immediately surrounding them as parts 
of math expressions. 

As described above, a simple subscript operand consists of the string of all non-
operators that follow the subscript operator.  Compound subscripts include expressions 
within parentheses, square brackets, and curly braces.  In addition it’s worthwhile to treat 
two more operators, the comma and the period, in special ways.  Specifically, if a sub-
script operand is followed directly by a comma or a period that is, in turn, followed by 
whitespace, then the comma or period appears on line, i.e., is treated as the operator that 
terminates the subscript. However a comma or period followed by a non-operator is 
treated as part of the subscript. This refinement obviates the need for many overriding 
parentheses, thereby yielding a more readable plain text. 

ASCII letter pairs surrounded by whitespace are often mathematical expressions, 
and as such should be italicized in print.  If a letter pair fails to appear in a list of common 
English and European two-letter words, it is treated as a mathematical expression and 
italicized.  Many Unicode characters are not mathematical in nature and suggest that their 
neighbors are not parts of mathematical expressions. 

 Strings of characters containing no whitespace but containing one or more unambi-
guous mathematical characters are generally treated as mathematical expressions.  Cer-
tain two-, three-, and four-letter words inside such expressions are not italicized.  These 
include trigonometric function names like sin and cos, as well as ln, cosh, etc.  Words or 
abbreviations, often used as subscripts (see program in Sec. 4.3), also should not be itali-
cized, even when they clearly appear inside mathematical expressions. 

Special cases will always be needed, such as in documenting the syntax itself.  One 
needs a symbol that causes the character that follows it to be treated as an ordinary char-
acter.  This allows the printing of characters without modification that by default are con-
sidered to be mathematical and thereby subject to a changed display.  Similarly, mathe-
matical expressions that the algorithms treat as ordinary text can be sandwiched between 
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math-on and math-off symbols.  Such “overhead” symbols clutter up the text and hope-
fully will be rarely needed in Unicode plain text. The method I’ve used up to now is to 
introduce a special override symbol to force the behavior desired.  This does complicate 
the preparation of technical documents and although you can get very good at it, it’s not 
the most user-friendly way of doing things.  On the other hand, identifying the beginning 
and end of math expressions using $’s isn’t user friendly either. 
 

4.2 Minimal Operator Summary 
Operands in subscripts, superscripts, fractions, roots, boxes, etc. are defined in part 

in terms of operators and operator precedence.  While such notions are very familiar to 
mathematically oriented people, some of the symbols that we define as operators might 
surprise one at first.  Most notably, the space (ASCII 32) is an important operator in the 
plain-text encoding of mathematics.  A small but common list of operators is 
 

FF CR \ 
([{ 
)]}| 

Space ".,=-+ LF Tab 
/*×·•• 
�√ 

∫ Σ Π 

↓ 
↑ 

where LF = U+000A, FF = U+000C, and CR = U+000D.  
As in arithmetic, operators have precedence, which streamlines the interpretation of 

operands.  The operators are grouped above in order of increasing precedence, with equal 
precedence values on the same line.  For example, in arithmetic, 3+1/2 = 3.5, not 2.  
Similarly the plain-text expression α + β/γ means 
 

α + 
β
γ   not   

α + β
γ  . 

 
As in arithmetic, precedence can be overruled, so (α + β)/γ gives the latter. 

The following gives a list of the syntax for a variety of mathematical constructs. 
 
exp1/exp2 Create a built-up fraction with numerator exp1 and denominator exp2.  

Numerator and denominator expressions are terminated by operators 
such as /*])↑↓· and blank (can be overruled by enclosing in parentheses).  
The “/” is given by U+2044. 

 
↑exp1 Superscript expression exp1.  The superscripts 0 - 9 + - ( ) exist as Unicode 

symbols.  Sub/superscripts expressions are terminated by /*])↑↓· and 
blank. Sub/superscript operators associate right to left. 

 
↓exp1 Subscript expression exp1.  The subscripts 0 - 9 + - ( ) exist as Unicode sym-

bols. 
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[exp1] Surround exp1 with built-up brackets.  Similarly for { } and ( ). 
 
[exp1]↑exp2 Surround exp1 with built-up brackets followed by superscripted exp2 

(moved up high enough).  Similarly for { } and ( ). 
 
√exp1 Square root of exp1. 
 
· Small raised dot that is not intended to print.  It is used to terminate an 

operand, such as in a subscript, superscript, numerator, or denominator, 
when other operators cannot be used for this purpose.  Similar raised 
dots like • and • also terminate operands, but they are intended to print. 

 
Σ↓ exp1

↑exp2 Summation from exp1 to exp2. ↓exp1 and ↑exp2 are optional. 
 
Π↓exp1

↑exp2 Product from exp1 to exp2. 
 
∫↓exp1

↑exp2 Integral from exp1 to exp2. 
 
exp1exp2 Align exp1 over exp2 (like fraction without bar). Useful for building up 

matrices as a set of columns. 
 

Diacritics are handled using Unicode combining marks (U+0300 - U+036F, U+20D0 - 
U+20FF).  Note that many more operators can be added to fill out the capabilities of the 
approach in representing mathematical expressions in Unicode plain (or almost plain) 
text. 
 

4.3 Export to Programming and Markup Languages 
Getting computers to understand human languages is important in increasing the 

utility of computers.  Natural-language translation, speech recognition and generation, 
and programming are typical ways in which such machine comprehension plays a role.  
The better this comprehension, the more useful the computer, and hence there has been 
considerable current effort devoted to these areas since the early 1960s. 

Ironically one truly international human language that tends to be neglected in this 
connection is mathematics itself.  In the middle 1950’s, the authors of FORTRAN named 
their computer language after FORmula TRANslation, but they only went half way.  
Arithmetic expressions in Fortran and other current high-level languages still don’t look 
like mathematical formulas and considerable human coding effort is needed to translate 
formulas into their machine comprehensible counterparts.  Whitehead once said that 90% 
of mathematics is notation and that a perfect notation would be a substitute for thought.  
From this point of view, modern computer languages are badly lacking. 

Using real mathematical expressions in computer programs would be far superior in 
terms of readability, reduced coding times, program maintenance, and streamlined docu-
mentation.  In studying computers we have been taught that this ideal is unattainable, and 
that we must be content with the arithmetic expression as it is or some other non-
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mathematical notation such as TeX’s.  It is time to reexamine this premise.  Whereas true 
mathematical notation clearly used to be beyond the capabilities of machine recognition, 
we feel it no longer is. 

In general, mathematics has a very wide variety of notations, none of which look 
like the arithmetic expressions of programming languages.  Although ultimately it would 
be desirable to be able to teach computers how to understand all mathematical expres-
sions, we start with our Unicode plain-text format. 

In raw form, these expressions look very like traditional mathematical expressions.  
With use of the heuristics described above, they can be printed or displayed in traditional 
built-up form.  On disk, they can be stored in pure-ASCII program files accepted by stan-
dard compilers and symbolic manipulation programs like Derive, Mathematica, and Mac-
syma.  The translation between Unicode symbols and the ASCII names needed by ASCII-
based compilers and symbolic manipulation programs is carried out via table-lookup (on 
writing to disk) and hashing (on reading from disk) techniques. 

Hence formulas can be at once printable in manuscripts and computable, either nu-
merically or analytically.  The expressions can contain standard arithmetic operations and 
special characters, such as Greek, italics, script, and various mathematical symbols like 
the square root.  Two levels of implementation are envisaged: scalar and vector.  Scalar 
operations can be performed on traditional compilers such as those for C and Fortran.  
The scalar multiply operator is represented by a raised dot, a legitimate mathematical 
symbol, instead of the asterisk.  To keep auxiliary code to a minimum, the vector imple-
mentation requires an object-oriented language such as C++. 

The advantages of using the Unicode plain text are at least threefold: 1) many for-
mulas in document files can be programmed simply by copying them into a program file 
and inserting appropriate multiplication dots.  This dramatically reduces coding time and 
errors.  2) The use of the same notation in programs and the associated journal articles 
and books leads to an unprecedented level of self documentation.  In fact, since many 
programmers document their programs poorly or not at all, this enlightened choice of no-
tation can immediately change nearly useless or nonexistent documentation into excellent 
documentation.  3) In addition to providing useful tools for the present, these proposed 
initial steps should help us figure out how to accomplish the ultimate goal of teaching 
computers to understand and use arbitrary mathematical expressions.  Such machine 
comprehension would greatly facilitate future computations as well as the conversion of 
the existing paper literature and Pen-Windows input into machine usable form. 

The concept is portable to any environment that supports a large character set, pref-
erably Unicode, and it takes advantage of the fact that high-level languages like C and 
Fortran accept an “escape” character (“_” and “$”, respectively) that can be used to ac-
cess extended symbol sets in a fashion similar to TeX.  In addition, the built-in C pre-
processor allows niceties such as aliasing the asterisk with a raised dot, which is a legiti-
mate mathematical symbol for multiplication.  Of course if we could convince our com-
piler friends to allow use to use Unicode for program-variable names, we’d really have it 
made!  Compatibility with unenlightened ASCII-only compilers could be done via an 
ASCII representation of Unicode characters. 
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4.4 Comparison of Programming Notations 
To get an idea as to the differences between the standard way of programming 

mathematical formulas and the proposed way, compare the following versions of a C++ 
routine entitled IHBMWM (inhomogeneously broadened multiwave mixing) 
 
void IHBMWM(void) 
{ 
 gammap = gamma*sqrt(1 + I2); 
 upsilon = cmplx(gamma+gamma1, Delta); 
 alphainc = alpha0*(1-(gamma*gamma*I2/gammap)/(gammap + upsilon)); 
 
 if (!gamma1 && fabs(Delta*T1) < 0.01) 
  alphacoh = -half*alpha0*I2*pow(gamma/gammap, 3); 
 else 

{ 
  Gamma = 1/T1 + gamma1; 
  I2sF = (I2/T1)/cmplx(Gamma, Delta); 
  betap2 = upsilon*(upsilon + gamma*I2sF); 
  beta = sqrt(betap2); 
  alphacoh = 0.5*gamma*alpha0*(I2sF*(gamma + upsilon) 
    /(gammap*gammap - betap2)) 
    *((1+gamma/beta)*(beta - upsilon)/(beta + upsilon) 
    - (1+gamma/gammap)*(gammap - upsilon)/ 
    (gammap + upsilon)); 
 } 
 alpha1 = alphainc + alphacoh; 
} 
 
void IHBMWM(void) 
{ 
 γ' = γ•√(1 + I2); 
 υ = γ + γ1 + i•∆; 
 αinc = α0•(1 - (γ•γ•I2/γ')/(γ' + υ)); 
 if (!γ1 || fabs(∆•T1) < 0.01) 

αcoh = -.5•α0•I2•pow(γ/γ', 3); 
 else 

{ 
  Γ = 1/T1 + γ1; 
  I2F = (I2/T1)/(Γ + i•∆); 

β2 = υ•(υ + γ•I2F); 
  β = β2 ; 
  αcoh = .5•γ•α0•(I2F.(γ + υ)/(γ'•γ' - β2)) 
   ×((1+γ/β)•(β - υ)/(β + υ) - (1+γ/γ')•(γ' - υ)/(γ' + υ)); 
 } 
 α1 = αinc + αcoh ; 
} 
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The above function runs fine with current C++ compilers, but C++ does impose some 
serious restrictions based on its limited operator table.  For example, vectors can be mul-
tiplied together using dot, cross, and outer products, but there’s only one asterisk to over-
load in C++.  In built-up form, the function looks even more like mathematics, namely 
 
void IHBMWM(void) 
{ 
 γ' = γ• 1 + I2 ; 
 υ = γ + γ1 + i•∆; 

 αinc = α0•
1 - (γ•γ•I2/γ')

γ' + υ   ; 

 if (!γ1 || fabs(∆•T1) < 0.01) 
αcoh = -.5•α0•I2•pow(γ/γ', 3); 

 else 
{ 

  Γ = 1/T1 + γ1; 

  I2F = 
I2/T1

Γ + i•∆  ; 

β2 = υ•(υ + γ•I2F); 
  β = β2 ; 

  αcoh = .5•γ•α0•
I2F.(γ + υ)
γ'•γ' - β2  ×

�


�

�
�
�

�


�

�
�
�1+
γ
β •

β - υ
β + υ  - 

�


�

�
�
�1+
γ
γ' •

γ' - υ
γ' + υ  ; 

 } 
 α1 = αinc + αcoh ; 
} 
 

The ability to use the second and third versions of the program was built into the PS 
Technical Word Processor.  With it we already come much closer to true formula transla-
tion on input, and the output is displayed in standard mathematical notation.  Lines of 
code can be previewed in built-up format, complete with fraction bars, square roots, and 
large parentheses.  To code a formula, you copy (cut and paste) it from a technical docu-
ment into a program file, insert appropriate raised dots for multiplication and compile.  
No change of variable names are needed.  Call that 70% of true formula translation!  In 
this way, the C++ function on the preceding page compiles without modification.  The 
code appears nearly the same as the formulas in print [see Chaps. 5 and 8 of P. Meystre 
and M. Sargent III (1991), Elements of Quantum Optics, Springer-Verlag]. 

Questions remain, such as to whether subscript expressions in the Unicode plain 
text should be treated as part of program-variable names, or whether they should be trans-
lated to subscript expressions in the target programming language.  Similarly, it would be 
straightforward to automatically insert an asterisk (indicating multiplication) between ad-
jacent symbols, rather than have the user do it.  However here there is a major difference 
between mathematics and computation: symbolically, multiplication is infinitely precise 
and infinitely fast, while numerically, it takes time and is restricted to a binary subset of 
the rationals with very limited (although often adequate) precision.  Consequently for the 
moment, at least, it seems wiser to consider adjacent symbols as part of a single variable 
name, just as adjacent ASCII letters are part of a variable name in current programming 



21 of 22 
 

languages.  Perhaps intelligent algorithms will be developed that decide when multiplica-
tion should be performed and insert the asterisks optimally. 

Export to TeX is similar to that to programming languages, but has a modified set of 
requirements.  With current programs, comments are distilled out with distinct syntax.  
This same syntax can be used in the Unicode plain-text encoding, although it’s interesting 
to think about submitting a mathematical document to a preprocessor that can recognize 
and separate out programs for a compiler.   In this connection, compiler comment syntax 
isn’t particularly pretty; ruled boxes around comments and vertical dividing lines between 
code and comments are noticeably more readable.  So some refinement of the ways that 
comments are handled would be very desirable.  For example, it would be nice to have a 
vertical window-pane facility with synchronous window-pane scrolling and the ability to 
display C code in the left pane and the corresponding // comments in the right pane.  
Then if you want to see the comments, you widen the right pane accordingly.  On the 
other hand, to view lines with many characters of code, the // comments needn’t get in the 
way.  Such a dual-pane facility would also be great for working with assembly-language 
programs. 

With TeX, the text surrounding the mathematics is part and parcel of the technical 
document, and TeX needs its $’s to distinguish the two.  These can be included in the 
plain text, but we have repeatedly pointed out how ugly this solution is.  The heuristics 
described above go a long way in determining what is mathematics and what is natural 
language.  Accordingly, the export method consists of identifying the mathematical ex-
pressions and enclosing them in $’s.  The special symbols are translated to and from the 
standard TeX ASCII names via table lookup and hashing, as for the program translations.  
Better yet, TeX should be recompiled to use Unicode. 
 

4.5 Conclusions 
We have shown how with a few additions to Unicode, mathematical expressions 

can usually be represented with a readable Unicode plain-text format.  The text consists 
of combinations of operators and operands.  A simple operand consists of a span of non-
operators, a definition that dramatically reduces the number of parenthesis-override pairs 
and thereby increases the readability of the plain text.  The only disadvantage to this ap-
proach versus TeX’s ubiquitous { } pairs is that the user needs to know what characters 
are operators.  To reveal the operators, operator-aware editors could be instructed to dis-
play operators with a different color or some other attribute.  To simplify the notation, 
operators have precedence values that control the association of operands with operators 
unless overruled by parentheses.  Heuristics can be applied to the Unicode plain text to 
recognize what parts of a document are mathematical expressions.  This allows the Uni-
code plain text to be used in a variety of ways, including in technical document prepara-
tion, symbolic manipulation, and numerical computation. 

The heuristics given for recognizing mathematical expressions work well, but they 
are not infallible.  An effective use of the heuristics would be as an autoformatting wizard 
that delimits what it thinks is mathematics with mathematics on/off codes.  The user 
could then overrule incorrect choices.  Once marked unequivocally as mathematics (an 
alternative to TeX’s $’s), export to MathML, compilers, and other consumers of mathe-
matical expressions is straightforward. We have a workable plain-text encoding of 
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mathematics that looks very much like mathematics even with the most limited display 
capabilities.  Appropriate display software can make it look like the real thing.  

 

5 References 
[MathML] http://www.w3.org/mathml 
[TeX] http://www.ams.org/tex/publications.html 
[LaTeX] 
[STIX] http://www.ams.org/STIX. 
 
 
TODO: describe the following: 
 
Double struck Greek and Italic in 2100 block 
- special use in CAS 
 
Squares 
- call out the graduated sequence 
 
Tilde/lazy S 
- describe the unification 
 
Terminal symbols 
- describe the scan lines and blocks 
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