
hel052.doc
Published at 3:27 pm on 27 September 2000

Page 1 of 15

WG3: HEL-052

25 September 2000

Authoritative version: hel052.pdf

ISO

International Organization for Standardization

Project: 32.03.05.02.00 (SQL:2002)

Title: Possible problems with characters, the story continues.

Author : J M Sykes (United Kingdom)

Source: UK Expert

Status: SQL:2002 Discussion paper

Abstract: We continue the exploration of possible problems with SQL's treatment of UCS
(Universal Character Set) character data, i.e. encoded in accordance with ISO/IEC
10646 or Unicode3. Some likely future proposals are outlined.

References: A li st of sources is to be found in Annex B, Sources

British Standards Institution
IST/40

Data Management and Interchange

ISO/IEC JTC 1/SC 32
Data Management and Interchange

WG 3

Database Languages

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 2 of 15 25 September 2000

1 The story so far

[BHX080], in Section 2, includes a brief résumé of the history of SQL's treatment of character data and
identified a number of issues in need of consideration.

[BHX117] expanded on these issues somewhat, in the light of subsequent research.

Both these papers were discussed by WG3 at its meeting in Warwick in July 2000, and the minutes [HEL001]
record that the following should be li sted as possible problems:

[1] Counting Characters 691, 774

[2] Normalization (Language Opportunity 776)

[3] Collations (Language Opportunity 775)

Other items requiring attention are PPs 634, 643, 759, and LOs 134, 212, 268, 426, 713, 758, 761. These are not
addressed in this paper.

The purpose of the present paper is to carry the discussion a li ttle further.

We assume the reader to be aware of the character model of ISO/IEC 10646 and the Unicode Standard 3.0, at
least as far as is relevant to the current discussion. The reader who lacks such awareness is recommended to
consult Annex B. The reader who is confused by the variety of concepts and the multiplicity of terms defined for
each concept, may find it useful to consult Annex A. In selecting the terms to use ourselves, we have followed
what appears to be fairly general usage and used code point for what Unicode call s (Unicode) scalar value and
ISO calls code position, and code unit for what Unicode call s (Unicode) code value and for which ISO defines
no specific term.

Annex A "Terminology and Notation" contains a tentative correspondence between [ISO 10646] and [Unicode3]
terminology.

Annex B contains a lightly annotated li st of sources which have been referred to in the preparation of this paper,
and to which the reader may wish to refer for authentication.

In what follows, the emphasised phrase "We propose" means that we intend to submit a formal proposal in the
future, unless serious objections are raised.

2 Basic principles

We propose as a fundamental principle that the analogy between the treatment of character data and that of
numeric data should be as close as possible.

A perfect analogy would imply the following basic principles:

1) A character is an abstraction. It is not a visible symbol on paper or screen (a glyph), nor is it a pattern of
bits (a code).

Problem 1: As [CharSetHarmful] points out, the term character is dangerously confusing when used to
denote this abstraction. Grapheme1 is used with this meaning, but raises further problems of culture
dependency.

Problem 2: It is impossible to determine in every case whether or not a syntacticall y valid Unicode
encoding represents what some user thinks of as a character, whether culture-dependent or not.

2) We propose that all character data is normalized, automatically and invisibly to the user, in the same way
as, and for the same reason that all approximate numeric data is normalized.

1 grapheme is defined in [UTR#18], and the definition is referred to in Annex A.1.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 3 of 15 25 September 2000

Problem: More than one normalization form is available, and even the same user may sometimes prefer
one, sometimes another.

3) We propose that casting between the various representations of the same character string is automatic
and invisible.

The three UCS Transformation Formats (UTF-8, UTF-16 and UTF-32) are interconvertible without loss,
so this objective is achievable. Nevertheless, some implementors might be reluctant to provide hidden,
automatic casting, and the potential costs might be considered unacceptable.

4) We propose that results of operations on character data should be independent of representation
(including normalization form).

If CS is a character string, then CHAR_LENGTH (CS) should give the same result irrespective of its
transformation format (UTF-8, UTF-16 or UTF-32). Thus, in UTF-16, a surrogate pair (of code units)
must count as, at most, 1 (one) 'character' (whether, by character is meant code point or grapheme).

Note that OCTET_LENGTH is obviously representation-dependent, so that this principle cannot be
applied to it.

Sadly, perfection is not achievable; nevertheless, it is highly desirable to approach it as closely as practicable.

There are two principal obstacles to perfect analogy:

a) Cultural differences. It is impossible to satisfy all of the users all of the time. There wil l be some who
insist on a character model appropriate to their own culture, others (multi-nationals) who have good
reason for requiring a culture-independent compromise. Cultural collations already exist, and a user
option to apply one to an individual comparison operation or to all such operations within some scope
(SQL-session, server, schema, ...) will go some way towards solving the problem. But the string that
includes text from different cultures may still exist, and must be dealt with somehow. If mark-up is used
within the string to indicate different cultural requirements, is this the concern of SQL? Probably not.

We note that cultural dependencies in general are usually specified as part of a locale, a term not used in
SQL.

b) Invalid strings. There are various classes of invalid data, ranging from the invalid code point or
unmatched surrogate, both of which must be rejected, to the nonsensical combining character sequence
that cannot reasonably be recognised as such, but which cannot always be detected. (See, e.g., [UTR #17],
section 4 "Character Encoding Form (CEF)")

3 An exemplar

There are at least two good reasons why SQL should consider adopting, with adaptation as necessary, the
"Character Model for the World Wide Web" [W3C-CharMod].

1) The character handling problems of the World Wide Web have much in common with those of SQL.

2) Users of Java, SQL/OLB, and XML wil l expect treatment of characters to be consistent in the different
contexts.

One or two comments are necessary on [W3C-CharMod]:

1) The existence of UTF-32 is not recognized, for reasons that are obvious if one looks at the dates on the
documents. When it is, we would expect "UCS-4" in the first bullet of the third bullet list of section 1.1
"Why is this document necessary?", to be changed to "UTF-32".

2) At least one issue of great importance to SQL is not resolved, viz. string indexing (meaning the use of a
number to indicate a position within the string). Section 5, "String Indexing" refers to the earlier
requirements document [W3C-CharReq], which presents a thorough statement of requirements but

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 4 of 15 25 September 2000

reaches only one conclusion useful to SQL, viz. that "If string indexing is based on early uniform
normalization, then this may help to make implementation easier". Sadly, while it ackowledged that "The
String indexing specification shall be prepared quickly", it doesn't seem to have appeared yet.

SQL needs to find its own resolution of this issue, with due regard to whatever other work is being done.

3) Understandably, [W3C-CharMod] focuses on transmission and rendering of character data, and is
consequently less concerned than many database administrators with the validity of the data. It is
therefore hardly surprising that constraints of the kind required on data stored in a database are not
discussed.

See also Annex A.3, "A note on notation".

4 <character set name>s

[CharSetNames] describes itself as a register, maintained by the Internet Assigned Numbers Authority. It lists
"official names for character sets that may be used in the Internet and may be referred to in Internet
documentation". Of the 200+ names on the li st, the ECMA registry is cited as the source of about 80. However,
for reasons we have not, as yet, been able to discover, the ECMA registry is not cited as the source of the six
Unicode/UCS entries whose source is ISO-10646 or some variant of it. (The remainder of the names are mostly
from industry sources).

Clearly, it is desirable that <character set name>s acceptable to an SQL-implementation should registered
somewhere. While SC32 WG3 owes no allegiance to IANA, it would seem to be both suitable and convenient, if
politi cally acceptable. Alternatively, we should explore the ECMA registry, which does not appear to show its
face on the Web.

UCS names registered at IANA currently are:
Name Source (recorded in registry)

ISO-10646-UTF-1 Universal Transfer Format (1), this is the
multibyte encoding, that subsets ASCII-7.

ISO-10646-UCS-2 the 2-octet Basic Multilingual Plane, aka
Unicode

ISO-10646-UCS-4 the full code space.

ISO-10646-UCS-Basic ASCII subset of Unicode. Basic Latin =
collection 1 See ISO 10646, Appendix A

ISO-10646-Unicode-
Latin1

ISO Latin-1 subset of Unicode. Basic Latin and
Latin-1 Supplement = collections 1 and 2. See
ISO 10646, Appendix A. See RFC 1815.

ISO-10646-J-1 ISO 10646 Japanese, see RFC 1815

UTF-8 RFC 2279 (which cites Unicode and ISO10646)

UTF-16BE RFC 2781 (which cites Unicode and ISO10646)

UTF-16LE RFC 2781

UTF-16 RFC 2781

UTF-32 is effectively an alias of ISO-10646-UCS-4, and will presumably be resistered as such in due course.

Since SQL names cannot be hyphenated, we propose that the names UCS2, UTF8 and UTF16, as already used
in [FoundWD], together with UTF32, be registered with the appropriate authority, as aliases where appropriate
of character sets already registered, and the character sets so named be referred to collectively as UCS character
sets. This wil l require some redrafting of [FoundWD] subclause 4.2.4 "Named character sets".

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 5 of 15 25 September 2000

5 Specification of UCS <character string type>s

At present, [FoundWD] Clause 6.1 "<data type>" effectively contains:

<pr edef i ned t ype> : :=
{ CHARACTER [< l ef t p ar en> < l engt h> < r i ght par en>] | . . . }
[CHARACTER SET < char act er s et n ame>]
| . ..

It might be considered that Unicode is reall y only one character set (UCS), or possibly two (UCS-2 and UCS-4).
At the other extreme, one might suppose that UTF-8 or UTF-32BE, or even UTF16-BE-NFKC should be
considered distinct character sets. There are, however, three orthogonal properties involved:

Character repertoire: UCS-2 or UCS-4

Transformation format: UTF-8, UTF-16 or UTF-32, with endian options for the last two

Normalization form: NFD, NFKD, NFC and NFKC

All combinations of the above make sense, though UCS-2 and UTF-32 are unlikely to occur together. Moreover,
endian options are probably not relevant to SQL.

We propose to recognise only the currently defined character set names, adding an option to <character set
specification> to allow normalization form to be specified. This wil l then permit, for example:

CHARACTER (255) 2 CHARACTER SET U TF8 (NFD)

Furthermore, we propose that <user-defined character set name> be deleted, on the grounds that, while an
implementor might provide such a facil ity if he wishes, few users will wish to use it, and the standard should not
impose on implementors a burden of such dubious value.

6 Validity of character data

As [UTR #17] explains in section 4, a sequence of code units (ostensibly representing a code point) is either
valid, in which case the code point may nevertheless be unassigned, or ill egal being either incomplete (e.g. an
unmatched surrogate) or expli citly ill egal (e.g. u+FFFF).

We propose that an exception be raised if illegal data is detected; but whether an unassigned code point should
get the same treatment is more doubtful.

[ISO10646], in Annex C (which is normative, and specifies UTF-16) states that "the only possible type of
syntacticall y malformed sequence is an unpaired RC-element", meaning a code point that does not itself encode
any character, but is reserved for use as a high or low surrogate (code unit). We propose that this condition also
should produce an exception if detected.

We are uncertain whether an SQL-implementation should be required to check for invalid UCS data. However,
normalization and, by implication, construction of a collation key will always reveal the above-mentioned
invalidities.

7 Normalization

7.1 Responsibility for normalization

Since all character data is required to be normalized, the questions arise:

2 For the units of <length>, see 9.1 "<length> in <character string type>", below.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 6 of 15 25 September 2000

1. What assumptions is the SQL-implementation permitted to make?

2. Should the SQL-implementation check such assumptions, and if so, when?

3. What should happen if the assumption is found to be false (some character string is found not to be
normalized)?

4. What is the worst that can happen if unnormalized data goes undetected?

There are three classes of data to consider:

SQL-data: The worst that can happen if data is unnormalized is that a binary comparison may return False
when the user might have expected True. The converse cannot occur. The collation algorithm normalizes
in any case. We propose, therefore, that the SQL-implementation be permitted to assume that all SQL-
data is normalized, and does not need to be checked explicitly.

Literals: We propose that every character literal be normalized immediately. The fact that ' a` ' = ' à'
returns True should raise no more eyebrows than the fact that 1E0 = 1.0 already returns True.

Host variables and routine parameters and results. All string data leaving the SQL-environment wil l be
normalized. We propose that the SQL-implementation be permitted to assume that all character data
entering the SQL-environment is normalized. If a user is unsure of this, they can invoke a normalize
function (see 7.3 below) on it, on its way in.

However, if this is considered to be sacrificing safety for performance, then we propose that, the SQL-
implementation be required to ensure that all UCS data is normalised on arrival in the SQL-environment,
but that the users be given an option, with some appropriate scope (SQL-session, SQL-module?) to
absolve the SQL-implementation of that responsibil ity, and accept it themselves.

7.2 A NORMALIZE function

Since a NORMALIZE function is simple to specify and not diff icult to implement, we propose that it should be
required in every SQL-implementation that supports a UCS character set. This wil l enable users who are unsure
whether their host variables are normalized to reference them as, for example, NFC(:string).

7.3 An IS_NORMALIZED predicate

We propose that, although an IS_NORMALIZED predicate might appear useful, and clearly cannot be
prohibited, it should not be required for conformance. The net performance cost of normalizing unnecessaril y
versus testing followed by normalization only when found necessary is unli kely to be great enough to bother
about.

7.4 Concatenation operation

Although the operands of a concatenation operation may be normalized, a simple butted joint wil l, in some
cases, produce an unnormalized result. For example, the result of " 'a^ ' || '.' " (where ' . ' denotes DOT

BELOW, u+0323) would be " 'a^ .' " whereas the normalized form would be " 'a . ^' " (example adapted from
[UTR#15]).

We propose that conformance require the (appropriate) correct normalized form (whether or not other
abnormalities in the operands are disregarded).

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 7 of 15 25 September 2000

8 Collations

[ISO14651] is an IS for collations, whose application to UCS/Unicode is defined by [UTR#10]. The algorithm is
simple and universally applicable, and it would be folly for SQL to disregard this and do its own thing.

A collation defined according to [UTR#10] has three or more levels; for the Latin script, these levels correspond
roughly to:

1. alphabetic ordering
2. diacritic ordering
3. case ordering.

These three levels allow a default collation to satisfy far more requirements than a single SQL-type collation.

We propose that implementation of the UCS collation algorithm be required for conformance, and at least one
collation (the default) provided.

Obviously, other, possibly culture-dependent, collations may be provided.

We note that some vendors provide for the use of locale-dependent collations which are invoked quite differently
from the way specified in [FoundWD].

If a user wishes to define their own collation, they should not be required to do so in a way that is applicable
only to one (or more) SQL-implementations. If [UTR#10] is followed, the collation can be specified by the
contents of a text file.

We propose to allow a <collate clause> to be specified for every operation (possibly excluding exact equality)
that directly or indirectly invokes the rules of the subclause "<comparison predicate>". Note that this must
include POSITION, LIKE and SIMILAR.

Furthermore, we propose that <collate clause> be modified to allow the specification of the level of collation
required.

Since, as far as we are aware, [ISO14651] does not provide any facilit y for ignoring trail ing <space>s at the end
of a character string, PAD SPACE will still have to be dealt with explicitly prior to invocation of the UCS
collation algorithm.

9 Counting characters

Characters have to be counted in a number of contexts, and users are entitled to expect consistency, without
unacceptable performance cost.

Counting either bytes or code units is not invariant with respect to transformation format; counting code points
is.

However, counting code points is not invariant with respect to normalization form; counting graphemes is.

There are two kinds of context to be considered: the value of <count> in a <character string type> and the
various parameters and results of SQL built -in functions whose semantics require characters to be counted.

9.1 <length> in <character string type>

<length> in, for example, <column name> CHARACTER (<length>), serves two purposes: to the user, it is a
constraint on the number of characters allowed, which he/she wil l expect to agree with the result of
CHAR_LENGTH (<column name>); to the implementor, it is an indication of the amount of storage required.
The problem of counting in graphemes is that there is no upper limit on the number of combining characters that
can follow one base character and hence constitute a single grapheme. We are not even aware of the practical

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 8 of 15 25 September 2000

upper limit that may occur in those scripts that use combining characters frequently. Nor is the length in code
points stable except in UCS-2 or UTF-32, since both UTF-8 and UTF-16 are varying width encodings.

Consequently, we propose that the existing <length> be treated as a constraint, in the same units as used for
parameters and results (see 9.2 below). In addition, we propose that an option be provided to allow the user to
specify the expected maximum length in bytes. Whether, if this additional option is not used, some algorithm
should be specified for deriving maximum byte length from <length> is open for discussion. This would have to
take into account the normalization form (explicit or implicit).

9.2 Parameters and results of SQL built-in functions

We have to consider:

o the numeric results of

- CHAR_LENGTH (SVE)

- POSI TI ON (SVE1 I N SVE2)

o the numeric parameters of

- SUBSTRI NG (C FROM S FOR L)
- OVERLAY (CV PLACI NG RS FROM SP [F OR SL])

Applying basic principle 4 (see section 2, above) we propose that a character be defined to be a grapheme, since
the number of code points is sensitive to normalization form.

More precisely a grapheme here means either: one control character or one format character or one (locale-
independent) grapheme (informally: one base character plus all the combining characters that follow it and
precede the next noncombining character. See UTR #18). A combining character that is not in a grapheme has
nothing to combine with and hence counts as one character.

However, we recognise that users may require to use code points in some circumstances, and a suitable means
must be found to make their choice clear.

10 Other considerations

There are a small number of other considerations, of less importance than the foregoing. We have no plans to
submit a proposal on any of them at this time.

10.1Script constraints on character data

It might be of assistance to users if they were able to specify simple constraints on character data, particularly
that it is restricted to one or more scripts, see [UTR #24], though this is not necessarily the only desirable way to
specify subsets of UCS.

Although it could be argued that such constraints can already be expressed in existing SQL, they would be
laborious to specify in the absence of any way of specifying a contraint to be applied to every character in a
string rather than to the whole string. Moreover, if they are specified explicitl y, then they can be more eff iciently
implemented.

They also differ from existing constraints in that a fixup might be specified. See transliteration, below.

As yet, we are unconvinced of the usefulness of scripts, since in most cases more than one would be needed and
checking would carry a performance penalty.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 9 of 15 25 September 2000

10.2Transliteration

Transliteration is defined in the dictionary as the: action or process of ... rendering of the letters or characters of
one alphabet in those of another. If we substitute the word script for alphabet, we can immediately see how a
function that implements generally agreed transliteration processes could be useful. However, the specification
of such processes is not within the scope of SQL, though SQL would do well to acknowledge their existence and
provide links to them.

Transliteration would be a useful option in cases where violation of a script constraint is detected, see above.

Note: Transliteration is not to be confused with form-of-use conversion. It is a more usual word for what SQL
currently call s translation (SQL definition: A method of translating characters in one character repertoire into
characters of the same or a different character repertoire. Dictionary definition: The action or process of
expressing the sense of a word, passage, etc., in a different language.)

10.3Transcoding

The verb transcode is defined in the dictionary as "convert from one form of coded representation or signalling
to another", and [Unicode3] effectively defines it in the same way ("Conversion of character data between
different character sets"). It thus appears to have the same meaning as SQL defines for form-of-use conversion.

However, it is desirable to distinguish between:

a) Conversion between one coding scheme to an essentiall y different one, e.g. Unicode to EBCDIC, which
is, in principle, a table look-up exercise that may be bedevill ed by differences in repertoire.

b) Conversion from one transformation format of a coding scheme to another, e.g. UTF-8 to UTF-32, which
is a simple, purely algorithmic operation.

10.4Escape characters in literals

Some (many?) programming languages allow exotic characters to be included in character literals by preceding
the hexadecimal digits identifying the codepoint with an escape character. Consideration should be given to
introducing similar, preferably compatible, notation into SQL <character string literal>s. It is much easier to
write or key 'a\u0323' than it is to discover how to get the same effect in SQL:1999.

This is a simple, and almost certainly worthwhile language opportunity, and is completely independent of any
UCS considerations.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 10 of 15 25 September 2000

Annex A

Terminology and Notation

This Annex is intended to be purely factual, and is provided for the benefit of any reader who is more familiar
with SQL than with Unicode. It has been prepared with care, but has not been validated, so it may contain errors.
Should anyone find an error, we should be grateful to be told.

A.1 Corresponding terms in [Unicode3] and [ISO10646]

In a number of cases, [Unicode3] and [ISO10646] appear to use different, though similar, terms for the same
meaning. The following table shows the apparent correspondences. As far as practicable, the text is taken
directly from the relevant document.

Unicode3 ISO-IEC 10646

An abstract character: A unit of information used for
the organisation, control, or representation of data

(an abstraction that is represented by a coded
character representation or by a combining character
sequence.) (D3)

4.6 character: A member of a set of elements used
for the organisation, control, or representation of data.

coded character representation An ordered sequence
of one or more code values, that is associated with an
abstract character in a given character repertoire.

Except where explicitly stated otherwise, the term
character always means coded character
representation. (D7+).

4.4 CC-data-element (coded-character-data-
element): An element of interchanged information
that is specified to consist of a sequence of coded
representations of characters, in accordance with one
or more identified standards for coded character sets.

An encoded character is the (encoding) relationship
between an abstract character and its scalar value.

4.8 coded character: A character together with its
coded representation.

A (Unicode) scalar value is a positive integer less
than or equal to 10FFFF16. Also known as code
position or code point.

Code position is much used, but not defined in [ISO
10646]

A (Unicode) code value (aka code unit) is the unit of
encoding. Thus: in UTF-8 it is 8 bits; in UTF-16 it is 16
bits, and is also known as a Unicode value.

4.33 RC-element: a two-octet sequence comprising
the R-octet and the C-octet (see 6.2) from the four
octet sequence that corresponds to a cell in the
coding space of this coded character set.

A code value is one of:

- A high-surrogate RC-element from high-half zone

- A low-surrogate RC-element from low-half zone

- A nonsurrogate

A character is one of:

4.20 graphic character: A character, other than a
control function, that has a visual representation
normally handwritten, printed, or displayed.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 11 of 15 25 September 2000

Unicode3 ISO-IEC 10646

- A control or formatting character control function

A graphic character is one of:

- A base character non-combining character

- A combining character 4.12 combining character: A member of an
identified subset of the coded character set of
ISO/IEC 10646 intended for combination with the
preceding non-combining graphic character, or with a
sequence of combining characters preceded by a
non-combining character (see also 4.14).

A combining character is one of:

- A spacing mark

- A non-spacing mark

A combining character sequence is a one of: 4.14 composite sequence: A sequence of graphic
characters consisting of a non-combining character
followed by one or more combining characters (see
also 4.12).

1 A graphic symbol for a composite sequence
generally consists of the combination of the graphic
symbols of each character in the sequence.

2 A composite sequence is not a character and
therefore is not a member of the repertoire of ISO/IEC
10646.

- An (effective) combining character sequence

- A defective combining character sequence

An effective combining character sequence is a base
character followed by a sequence of combining
characters. A defective combining character
sequence is a sequence of combining characters that
is not preceded by a base character.

A grapheme (see [UTR #18]) is one of:

- A locale-independent grapheme

- A locale-dependent grapheme

A locale-independent grapheme is what is
represented by a combining character sequence.

A locale-dependent grapheme is implemented as a
collation grapheme. See [UTR #18] section 4.2 and
[UTR #10].

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 12 of 15 25 September 2000

A.2 A note on code units and code points

The following table shows how many code units, of what size, are required for one code point in each
transformation format:

Code units per Code pointbits per
Code unit UCS-2 UCS-4

UTF-8 8 1 to 4 1 to 6

UTF-16 16 1 (i.e. no surrogate
pairs)

1 or 2 (i.e. possibly
surrogate pairs)

UTF-32 32 1 1

A.3 A note on notation

In what follows, 'h' represents a hexadecimal digit.

[ISO 10646] subclause 6.5 defines "a short identifier for each character ". Of the various options offered, the
most commonly used is that used in ISO 9075], viz. U+hhhh. This is an abbreviation of an eight hexadecimal
digit form, available only if the first four digits are all zero, i.e. if the character is in the Basic Multilingual Plane.

[Unicode3] defines the same form as representing "a Unicode value", which means a code value or code unit,
rather than a code point (see definitions above).

[W3C-CharMod] says "UCS codepoints [sic] are denoted as U+hhhh, where hhhh is a sequence of hexadecimal
digits." Notice that this is not strictly correct, though it would be if every code point required only one UTF-16
code unit. Replacing 'UCS codepoints' with either 'UCS-2 codepoints' (though anything beyond the BMP is then
excluded) or 'UTF-16 code units' (which excludes UTF-8) would remove the problem.

[UTR #17], in discussing the validity of sequences of code units, uses the notation 0xhh, where the number of
'h's is variable, the maximum being six.

[UTR #18] section 2.1, in discussing the representation of Unicode characters in literal strings, says 'The most
standard notation for li sting hex Unicode characters within str ings is by prefixing with "\ u" '. However, noting
that the "u" is referred to as UTF16_MARK, we realise that what is being identified here is a UTF-16 code unit,
rather than a code point. Section 3.1 introduces "v" as UTF32_MARK, to be followed by exactly six
hexadecimal digits. For why six wil l always be enough, see [UTR #19].

The opportunity for confusion is made worse by the fact that ISO 10646 and Unicode began separately, using
different terminology, and the subsequent process of alignment has (apparently) required modifications to both,
while terminology has not been reconciled.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 13 of 15 25 September 2000

Annex B

Sources

SQL Working Drafts

[FrameworkWD] (ISO Working Draft) Database Language SQL - Part 1: Framework (SQL/Framework),
September, 2000

[FoundWD] (ISO Working Draft) Database Language SQL - Part 2: Foundation (SQL/Foundation),
September, 2000

[CLI-WD] (ISO Working Draft) Database Language SQL - Part 3: Call -Level Interface (SQL/CLI),
September, 2000

[PSM-WD] (ISO Working Draft) Database Language SQL - Part 4: Persistent Stored Modules
(SQL/PSM), September, 2000

[TemporalWD] (ISO Working Draft) Database Language SQL - Part 7: Temporal (SQL/Temporal),
September, 2000

[MED-WD] (ISO Working Draft) Database Language SQL - Part 8: Management of External Data
(SQL/MED), September, 2000

[OLB-WD] (ISO Working Draft) Database Language SQL - Part 9: Object Language Bindings
(SQL/OLB), September, 2000

[SchemataWD] (ISO Working Draft) Database Language SQL - Part 10: Schemata (SQL/Schemata),
September, 2000

Other relevant International Standards and Drafts

[ISO10646] (Working paper of JTC1/SC2/WG2) ISO/IEC 10646-1, Universal Multiple-Octet Coded
Character Set (UCS), Part 1:Architecture and Basic Multili ngual Plane, Second Edition
text, Draft 2, ISO/IEC JTC1/SC2/WG2 N 2005, May 1999
(http://anubis.dkuug.dk/JTC1/SC2/WG2/docs/standards, under ISO/IEC 10646-1).

Although this is, strictly, the authority (or will be when published), we have relied mostly
on [Unicode3] and Unicode Technical Reports, for reasons explained in [W3C-CharMod],
Section 3.4.2.

[ISO14651] ISO/IEC 14651:2000 – International string ordering and comparison – Method for
comparing character strings and description of the common template tailorable ordering,
April 2000

[DIS15924] ISO/IEC DIS 15924 – Code for the representation of names of scripts, May 2000
(http://www.egt.ie/standards/iso15924/document/index.html)

Industry standards

[Unicode3] The Unicode Standard, Version 3.0, The Unicode Consortium, Addison Wesley Longman
Publisher, Feb 2000

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 14 of 15 25 September 2000

[CharSetNames] Official Names for Character Sets, IANA (Internet Assigned Numbers Authority) available
at (ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets).

Unicode Technical Reports

All are available at (http://www.unicode.org/reports/). Most are also available, though not
necessar ily in the latest version, on the CD-ROM that comes with [Unicode3], as are helpful
demonstrations of collation and normalization.

[UTR#10] Unicode Collation Algorithm, (Unicode Technical Report #10), Revision 5.0, November
1999

The relevance of this Unicode Technical Report is self-evident.

[UTR#15] Unicode Normalization Forms (Unicode Technical Report #15), Revision 18.0, November
1999

The relevance of this Unicode Technical Report is self-evident.

[UTR#17] Character Encoding Model (Unicode Technical Report #17), Revision 3.0, November 1999

Particularly useful for the clear distinction between the concepts denoted by the various
terms such as glyph, grapheme, (abstract) character, code point and code unit.

[UTR#18] Regular Expression Guidelines, (Unicode Technical Report #18), Revision 5.0, November
1999

Contains the Unicode thinking on graphemes, both locale-dependent and locale-
independent.

[UTR#19] UTF-32 (Unicode Technical Report #19), Revision 6.0, May 2000

A UTR that not only defines UTF-32 but also (in Revision 6.0) reports what appears to be
the ultimate rapprochement between the Unicode Consortium and ISO/IEC JTC 1/SC 2.

[UTR#24] Script Names (Proposed Draft Unicode Technical Report #24), Revision 1.0, June 2000

A recent draft that proposes to assign every UCS code point to exactly one script, and to
maintain a register thereof.

World Wide Web Consortium documents

The following are available from the W3 Web-site, at the URLs indicated:

[W3C-CharMod] Character Model for the World Wide Web, World Wide Web Consortium Working Draft
29-November-1999 (http://www.w3.org/TR/charmod)

A useful paper because it considers the issues that should be resolved in a standard way in a
specific context.

[W3C-CharReq] Requirements for String Identity Matching and String Indexing, World Wide Web
Consortium Working Draft 10-July-1998 (http://www.w3.org/TR/WD-charreq#2.10)

A precursor to [W3C-CharMod], specifying requirements.

[CharSetHarmful] Character Set Considered Harmful, D Connolly, Internet-Draft, May 1995
(http://www.w3.org/MarkUp/html-spec/charset-harmful)

An interesting paper that clarifies some of the confusion arising from the use of the term
character set, and others.

Possible problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

hel052.doc Page 15 of 15 25 September 2000

Papers of ISO/IEC JTC 1/SC 32/WG 3

[BHX080] A Review of Some Possible Problems with SQL character features, Sykes, (WG3: BHX-
080) June 2000

Possibly of historical interest.

[BHX117] Further discussion of issues raised in BHX-080, Sykes, (WG3: BHX-117) July 2000.

An elaboration of some of the issues raised in [BHX080], and further elaborated in the
present paper.

[HEL001] Minutes of July 2000 meeting of ISO/IEC JTC 1/SC 32/WG 3, Warwick, England,
(WG3:HEL001) July 2000

Includes record of the acceptance of possible problems.

[HEL-047] Hugh Darwen, Problems with <collate clause>, (WG 3: HEL-047) September 2000.

*** End of paper ***

