Bidirectional Reordering Algorithms
L2/01-218
Steve Atkin
IBM
Ryan Stansifer
Florida Tech
Error

• Paper contains an error
 – No difference between the C/C++ and Java implementations
 – Paper will be corrected
 • Tables 3 and 7, rows 7 and 11
 – Explanation
 • Test case run using Hebrew input rules instead of Arabic input rules
Bidi Revisited

• We studied existing bidi algorithms
 – FriBidi, PGBA, UCDATA, ICU, Java, Unicode

• We created an alternative reference
 – Functional language (Haskell)
 – Mathematical description

• We tested conformance
 – Standardized testing conventions
 – Provided additional test cases
Currently

• All use an imperative language
 – C, C++, Java
 – Complex code

• Few public test cases exist

• Conformance
 – Difficult to determine
Printed Description

• Issue 1
 – “From the highest level found in the text to the lowest odd level on each line, reverse any contiguous sequence of characters that are at that level or higher.”
 • English is imprecise
Printed Description

• Two possible interpretations
 – Next level to be processed is one less than the current level.
 – Next level to be processed is the next lowest level actually present in the text.

• Recommendation
 – Provide clarification, possibly an example
Input Conventions

• Issue 2
 – Not every implementation uses the same input conventions.
 • Nevertheless, they all support the standard types.
 – We modified the input conventions when the algorithm had no such support.
 • Unicode data table – changed attributes
 – Simplified comparing output.
<table>
<thead>
<tr>
<th>Type</th>
<th>Arabic</th>
<th>Hebrew</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>a - z</td>
<td>a - z</td>
<td>a - z</td>
</tr>
<tr>
<td>AL</td>
<td>A - Z</td>
<td></td>
<td>A - M</td>
</tr>
<tr>
<td>R</td>
<td>A - Z</td>
<td></td>
<td>N - Z</td>
</tr>
<tr>
<td>AN</td>
<td>0 - 9</td>
<td></td>
<td>5 - 9</td>
</tr>
<tr>
<td>EN</td>
<td>0 - 9</td>
<td></td>
<td>0 - 4</td>
</tr>
</tbody>
</table>
Input Conventions

• Recommendation
 – Work with implementers to adopt a standard set of input conventions
 • UCDATA
 • FriBidi
 • PGBA
Test Cases

• Issue 3
 – Inadequate public test cases
 – Unicode - no public test cases
 – PGBA - Arabic and Hebrew test cases
 – Haskell Bidi - Arabic, Hebrew, and Mixed
 • Based on ambiguities and other problem areas

• Recommendation
 – Make Unicode’s test cases publicly available
Test Results

• Issue 4
 – PGBA and FriBidi do not claim conformance
 – Both accept Unicode as input
 – PGBA and FriBidi
 • Differences
 • Tables 7, 8, and 9
Test Results

• Why are there differences?

• Incorrect assumptions
 • AL = R
 • AL, is not a strong type

• Recommendation
 – Find out why they do not wish to conform.
 – May require Unicode to make changes to the Bidi algorithm.
Normalization

• Issue 5
 – Unexpected interaction between normalization and the Bidi algorithm.
 – Logical order
 • U0627,U2116,U0031,U0032,U0033
 • 123? ?
 – NFKC
 • U0627,U004E,U006F,U0031,U0032,U0033
 • No123 ?
Normalization

• Issue 5
 – Problems with quantities
 – Logical order
 • U0627,U00BC
 • ¼ ?
 – Normal form KC
 • U0627,U0031,U2044,U0034
 • 4/1 ?
Normalization

• Recommendation
 – Document the interaction between normalization and the Bidi algorithm.
 • UAX #9
Normalization

• Canonicalization safe?
 – Appears to be safe
 – Requires
 • precomposed character’s type = decomposed base character’s type
Boundary Neutrals

• Issue 6
 – Some boundary neutrals should never be reordered, even if an implementation retains formatting codes.
 – Lang tags
 • Logical order
 – U0624,UE0001,UE0075,UE0072,U0623
 – Lang ur - Urdu
 • Display order
 – U0623,UE0072,UE0075,UE0001,U0624
 – Lang ru – Russian
Boundary Neutrals

• Recommendation
 – Document this interaction in UAX #9
Domain Names

• Issue 7
 – Applying the bidi algorithm to domain names produces strange results.

• What happens if we use the Bidi algorithm?
 – ABC.ibm.com (logical order, Arabic)
 – ibm.com.CBA (display order)
 – Period used as punctuation in Bidi algorithm

• Bidi algorithm mangles domain hierarchy
 – Left to right reading
 – Specific to general
Domain Names

• Suppose you apply algorithm to each label
 – NOP--123 (logical order, Hebrew)
 – --123PON (display order)
 – European terminator
• Bidi assumptions inappropriate
• In domain names “-”
 – White space, predominate usage
 – 123--PON (display order)
Domain Names

• Recommendation
 – Treat “-” as white space in domain names
 – Consider allowing an alternative output
 • Rule L2
 – Use controls (LRO, RLO, LRE, RLE, PDF)
 • Embed controls in the domain name for display purposes only
 • Keep output in logical order