hel052.doc

Published at 3:27 pm on 27 September 2000

Projea:

Title:

Author:

Source:

Status:

Abstract:

References:

WG3: HEL-052

25 September 2000

Authoritative version: he052pdf

SO

International Organization for Standardization

British Standards Institution
IST/40
Data Management and Interchange
ISO/IEC JTC 1/SC 32
Data Management and Interchange
WG 3
Database L anguages

32.03.05.02.00 (SQL:2002

Possble problems with characters, the story continues.
J M Sykes (United Kingdom)

UK Expert

SQL:2002Discusson paper

We ontinue the exploration of possble problemswith SQL'streatment of UCS
(Universal Character Set) character data, i.e. encoded in accordance with ISO/IEC
106460r Unicode3. Some likely future proposals ar e outlined.

A list of sourcesisto befound in Annex B, Sources

Page 1 of 15

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

1 The story so far

[BHX08(, in Sedion 2, includes a brief résumé of the history of SQL's treament of character data and
identified anumber of issuesin need of consideration.

[BHX117] expanded on these issues smewhat, in the light of subsequent reseach.

Both these papers were discussed by WG3 at its meding in Warwick in July 200Q and the minutes [HELOO1]
record that the foll owing should be li sted as possble problems:

[1] Counting Characters 691, 774
[2] Normalization (Language Opportunity 776)
[3] Callations (Language Opportunity 775

Other itemsrequiring attention are PPs 634, 643, 759, and LOs 134, 212, 268, 426, 713, 758, 761. These ae not
addressd in this paper.

The purpose of the present paper isto cary the discusson alittle further.

We asaume the reader to be aware of the character model of 1SO/IEC 10646 and the Unicode Standard 3.0, at
least as far asisrelevant to the arrent discusson. Thereader who lacks sich awarenessis reaommended to
consult Annex B. The reader who is confused by the variety of concepts and the multiplicity of terms defined for
each concept, may find it useful to consult Annex A. In seleding the terms to use ourselves, we have foll owed
what appeasto be fairly general usage and used code point for what Unicode all s (Unicode) scalar value and

I SO call s code position, and code unit for what Unicode alls (Unicode) code value and for which 1SO defines
no spedfic term.

Annex A "Terminology and Notation" contains a tentative crrespondence between [I SO 10646] and [Unicode3]
terminol ogy.

Annex B contains alightly annotated li s of sources which have been referred to in the preparation of this paper,
and to which the reader may wish to refer for authentication.

In what foll ows, the enphas sed phrase "W e propose” means that we intend to submit a formal proposal in the
future, unless &rious objections are raised.

2 Basic principles

We propose as afundamental principle that the analogy between the treament of character data and that of
numeric data should be as close as possble.

A perfed analogy would imply the foll owing basic principles:

1) A character isan abstraction. It isnot a visible symbol on paper or screen (aglyph), nor isit a pattern of
bits (a wde).

Probem 1: As[CharSetHarmful] points out, the term character is dangerously confusing when used to
denote this abstraction. Grapheme' is used with this meaning, but raises further problems of culture
dependency.

Probem 2: It isimpossble to determine in every case whether or not a syntacticdly valid Unicode
encoding represents what some user thinks of as a dharacter, whether culture-dependent or not.

2) We propose that al character dataisnormalized, automatically and invisibly to the user, in the same way
as, and for the samereason that all approximate numeric datais normalized.

! grapheme isdefined in [UTR#18], and the definition isreferred to in Annex A.1.

hel052.doc Page 2 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

Problem: More than one normalization form is available, and even the same user may sometimes prefer
one, sometimes another.

3) We propose that casting between the various representations of the same character string is automatic
and invisible.

The threeUCS Transformation Formats (UTF-8, UTF-16 and UTF-32) are interconvertible without loss
so this objedive is achievable. Nevertheless some implementors might be reluctant to provide hidden,
automatic cagting, and the potentia costs might be mnsidered unacceptable.

4) We propose that results of operations on character data should be independent of representation
(including normalization form).

If CSisa daracter string, then CHAR_LENGTH (CS) should gve the same result irrespedive of its
transformation format (UTF-8, UTF-16 or UTF-32). Thus, in UTF-16, a surrogate pair (of code units)
must count as, at most, 1 (one) 'character’ (whether, by character is meant code point or grapheme).

Note that OCTET_LENGTH is obviously representati on-dependent, so that this principle caonot be
applied toiit.

Sadly, perfedion isnot achievable; nevertheless it ishighly desirable to approach it as closaly as practicable.
There aetwo principal obstacles to perfed analogy:

a) Cultural differences. It isimposshle to satisfy all of the usersall of thetime. There will be some who
insist on a character model appropriate to their own culture, others (multi-nationals) who have good
reason for requiring a ailture-independent compromise. Cultural coll ations already exist, and a user
option to apply oneto an individual comparison operation or to all such operationswithin some scope
(SQL-session, server, schema, ...) will go some way towards lving the problem. But the string that
includes text from different cultures may till exist, and must be dedt with somehow. If mark-up isused
within the string to indicate different cultural requirements, isthisthe concern of SQL? Probably not.

We note that cultural dependenciesin general are usually spedfied as part of alocale, aterm not used in

SQL.

b) Invalid strings. There ae various classes of invalid data, ranging from the invalid code point or
unmatched surrogate, bath of which must be rejeded, to the nonsensicd combining character sequence
that cannot reasonably be recognised as such, but which cannot always be deteded. (Seg e.g., [UTR #17],
sedion 4 "Character Encoding Form (CEF)")

3 Anexemplar

There aeat least two good reasons why SQL should consider adopting, with adaptation as necessary, the
"Character Model for the World Wide Web" [W3C-CharMod)].

1) The daracter handling probems of the World Wide Web have much in common with those of SQL.

2) Users of Java, SQL/OLB, and XML will exped treatment of charactersto be consistent in the different
contexts.

One or two comments are necessary on [W3C-CharMod]:

1) The eistenceof UTF-32is not reagnized, for reasons that are obvious if one lodks at the dates on the
documents. When it is, we would exped "UCS-4" in thefirg bull et of thethird bull et list of section 1.1
"Why is this document necessary?', to be dnanged to "UTF-32".

2) At least oneisaue of great importanceto SQL isnot resolved, viz. string indexing (meaning the use of a
number to indicate a position within the string). Sedion 5, "String Indexing” refers to the ealier
requirements document [W3C-CharReq], which presents a thorough statement of requirements but

hel052.doc Page 3 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

reaches only one mnclusion useful to SQL, viz. that "If string indexing is based on ealy uniform
normalization, then this may help to make implementation easer”. Sadly, while it ackowledged that "The
String indexing spedfication shall be prepared quickly”, it doesn't seam to have appeaed yet.

SQL neadsto find its own resolution of thisisaue, with due regard to whatever other work is being done.

3) Understandably, [W3C-CharMod] focuses on transmisson and rendering o character data, and is
consequently lessconcerned than many database administrators with the validity of the data. It is
therefore hardly surprising that congtraints of the kind required on data stored in a database ae not
discussd.

Seedso Annex A.3, "A note on notation".

4 <character set name>s

[CharSetNames] describes itself as aregister, maintained by the Internet Assgned Numbers Authority. It lists
"official names for character setsthat may be used in the Internet and may be referred to in Internet
documentation”. Of the 200+ names on thelist, the ECMA registry is cited as the source of about 80. However,
for reasons we have not, as yet, been able to discover, the ECMA registry isnot cited as the source of the six
Unicode/UCS entries whose sourceis |SO-10646 ar some variant of it. (The remainder of the names are mostly
from industry sources).

Clealy, itisdesirable that <character set name>s acceptable to an SQL-implementation should registered
somewhere. While SC32 WG3 owes no al egianceto IANA, it would seem to be both suitable and convenient, if
poaliti cally acceptable. Alternatively, we should explore the ECMA registry, which does not appea to show its
face on the Web.

UCS namesregistered at IANA currently are:

Name Source (recorded in registry)
ISO-10646-UTF-1 Universal Transfer Format (1), this is the
multibyte encoding, that subsets ASCII-7.
ISO-10646-UCS-2 the 2-octet Basic Multilingual Plane, aka
Unicode
ISO-10646-UCS-4 the full code space.

ISO-10646-UCS-Basic | ASCII subset of Unicode. Basic Latin =
collection 1 See ISO 10646, Appendix A

ISO-10646-Unicode- ISO Latin-1 subset of Unicode. Basic Latin and
Latinl Latin-1 Supplement = collections 1 and 2. See
ISO 10646, Appendix A. See RFC 1815.

1SO-10646-J-1 ISO 10646 Japanese, see RFC 1815

UTF-8 RFC 2279 (which cites Unicode and 1SO10646)
UTF-16BE RFC 2781 (which cites Unicode and 1SO10646)
UTF-16LE RFC 2781

UTF-16 RFC 2781

UTF-32iseffedively an dias of 1SO-10646UCS-4, and will presumably be resistered as such in due @murse.

Since SQL names cannot be hyphenated, we pr opose that the names UCS2, UTF8 and UTF16, as already used
in [FoundWD], together with UTF32, be registered with the gpropriate aithority, asaliases where gopropriate
of character sets already registered, and the character sets © named bereferred to coll edively as UCS character
sets. Thiswill require some redrafting of [FoundWD] subclause 4.2.4 "Named character sets'.

hel052.doc Page 4 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

5 Specification of UCS <character string type>s

At present, [FoundWD] Clause 6.1 "<data type>" effectively contains:

<predefinedt ype>: :=
{ CHARACTER[< leftp aren><length><rightpar en>]]|. .o}
[CHARACTER SET <characters etn ane>]

It might be considered that Unicode isredly only one dharacter set (UCS), or posshbly two (UCS-2 and UCS-4).
At the other extreme, one might suppose that UTF-8 or UTF-32BE, or even UTF16-BE-NFKC should be
considered distinct character sets. There ae, however, threeorthogonal properties involved:

Character repertoire: UCS-2 or UCS-4
Transformation format: UTF-8, UTF-16 a UTF-32, with endian options for the last two
Normalization form: NFD, NFKD, NFC and NFKC

All combinations of the above make sense, though UCS-2 and UTF-32 are unlikely to occur together. Moreover,
endian options are probably not relevant to SQL.

We propose to remgnise only the arrently defined character set names, adding an option to <character set
spedfication> to allow normalization form to be spedfied. Thiswill then permit, for example:

CHARACTER (255) 2 CHARACTER SET UTF8 (NFD)

Furthermore, we propose that <user-defined character set name> be deleted, on the grounds that, while an
implementor might provide such afacility if he wishes, few users will wish to useit, and the standard should not
impose on implementors a burden of such dubious value.

6 Validity of character data

As[UTR #17] explainsin sedion 4, a sequence of code units (ostens bly representing a ade point) is ether
valid, in which case the @mde point may neverthelessbe unassgned, or ill egal being either incomplete (e.g. an
unmatched surrogate) or explicitly ill ega (e.g. u+FFFF).

We propose that an exception be raised if illegal datais deteded; but whether an unassgned code point should
get the same treatment is more doubtful.

[1S010644, in Annex C (which is normative, and spedfies UTF-16) states that "the only possble type of
syntacticdly malformed sequenceis an unpaired RC-element”, meaning a cde point that does not itself encode
any character, but isreserved for use asahigh or low surrogate (code unit). We propose that this condition aso
should produce an exception if deteded.

We are uncertain whether an SQL-implementation should be required to ched for invalid UCS data. However,
normalization and, by impli caion, construction of a coll ation key will always reveal the above-mentioned
invalidities.

7 Normalization

7.1 Responsibility for normalization

Sinceall character dataisrequired to be normalized, the questions arise:

2 For the units of <length>, see9.1 "<length> in <character string type>", below.

hel052.doc Page 5 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

1 What assumptionsis the SQL-implementation permitted to make?
Should the SQL-implementation chedk such assumptions, and if so, when?

3. What should happen if the asaumption isfound to be false (some dharacter string isfound not to be
normalized)?

4. What isthe worst that can happen if unnormali zed data goes undeteded?
There aethree ¢asss of datato consider:

SQL-data: Theworst that can happen if data is unnormalized isthat a binary comparison may return False
when the user might have expeded True. The mnverse cainot occur. The @llation agorithm normalizes
in any case. We propose, therefore, that the SQL-implementation be permitted to assume that all SQL-
datais normalized, and bes not need to be dhedked explicitly.

Literals: We propose that every character literal be normalized immediately. Thefactthat' a™'=" &'
returns True should raise no more g/ebrows than thefact that 1E0= 1.0 aready returns True.

Host variables and routine parameters and results. All string data leaving the SQL-environment will be
normalized. We propose that the SQL -implementation be permitted to assumethat all character data
entering the SQL-environment is normalized. If auser isunsure of this, they can invoke anormalize
function (see7.3 below) on it, on itsway in.

However, if thisis considered to be sacrificing safety for performance, then we propose that, the SQL-
implementation be required to ensurethat all UCS dataisnormalised on arrival in the SQL-environment,
but that the users be given an option, with some appropriate scope (SQL-sesson, SQL-module? to

absol ve the SQL-implementation of that responsibil ity, and accept it themselves.

7.2 A NORMALIZE function

Sincea NORMALIZE function is smpleto spedfy and not difficult to implement, we propose that it should be
required in every SQL-implementation that supports a UCS character set. Thiswill enable userswho are unsure
whether their host variables are normalized to reference them as, for example, NFC(:string).

7.3 AnIS_NORMALIZED predicate

We propose that, although an IS NORMALIZED predicate might appea useful, and clealy cannot be
prohibited, it should not be required for conformance The net performance @st of normalizing unnecessarily
versus testing foll owed by normalization only when found necessary is unlikely to be great enough to baher
about.

7.4 Concatenation operation

Although the operands of a concatenation operation may be normalized, a simple butted joint will, in some

cases, produce an unnormalized result. For example, theresult of " 'a®* || ' " (where' . ' denotesboTr
BELOW, u+0323 would be" 'a® . " whereasthe normalized form would be" ‘a .~ " (example adapted from
[UTR#19).

We propose that conformancerequire the (appropriate) corred normai zed form (whether or not other
abnormalities in the operands are disregarded).

hel052.doc Page 6 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

8 Collations

[1S01465] isan IS for coll ations, whose appli cation to UCSUnicode is defined by [UTR#1Q. The dgorithm is
simple and wniversally applicable, and it would be folly for SQL to dsregard thisand b its own thing.

A collation defined according to [UTR#10Q] hasthreeor more levels; for the Latin script, these levels correspond

roughly to:
1 alphabetic ordering
2. diacritic ordering
3. case ordering.

These threelevels all ow a default coll ation to satisfy far more requirements than a single SQL-type coll ation.

We propose that implementation of the UCS coll ation a gorithm be required for conformance, and at least one
coll ation (the default) provided.

Obvioudy, other, possbly culture-dependent, coll ations may be provided.

We note that some vendors provide for the use of 1ocal e-dependent coll ations which areinvoked quite differently
from the way specified in [FoundwD].

If auser wishesto define their own coll ation, they should not be required to do so in away that isapplicable
only to ane (or more) SQL-implementations. If [UTR#1(isfoll owed, the wll ation can be spedfied by the
contents of a text file.

We propose to all ow a <coll ate dause> to be spedfied for every operation (posshly excluding exact equality)
that diredly or indirealy invokes the rules of the subclause "<comparison predicate>". Note that this must
include POSITION, LIKE and SIMILAR.

Furthermore, we propose that <coll ate clause> be modified to all ow the spedfication of thelevel of coll ation
required.

Since asfar aswe are aware, [| SO14657 does not provide any facility for ignoring trailing <space>s at the end
of a character string, PAD SPACE will still have to be dealt with explicitly prior to invocation of the UCS
coll ation algorithm.

9 Counting characters

Characters have to e munted in anumber of contexts, and users are entitled to exped consistency, without
unacceptable performance ost.

Counting ether bytes or code unitsis not invariant with respead to transformation format; counting code points
is.
However, counting code pointsisnot invariant with resped to normalization form; counting graphemesis.

There aetwo kinds of context to be mnsidered: the value of <count> in a <character string type> and the
various parameters and results of SQL built-in functions whose semantics require charactersto be counted.

9.1 <length> in <character string type>

<length> in, for example, <column name> CHARACTER (<length>), serves two purposes: to the user, it isa
constraint on the number of characters al owed, which he/she will exped to agreewith theresult of
CHAR_LENGTH (<column name>); to the implementor, it isan indication of the amount of storage required.
The problem of counting in graphemesisthat there isno upper limit on the number of combining characters that
can foll ow one base dharacter and hence onstitute a singe grapheme. We aenot even aware of the practical

hel052.doc Page 7 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

upper limit that may occur in those scripts that use @mbining characters frequently. Nor isthe length in code
points stable except in UCS-2 or UTF-32, sincebath UTF-8 and UTF-16 are varying width encodings.

Consequently, we propose that the isting <length> be treaed asa mnstraint, in the same units as used for
parameters and results (see9.2 below). In addition, we propose that an option be provided to all ow the user to
spedfy the expeded maximum length in bytes. Whether, if thisadditional option is not used, some algorithm
should be spedfied for deriving maximum byte length from <length> is open for discusson. Thiswould have to
take into account the normalization form (explicit or implicit).

9.2 Parameters and results of SQL built-in functions

We have to consider:
o the numeric results of

- CHAR_LENGTH (SVE)
- POSI TION (SVEL I N SVE2)

o] the numeric parameters of

- SUBSTRING (C FROM'S FOR L)
- OMERLAY (CV PLACING RS FROM SP [F CR SL])

Applying basic principle 4 (seesedion 2, above) we propose that a dharacter be defined to be a grapheme, since
the number of code pointsis nsitive to normalization form.

More predsdly a grapheme here means either: one @ntrol character or one format character or one (locale-
independent) grapheme (informally: one base dharacter plus all the @mbining characters that foll ow it and
precale the next noncombining character. SeeUTR #18). A combining character that isnot in a grapheme has
nothing to combine with and hence @unts as one character.

However, we reaognise that users may require to use ade pointsin some drcumstances, and a suitable means
must be found to make their choice dear.

10 Other considerations

There aeasmall number of other considerations, of lessimportancethan the foregoing. We have no plansto
submit a proposal on any of them at thistime.

10.1Script constraints on character data

It might be of asgstanceto usersif they were able to spedfy simple mnstraints on character data, particularly
that it isrestricted to one or more scripts, see[UTR #24], though thisis not necessarily the only desirable way to
spedfy subsets of UCS.

Although it could be agued that such constraints can arealy be expressed in existing SQL, they would be
laborious to spedfy in the absence of any way of spedfying a @mntraint to be applied to every character in a
string rather than to the whole string. Moreover, if they are spedfied expli citly, then they can be more dficiently
implemented.

They also differ from existing constraints in that a fixup might be spedfied. Seetrandliteration, below.

As yet, we are unconvinced of the usefulnessof scripts, sincein maost cases more than one would be needed and
chedking would cary a performance penalty.

hel052.doc Page 8 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

10.2Transliteration

Tranditeration is defined in the dictionary asthe: action or processof ... rendering o the letters or characters of
one alphabet in those of another. If we substitute the word script for alphabet, we can immediately see how a
function that implements generally agreed tranditeration processes could be useful. However, the spedfication
of such processes isnot within the scope of SQL, though SQL would do well to acknowledge their existence and
provide links to them.

Tranditeration would be a useful option in cases where violation of a script constraint is deteded, seeabove.

Note: Tranditeration isnot to be mnfused with form-of-use conversion. It isamore usua word for what SQL
currently call strandation (SQL definition: A method of trandating characters in one character repertoire into
characters of the same or a different character repertoire. Dictionary definition: The action or processof
expressng the sense of aword, passage, etc., in adifferent language.)

10.3Transcoding

The verb transcode is defined in the dictionary as "convert from one form of coded representation or signalling
to another”, and [Unicode3] effedively defines it in the same way ("Conversion of character data between
different character sets'). It thus appeas to have the same meaning as SQL defines for form-of-use conversion.

However, it isdesirable to dstingush between:

a) Conversion between one mding schemeto an essentialy different one, e.g. Unicode to EBCDIC, which
is, in principle, atable lodk-up exercise that may be bedevill ed by differencesin repertoire.

b) Conversion from one transformation format of a coding schemeto another, e.g. UTF-8 to UTF-32, which
isasimple, purely algorithmic operation.

10.4Escape characters in literals

Some (many?) programming languages allow exotic charactersto beincluded in character literals by precaling
the hexadedmal digitsidentifying the cdepoint with an escape character. Consideration should be given to
introducing similar, preferably compatible, notation into SQL <character string literal>s. It ismuch easier to
write or key 'au0323 than it isto dscover how to get the same effed in SQL:199.

Thisisadample, and amost certainly worthwhil e language opportunity, and is completely independent of any
UCS considerations.

hel052.doc Page 9 of 15 25 September 2000

Posdgble problems with characters, the story continues.

ISO/IEC JTC 1/SC 32/WG 3: HEL-052

Annex A

Terminology and Notation

This Annex isintended to be purely factual, and is provided for the benefit of any reader who is more familiar
with SQL than with Unicode. It has been prepared with care, but has not been validated, so it may contain errors.
Should anyone find an error, we should be grateful to be told.

A.1 Corresponding terms in [Unicode3] and [ISO10646]

In anumber of cases, [Unicode3] and [| SO10646] appea to use different, though similar, terms for the same
meaning. Thefoll owing table shows the apparent correspondences. Asfar as practicable, the text istaken

diredly from the relevant document.

Unicode3

ISO-IEC 10646

An abstract character: A unit of information used for
the organisation, control, or representation of data

(an abstraction that is represented by a coded
character representation or by a combining character
sequence.) (D3)

4.6 character: A member of a set of elements used
for the organisation, control, or representation of data.

coded character representation An ordered sequence
of one or more code values, that is associated with an
abstract character in a given character repertoire.

Except where explicitly stated otherwise, the term
character always means coded character
representation. (D7+).

4.4 CC-data-element (coded-character-data-
element): An element of interchanged information
that is specified to consist of a sequence of coded
representations of characters, in accordance with one
or more identified standards for coded character sets.

An encoded character is the (encoding) relationship
between an abstract character and its scalar value.

4.8 coded character: A character together with its
coded representation.

A (Unicode) scalar value is a positive integer less
than or equal to 10FFFF16. Also known as code
position or code point.

Code position is much used, but not defined in [ISO
10646]

A (Unicode) code value (aka code unit) is the unit of
encoding. Thus: in UTF-8 it is 8 bits; in UTF-16 it is 16
bits, and is also known as a Unicode value.

4.33 RC-element: a two-octet sequence comprising
the R-octet and the C-octet (see 6.2) from the four
octet sequence that corresponds to a cell in the
coding space of this coded character set.

A code value is one of:

- A high-surrogate

RC-element from high-half zone

- A low-surrogate

RC-element from low-half zone

- A nonsurrogate

A character is one of:

4.20 graphic character: A character, other than a
control function, that has a visual representation
normally handwritten, printed, or displayed.

hel052.doc

Page 10 of 15

25 September 2000

Posdgble problems with characters, the story continues.

ISO/IEC JTC 1/SC 32/WG 3: HEL-052

Unicode3

ISO-IEC 10646

- A control or formatting character

control function

A graphic character is one of:

- A base character

non-combining character

- A combining character

4.12 combining character: A member of an
identified subset of the coded character set of
ISO/IEC 10646 intended for combination with the
preceding non-combining graphic character, or with a
sequence of combining characters preceded by a
non-combining character (see also 4.14).

A combining character is one of:

- A spacing mark

- A non-spacing mark

A combining character sequence is a one of:

4.14 composite sequence: A sequence of graphic
characters consisting of a non-combining character
followed by one or more combining characters (see
also 4.12).

1 A graphic symbol for a composite sequence
generally consists of the combination of the graphic
symbols of each character in the sequence.

2 A composite sequence is not a character and
therefore is not a member of the repertoire of ISO/IEC
10646.

- An (effective) combining character sequence

- A defective combining character sequence

An effective combining character sequence is a base
character followed by a sequence of combining
characters. A defective combining character
sequence is a sequence of combining characters that
is not preceded by a base character.

A grapheme (see [UTR #18]) is one of:

- A locale-independent grapheme

- A locale-dependent grapheme

A locale-independent grapheme is what is
represented by a combining character sequence.

A locale-dependent grapheme is implemented as a
collation grapheme. See [UTR #18] section 4.2 and
[UTR #10].

hel052.doc

Page 11 of 15

25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

A.2 A note on code units and code points

The foll owing table shows how many code units, of what size, arerequired for one ade point in each
transformation format:

bits per Code units per Code point
Code unit UCS-2 UCS-4
UTF-8 8 1to4 1to6
UTF-16 16 1 (i.e. no surrogate 1 or 2 (i.e. possibly
pairs) surrogate pairs)
UTF-32 32 1 1

A.3 A note on notation

In what foll ows, 'h' represents a hexadedmal digit.

[1SO 10645] subclause 6.5 defines "a short identifier for each character™. Of the various options offered, the
most commonly used is that used in 1SO 9075], viz. U+hhhh. Thisisan abbreviation of an eight hexadedmal
digit form, available only if the first four digitsare all zero, i.e. if the character isin the Basic Multilingual Plane.

[Unicode3] defines the same form as representing "a Unicode value", which means a code \value or code unit,
rather than a code point (seedefiniti ons above).

[W3C-CharMod] says "UCS codepoints [sic] are denoted as U+hhhh, where hhhh isa sequence of hexadedmal
digits." Noticethat thisisnot strictly corred, thoughit would be if every code point required only one UTF-16
code unit. Replacing 'UCS codepoints with either 'UCS-2 codepoints (though anything beyond the BMP isthen
excluded) or 'UTF-16 code units (which excludes UTF-8) would remove the problem.

[UTR #17], in discussng the validity of sequences of code units, uses the notation Oxhh, where the number of
'h'sisvariable, the maximum being six.

[UTR #1§ sedion 2.1, in discussng the representation of Unicode dharactersin literal srings, says 'The most
standard notation for listing hex Unicode dharacterswithin stringsis by prefixing with "\ u” '. However, noting
that the "u" isreferred to as UTF16_MARK, we realise that what is being identified hereisa UTF-16 code unit,
rather than a code point. Sedion 3.1 introduces"v" as UTF32_MARK, to be foll owed by exactly six
hexadedmal digits. For why six will always be enough, see[UTR #19.

The opportunity for confusion is made worse by the fact that SO 10646 and Unicode began separately, using
different terminology, and the subsequent processof alignment has (apparently) required modificationsto bah,
whil e terminology has not been reconcil ed.

hel052.doc Page 12 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

Annex B
Sources

SQL Working Drafts

[FrameworkWD] (1SO Working Draft) Database Language SQL - Part 1: Framework (SQL/Framework),

September, 2000

[FoundwD] (1SO Working Draft) Database Language SQL - Part 2: Foundaion (SQL/Founddion),
September, 2000

[CLI-WD] (1SO Working Draft) Database Language SQL - Part 3: Call-Level Interface (SQL/CLI),
September, 2000

[PSV-WD] (1SO Working Draft) Database Language SQL - Part 4: Persistent Stored Modules

(SQL/PSM), September, 2000
[Temporal WD] (1SO Working Draft) Database Language SQL - Part 7: Temporal (SQL/Temporal),

September, 2000

[MED-WD] (1SO Working Draft) Database Language SQL - Part 8: Management of External Data
(SQL/MED), September, 2000

[OLB-WD] (1SO Working Draft) Database Language SQL - Part 9: Object Language Bindings

(SQL/OLB), September, 2000

[SchemataWD] (1SO Working Draft) Database Language SQL - Part 10: Schemata (SQL/Schemata),
September, 2000

Other relevant International Standards and Drafts

[1SO10644 (Working pager of JTC1/SC2/WG2) ISO/IEC 10646-1, Universal Multiple-Octet Coded
Character Set (UCS), Part 1:Architedure and Basic Multilingud Plane, Second Edition
text, Draft 2, ISO/IEC JTCL/SC2/WG2 N 2005, May 1999
(http://anubis.dkuwg.dk/JT C1/SC2/WG2/docs/standards, under 1SO/IEC 10646-1).

Although thisis, strictly, the authority (or will be when publi shed), we have relied mostly
on [Unicode3] and Unicode Tedhnical Reports, for reasons explained in [W3C-CharMod],

Sedion 3.4.2.

[1SO1465] ISO/IEC 14651:2000 — International string ordering and comparison —Method for
comparing character stringsand description o the cmmnon template tail orable ordering,
April 2000

[DIS15924 ISO/IEC DIS15924 —Code for the representation of names of scripts, May 2000

(http://www.egt.ie/standards/i so1 59 24/document/index.html)

Industry standards

[Unicode3] The Unicode Sandard, Version 3.0, The Unicode Consortium, Addison Wesley Longman
Publi sher, Feb 2000

hel052.doc Page 13 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

[Char SetNames] Official Namesfor Character Sets, IANA (Internet Assgned Numbers Authority) avail able
at (ftp://ftp.id.eduwin-notes/iana/asggnments/character-sets).

Unicode Technical Reports

All are available at (http://www.unicode.org/reports/). Most are also available, though not
necessrily in thelatest version, on the CD-ROM that comes with [Unicode3], as are helpful
demonstrations of collation and nor mali zation.

[UTR#1Q Unicode Collation Algorithm, (Unicode Tedhnicd Report #10), Revision 5.0, November
1999

Theredevanceof this Unicode Tedhnical Report is sif-evident.

[UTR#15 Unicode Normalization Forms (Unicode Tedhnicd Report #15), Revision 18.0, November
1999

Theredevance of this Unicode Tedhnical Report is sif-evident.
[UTR#17] Character Encoding Mode (Unicode Tedhnicd Report #17), Revision 3.0, November 1999

Particularly useful for the clea distinction between the concepts denoted by the various
terms such as glyph, grapheme, (abstract) character, code point and code unit.

[UTR#19 Regular Expresson Guiddines, (Unicode Tedhnical Report #18), Revision 5.0, November
1999
Contains the Unicode thinking on graphemes, bath |ocal e-dependent and locale-
independent.

[UTR#19 UTF-32 (Unicode Tedhnical Report #19), Revision 6.0, May 2000

A UTR that not only defines UTF-32 but also (in Revision 6.0) reports what appeasto be
the ultimate rapprochement between the Unicode Consortium and I1SO/IEC JTC 1/SC 2.

[UTR#24 Script Names (Proposed Draft Unicode Tedhnicd Report #24), Revision 1.0, June 2000

A recent draft that proposes to assgn every UCS code point to exactly one script, and to
maintain aregister thereof.

World Wide Web Consortium documents

The following ar e available from the W3 Web-site, at the URL sindicated:

[W3C-CharMod] Character Modd for the World Wide Web, World Wide Web Consortium Working Draft
29-November-1999 (http://www.w3.org/ TR/charmod)

A useful paper because it considerstheisaues that should be resolved in a standard way in a
spedfic context.

[W3C-CharReq] Requirements for String Identity Matching and String Indexing, World Wide Web
Consortium Working Draft 10-July-1998 (http://www.w3.0rg/TR/WD-charreg#2.10)

A preaursor to [W3C-CharMod], spedfying requirements.

[CharSetHarmful] Character Set Considered Harmful, D Connolly, Internet-Draft, May 1995
(http://www.w3.org/MarkUp/html-sped charset-harmful)

An interesting paper that clarifies me of the mnfusion arising from the use of the term
character set, and athers.

hel052.doc Page 14 of 15 25 September 2000

Posdgble problems with characters, the story continues. ISO/IEC JTC 1/SC 32/WG 3: HEL-052

Papers of ISO/IEC JTC 1/SC 32/WG 3

[BHX08Q A Review of Some Possble Problemswith SQL character features, Sykes, (WG3: BHX-
080 June 2000

Posgbly of historical interest.
[BHX117] Further discusgon of isaues raised in BHX-080, Sykes, (WG3: BHX-117) July 2000

An elaboration of some of theisaiesraised in [BHX08(), and further elaborated in the
present paper.

[HELOO] Minutes of July 2000meding d ISO/IEC JTC 1/SC 32/WG 3, Warwick, England,
(WG3:HEL001) July 2000

Includes reaord of the acceptance of possble problems.
[HEL-047] Hugh Darwen, Problems with <collate dause>, (WG 3: HEL-047) September 2000.

*** End of paper ***

hel052.doc Page 15 of 15 25 September 2000

