
Restoring Canonical Equivalence to Unicode L2/01-065
Canonical Equivalence and Unicode 3.0.1

According to the Unicode Standard two Unicode sequences are canonically equivalent if they,
when correctly rendered, are indistinguishable to the user. The canonical normalisation
algorithm described in section 3.6 of the Unicode Standard version 3.0 transforms canonically
equivalent Unicode sequences into a common normalised form.

When the ability to encode ligatures with the help of a zero width joiner (zwj) was added to
the Unicode Standard, with the release of version 3.0.1, this canonical normalisation
algorithm was broken. The reason for this is that the change introduced alternative ways to
encode those ligatures that had already been given their own code points in the standard. To
exemplify this, consider e.g. the following two Unicode sequences:

U+0061 U+200D U+0065 a + zwj + e

U+00E6 æ

When correctly rendered both these sequences are indistinguishably display as æ, but they are
not identified as being canonically equivalent by the canonical normalisation algorithm.

One possible way to fix the algorithm would be to give all precomposed ligatures encoded in
the Unicode Standard a canonical decomposition so that they in the normalised form would be
replaced by the representation containing the zero width joiner. This approach would however
violate the stability requirements of the Unicode Standard.

For this reasons it is proposed do the opposite and use the precomposed ligatures in the
normalised form. This can be achieved by adding a ligature composition step at the end of the
normalisation algorithm. This step consists of scanning the Unicode sequence to be
normalised for the presence of zero width joiners (U+200D). If the character immediately
preceding a zero width joiner and the character immediately following it can form a ligature
that has a precomposed form encoded in the Unicode Standard the three Unicode characters
are replaced by the Unicode character representing this precomposed ligature.

There is one potential problem with this approach that arises when ligatures formed from
more than two characters are encoded. Consider for example the following Unicode
sequences, which all are legal ways to encode a possible fls-ligature and therefore must be
normalised to the same Unicode sequence by the algorithm:

U+0066 U+200D U+006C U+200D U+0073 f + zwj + l + zwj + s

U+FB02 U+200D U+0073 fl-lig + zwj + s

U+0066 U+200D U+02AA f + zwj + ls-lig

With the algorithm described above these three Unicode sequences are not recognised as
canonically equivalent. The normalised form of the first sequence is ambiguous and will be
equal to either the second or the third sequence depending on weather the scan is started at the
start or at the end of the sequence. The second and third form will never be normalised to the
same sequence. However, if all ligatures are decomposed into sequences containing zero
width joiners before the scan, and if the scan always starts from the beginning of the Unicode
sequence, all sequences in the list above will unambiguously be normalised to the form given
in the second row.

This decomposition of ligatures into Unicode sequences containing zero width joiners can be
done at the same time as the canonical decomposition if canonical decomposition mappings
for the ligatures are added to the Unicode Data Base. All ligatures found in any text that does
not use the zero width joiner for encoding ligatures (e.g. all texts encoded using versions of
Unicode prior to version 3.0.1) will be restored again in the ligature composition step. The
normalised forms of such texts are therefore not changed by the proposed change.

Compatibility Mappings

The Unicode Standard does not only define canonical normalisation of Unicode sequences.
There is also a compatibility normalisation defined in the standard. In the present version of
the Unicode Data Base some of the not so frequent ligatures (e.g. fi-lig and fl-lig) have
compatibility mappings to the characters from which the ligatures are formed. These ligatures
are therefore replaced by those characters when a Unicode sequence is passed through the
compatibility normalisation algorithm. However, the most frequent ligatures (e.g. æ, œ and ß)
do not have such mappings and are kept as ligatures, as are the least frequent ligatures that
can only be encoded by a sequence containing a zero width joiner (e.g. ct-lig and fj-lig). This
behaviour of the algorithm is counter-intuitive and will seem erratic to most users. It is
therefore proposed to remove these compatibility mappings so that all ligatures are kept when
applying the compatibility normalisation algorithm.

Two of the ligatures encoded in the Unicode Standard have the letter long s (U+017F) as one
of its components. Due to the compatibility mapping of long s into a normal s these two
ligatures will not be restored during the ligature composition step when the compatibility
normalisation algorithm is applied.

For this reason it is proposed that this compatibility mapping is removed from the Unicode
Data Base. Such a removal of a compatibility mapping in order to simplify the normalisation
algorithm has been done previously in the history of Unicode. The changes introduced in
Unicode Data Base version 2.1.9 when the compatibility mappings of some of the Hangul
syllable finals were removed in order simplify the Hangul syllable normalisation is one
example.

This removal of compatibility mappings will not affect canonical normalisation and any text
that has been passed through a previous version of the compatibility normalisation algorithm
will still be in normalised form. However, a text containing a long s or a ligature that
previously had a compatibility decomposition that has been passed through the new version of
the algorithm will not be in normalised form according to the old version. This is however
compatible with the stability requirements for Unicode.

Proposed changes to the Unicode Standard

Change rule D20 in section 3.6 in the Unicode Standard version 3.0 to read:

Compatibility decomposition: the decomposition of a character sequence that results from
recursively applying both the compatibility mappings and the canonical mappings found in
the names list of Section 14.1, Character Names List, and those described in Section 3.11,
Conjoining Jamo Behavior, until no characters can be further decomposed, then reordering
nonspacing marks according to Section 3.10, Canonical Ordering Behavior, and then
applying the ligature composition algorithm described in Section 3.13, Canonical Ligature
Composition.

Change rule D23 in section 3.6 in the Unicode Standard version 3.0 to read:

Canonical decomposition: the decomposition of a character sequence that results from
recursively applying the canonical mappings found in the names list of Section 14.1,
Character Names List, and those described in Section 3.11, Conjoining Jamo Behavior, until
no characters can be further decomposed, then reordering nonspacing marks according to
Section 3.10, Canonical Ordering Behavior, and then applying the ligature composition
algorithm described in Section 3.13, Canonical Ligature Composition.

Add a new section 3.13 to chapter 3 of the Unicode Standard version 3.0

3.13 Canonical Ligature Composition

The purpose of this section is to provide an algorithm to obtain a unique normalized
representation of ligatures. In the Unicode Standard, ligatures can be represented using a
Unicode sequence containing a U+200D “ZWJ” ZERO WIDTH JOINER (see Section 13.2, Layout
Controls). Some common ligatures have however been encoded as separate Unicode
characters. As an example, the ligature “æ”, formed by the letters “a” and “e” can be encoded
either as the Unicode sequence U+0061 “a” LATIN LETTER SMALL LETTER A + U+200D “ZWJ”
ZERO WIDTH JOINER + U+0065 “e” LATIN LETTER SMALL LETTER E or as U+00E6 “æ” LATIN

LETTER SMALL LETTER AE. After applying the canonical mappings found in the names list of
Section 14.1, Character Names List all ligatures are represented by the form containing the
zero width joiner. The normalized form is however given by the Unicode character
representing the precomposed ligature if one exists.

To put a Unicode sequence in normalized form the sequence is scanned from it beginning for
occurrences of U+200D “ZWJ” ZERO WIDTH JOINER. When one is found the names list of
Section 14.1, Character Names List is searched to see if there exists a Unicode character
whose canonical decomposition is equal to the three-character sequence consisting of the zero
width joiner and the character immediately before and immediately after it in the Unicode
sequence that is being normalized. If this is the case, these three characters are replaced by
that Unicode character. The scan then continues with the next character in the sequence until
the end of the sequence is reached. Note that if the newly formed ligature itself is followed by
a zero width joiner it can be part of an even bigger ligature.

Add canonical mappings for the Unicode characters listed in Table 1 to the names list of
Section 14.1, Character Names List and to the UnicodeData.txt file, replacing the
compatibility mappings where present. Also remove the compatibility mapping for long s
(U+017F) in those lists. A delta file showing the changes can be found in
UnicodeData-delta.txt

Table 1. Ligatures in Unicode and their canonical decompositions.

Ligature Canonical Decomposition Ligature Canonical Decomposition

U+00C6 U+0041 U+200D U+0045 Æ A + zwj + E

U+00DF U+017F U+200D U+0073 ß long-s + zwj + s

U+00E6 U+0061 U+200D U+0065 æ a + zwj + e

U+0132 U+0049 U+200D U+004A IJ-lig I + zwj + J

U+0133 U+0069 U+200D U+006A ij-lig i + zwj + j

U+0152 U+004F U+200D U+0045 Œ O + zwj + E

U+0153 U+006F U+200D U+0065 œ o + zwj + e

Ligature Canonical Decomposition Ligature Canonical Decomposition

U+025A U+0259 U+200D U+02DE schwa with
hook

schwa + zwj + rhotic
hook

U+025D U+025C U+200D U+02DE rev open e
with hook

rev open e + zwj +
rhotic hook

U+026E U+006C U+200D U+0292 l-ezh-lig l + zwj + ezh

U+02A3 U+0064 U+200D U+007A dz-lig d + zwj + z

U+02A4 U+0064 U+200D U+0292 d-ezh-lig d + zwj + ezh

U+02A5 U+0064 U+200D U+0291 dz-curl-lig d + zwj + z-curl

U+02A6 U+0074 U+200D U+0073 ts-lig t + zwj + s

U+02A7 U+0074 U+200D U+0283 t-esh-lig t + zwj + esh

U+02A8 U+0074 U+200D U+0255 tc-curl-lig t + zwj + c-curl

U+02A9 U+0066 U+200D U+014B f-eng-lig f + zwj + eng

U+02AA U+006C U+200D U+0073 ls-lig l + zwj + s

U+02AB U+006C U+200D U+007A lz-lig l + zwj + z

U+03DA U+03A3 U+200D U+03A4 STIGMA SIGMA + zwj + TAU

U+O3DB U+03C3 U+200D U+03C4 stigma sigma + zwj + tau

U+04A4 U+041D U+200D U+0413 cyr-NG-lig cyr-N + zwj + cyr-G

U+04A5 U+043D U+200D U+0433 cyr-ng-lig cyr-n + zwj + cyr-g

U+04B4 U+0422 U+200D U+0426 cyr-TTS-lig cyr-T + zwj + cyr-TS

U+04B5 U+0442 U+200D U+0446 cyr-tts-lig cyr-t + zwj + cyr-ts

U+04D4 U+0410 U+200D U+0415 cyr-Æ cyr-A + zwj + cyr-E

U+04D5 U+0430 U+200D U+0435 cyr-æ cyr-a + zwj + cyr-e

U+0587 U+0565 U+200D U+0582 ech-yiwn-lig ech + zwj + yiwn

U+05F0 U+05D5 U+200D U+05D5 vav-vav-lig vav + zwj + vav

U+05F1 U+05D5 U+200D U+05D9 vav-yod-lig vav + zwj + yod

U+05F2 U+05D9 U+200D U+05D9 yod-yod-lig yod + zwj + yod

U+0675 U+0627 U+200D U+0674 alef with high
hamza

alef + zwj + high
hamza

U+0676 U+0648 U+200D U+0674 waw with high
hamza

waw + zwj + high
hamza

U+0677 U+06C7 U+200D U+0674 arab-u with
high hamza

arab-u + zwj + high
hamza

U+0678 U+064A U+200D U+0674 yeh with high
hamza

yeh + zwj + high
hamza

U+0EDC U+0EAB U+200D U+0E99 ho no ho sung + zwj + no

U+0EDD U+0EAB U+200D U+0EA1 ho mo ho sung + zwj + mo

Ligature Canonical Decomposition Ligature Canonical Decomposition

U+FB00 U+0066 U+200D U+0066 ff-lig f + zwj + f

U+FB01 U+0066 U+200D U+0069 fi-lig f + zwj + i

U+FB02 U+0066 U+200D U+006C fl-lig f + zwj + l

U+FB03 U+FB00 U+200D U+0069 ffi-lig ff-lig + zwj + i

U+FB04 U+FB00 U+200D U+006C ffl-lig ff-lig + zwj + l

U+FB05 U+017F U+200D U+0074 long-st-lig long-s + zwj + t

U+FB06 U+0073 U+200D U+0074 st-lig s + zwj + t

U+FB13 U+0574 U+200D U+0576 men-now-lig men + zwj + now

U+FB14 U+0574 U+200D U+0565 men-ech-lig men + zwj + ech

U+FB15 U+0574 U+200D U+056B men-ini-lig men + zwj + ini

U+FB16 U+057E U+200D U+0576 vew-now-lig vew + zwj + now

U+FB17 U+0574 U+200D U+056D men-xeh-lig men + zwj + xeh

U+FB4F U+05D0 U+200D U+05DC alef-lamed-lig alef + zwj + lamed

Table 1 contains all Unicode characters that have the words ‘ligature’, ‘ligation’, ‘ligated’ or
‘digraph’ in their names or in the comments in the names list with the exception of

• Croatian digraphs (U+ 01C4 – U+01CC),

• Latin letter inverted glottal stop with stroke (U+ 01BE),

• ligatures having canonical decompositions (U+06C0, U+06C2, U+06D2),

• non-spacing marks (U+06D6, U+06D7) and

• Arabic presentation forms.

To this set the l-ezh-ligature and small and capital stigma have been added. I am not an expert
on every script encoded in Unicode so I might have missed some ligatures that cannot be
found by this simple search for certain words in the Unicode Data Base.

Summary

The canonical equivalence algorithm was broken with the release of version 3.0.1 of the
Unicode Standard. By introducing an additional step in the normalisation algorithms and
minor changes to the Unicode Data Base canonical equivalence can be reestablished without
violating the stability requirements of the standard. Since canonical equivalence is such a
central concept in the Unicode Standard, these changes should be introduced in the standard
as soon as possible.

Mattias Ellert

mattias.ellert@tsl.uu.se

