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1 Overview 
Starting with version 3.2, Unicode includes virtually all of the standard characters 

used in mathematics. This set supports a variety of math applications on computers, in-
cluding document presentation languages like TeX, math markup languages like MathML, 
computer algebra languages like OpenMath, internal representations of math in systems 
like Mathematica and MathCAD, computer programs, and plain text. In this paper, we 
describe the Unicode mathematics character groups and give some of their default math 
properties. Mathematicians and other scientists are continually inventing new mathemati-
cal symbols and the plan is to add them as they become accepted in the scientific com-
munities. 

The paper starts with a discussion of the mathematics character repertoire incorpo-
rating the relevant block descriptions of The Unicode Standard [TUS].  Associated char-
acter properties are discussed next, including a number of properties that are not yet part 
of the Unicode Standard.  Character classifications by usage, by typography, and by 
precedence are given. Some implementation guidelines for input methods and use of 
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Unicode math characters in programming languages are presented next.  The final section 
describes how many mathematical expressions can be rendered using a plain—or at least 
nearly plain—text format. Mathematical plain text can be handy for down-level text cop-
ies, e.g., in email, math input methods, computer programs, and in-line math display. 
Most mathematical expressions up through calculus can be represented unambiguously in 
Unicode plain text.  Note that the discussion is only intended to show how mathematical 
plain text might be useful.  It is not intended to be a complete specification or to be used 
for general information interchange at this stage in its development. 
 

2 Mathematical Character Repertoire 
Unicode 3.2 provides a quite complete set of standard math characters to support 

math publication on and off the web. Specifically there are 591 new symbols (since Uni-
code 3.0) and 996 new alphanumeric symbols added in Unicode 3.1, in addition to the 
340 math specific symbols already encoded in Unicode 3.0 for a total of 1927 mathe-
matical symbols. This repertoire is the result of input from many sources, notably from 
the STIX project, and enables one to display virtually all standard mathematical symbols. 
MathML is a major beneficiary of this support and lobbied in favor of the inclusion of the 
new characters. In addition, this math support lends itself to a useful plain-text encoding 
of mathematics (see Sec. 4) that is much more compact than MathML or TeX. 
 

2.1 Mathematical Alphanumeric Symbols Block  
The Mathematical Alphanumeric Symbols block (U+1D400–U+1D7FF) contains a 

large extension of letterlike symbols used in mathematical notation, typically for vari-
ables. The characters in this block are intended for use only in mathematical or technical 
notation; they are not intended for use in non-technical text. When used with markup lan-
guages, for example with MathML Mathematical Markup Language (MathML) the char-
acters are expected to be used directly, instead of indirectly via entity references or by 
composing them from base letters and style markup.  

Words Used as Variables. In some specialties, whole words are used as variables, 
not just single letters. For these cases, style markup is preferred because in ordinary 
mathematical notation the juxtaposition of variables generally implies multiplication, not 
word formation as in ordinary text. Markup not only provides the necessary scoping in 
these cases, it also allows the use of a more extended alphabet. 

2.2 Mathematical Alphanumeric Characters 
Basic Set of Alphanumeric Characters. Mathematical notation uses a basic set of 
mathematical alphanumeric characters which consists of: 

• basic Latin digits (0 – 9)  
• basic upper- and lowercase Latin letters (a – z, A – Z)  
• uppercase Greek letters Α-Ω (U+0391 - U+03A9), plus the nabla ∇ (U+2207) and 

Θ variant (U+03F4) 
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• lowercase Greek α-ω (U+03B1 - U+03C9), plus the partial differential sign 
∂ (U+2202) and the six glyph variants of ε, θ, κ, φ, ρ, and π, given by U+03F5, 
U+03D1, U+03F0, U+03D5, U+03F1, and U+03D6.  

Standard mathematical notation uses the digits 0-9 (U+0031..U+0039). Only unac-
cented forms of the letters are used for mathematical notation, because general accents 
such as the acute accent would interfere with common mathematical diacritics. Examples 
of common mathematical diacritics that can interfere with general accents are the circum-
flex, macron, or the single or double dot above, the latter two of which are used in phys-
ics to denote derivatives with respect to the time variable. Mathematical symbols with 
diacritics are always represented by combining character sequences. 

For some characters in the basic set of Greek characters, two variants of the same 
character are included. This is because they can appear in the same mathematical docu-
ment with different meanings, even though they would have the same meaning in Greek 
text. 

Additional Characters. In addition to this basic set, mathematical notation also uses 
the four Hebrew-derived characters (U+2135..U+2138). Occasional uses of other alpha-
betic and numeric characters are known. Examples include U+0428 CYRILLIC CAPI-
TAL LETTER SHA, U+306E HIRAGANA LETTER NO, and Eastern Arabic-Indic dig-
its (U+06F0..U+06F9). However, these characters are used in only the basic form. 

 

2.3 Mathematical Alphabets 
Mathematics has need for a number of Latin and Greek alphabets that on first 

thought appear to be mere font variations of one another. For example the letter H can 
appear as plain or upright (H), bold (H), italic (H), and script H.  However in any given 
document, these characters have distinct, and usually unrelated mathematical semantics.  
For example, a normal H represents a different variable from a bold H, etc.  If these at-
tributes are dropped in plain text, the distinctions are lost and the meaning of the text is 
altered. Without the distinctions, the well-known Hamiltonian formula 
 
 H = ∫dτ(εE² + µH²), 
 
turns into the integral equation in the variable H 
 

H = ∫dτ(εE² + µH²). 
 

By encoding a separate set of alphabets, it is possible to preserve such distinctions in 
plain text. 

Mathematical Alphabets. The alphanumeric symbols encountered in mathematics 
are given in the following table: 
 

Math style Characters from basic set Plane 
normal (upright, serifed) Latin, Greek and digits BMP 
Bold Latin, Greek and digits Plane 1 
Italic Latin and Greek Plane 1* 
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bold italic Latin and Greek Plane 1 
script (calligraphic) Latin Plane 1* 
bold script (calligraphic) Latin Plane 1 
Fraktur Latin Plane 1* 
bold fraktur Latin Plane 1 
double-struck Latin and digits Plane 1* 
sans-serif Latin and digits Plane 1 
sans-serif bold Latin, Greek and digits Plane 1 
sans-serif italic Latin Plane 1 
sans-serif bold italic Latin and Greek Plane 1 
Monospace Latin and digits Plane 1 

 
* Some of these alphabets have characters in the BMP as noted in the following section. 

 
The plain letters have been unified with the existing characters in the Basic Latin 

and Greek blocks. There are 25 double-struck, italic, Fraktur and script characters that 
already exist in the Letterlike Symbols block (U+2100 – U+214F). These are explicitly 
unified with the characters in this block and corresponding holes have been left in the 
mathematical alphabets for the convenience of implementations. 

Compatibility Decompositions. All mathematical alphanumeric symbols have com-
patibility decompositions to the base Latin and Greek letters -- folding away such distinc-
tions, however, is usually not desirable as it loses the semantic distinctions for which 
these characters where encoded. See Unicode Standard Annex #15, Unicode Normaliza-
tion Forms for more information. 

 

2.4 Fonts Used for Mathematical Alphabets 
Mathematicians place strict requirements on the specific fonts being used to repre-

sent mathematical variables. Readers of a mathematical text need to be able to distinguish 
single letter variables from each other, even when they don't appear in close proximity. 
They must be able to recognize the letter itself, whether it is part of the text or is a 
mathematical variable, and lastly which mathematical alphabet it is from. 

Mathematical variables are most commonly set in a form of italics, but not all italic 
fonts can be used successfully. In common text fonts, the italic letter v and Greek letter ν 
("nu") are not very distinct. A rounded letter v like this one from Century Schoolbook is 
therefore preferred in a mathematical font. Care must be taken to select a Greek font in 
which the [upsilon] ("upsilon") is also distinct from the rounded v. There are other char-
acters which sometimes have similar shapes and require special attention to avoid ambi-
guity: lowercase italic a and U+03B1 GREEK SMALL LETTER ALPHA; uppercase Y 
and U+03A5 GREEK CAPITAL LETTER UPSILON (which should always have curved 
arms); U+03A7 GREEK CAPITAL LETTER CHI and uppercase script X. 

A font intended for mathematical variables should strive to allow a visual distinc-
tion so that variables can be reliably separated from italic text in a theorem. Some lan-
guages have common single letter words (English ‘a’, Scandinavian ‘i’, etc.), which can 
otherwise be easily confused with common variables. 

Hard-to-distinguish Letters. Not all sans-serif fonts allow an easy distinction be-
tween lowercase ‘l’, and uppercase ‘I’ and not all monospaced fonts allow a distinction 
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between the letter ‘l’ and the digit ‘1’. Such fonts are not usable for mathematics. In 
Fraktur, the letters I and J in particular must be made distinguishable. Overburdened 
Black Letter forms like I and J are inappropriate. Similarly, the digit ‘0’ must be dis-
tinct from the letter ‘O’ for all mathematical alphanumeric sets. Some characters are so 
similar that even mathematical fonts do not attempt to provide distinguished glyphs for 
them. Their use is normally avoided in mathematical notation unless no confusion is pos-
sible in a given context, e.g. uppercase A and uppercase alpha (A). However, when com-
puterizing text, it is helpful to have distinct character codes even in these cases. 

Font Support for Combining Diacritics. Mathematical equations require that char-
acters be combined with diacritics (dots, tilde, circumflex, or arrows above are common), 
as well as followed or preceded by super- or subscripted letters or numbers. This re-
quirement leads to designs for italic styles that are less inclined, and script styles that 
have smaller overhangs and less slant than equivalent styles commonly used for text such 
as wedding invitations. 

Typestyle for Script Characters. In some instances, a deliberate unification with a 
non-mathematical symbol has been undertaken; for example, U+2133 is unified with the 
pre-1949 symbol for the German currency unit Mark and U+2113 is unified with the 
common non-SI symbol for the liter. This unification restricts the range of glyphs that 
can be used for this character in the charts. Therefore the font used for the reference 
glyphs in the code charts uses a simplified ‘English Script’ style, as per recommendation 
by the American Mathematical Society. For consistency, other script characters in the 
Letterlike Symbols block are now shown in the same typestyle. 

Double-struck Characters. The double-struck glyphs shown in earlier editions of 
the standard attempted to match the design used for all the other Latin characters in the 
standard, which is based on Times. The current set of fonts was prepared in consultation 
with the American Mathematical Society and leading mathematical publishers, and 
shows much simpler forms that are derived from the forms written on a blackboard. 
However, both serifed and non-serifed forms can be used in mathematical texts, and 
inline fonts are found in works published by certain publishers. 
 

2.5 Locating Mathematical Characters 
Mathematical characters can be located by looking in the blocks that contain such 

characters or by checking the Unicode MATH property, which is assigned to characters 
that naturally appear in mathematical contexts (see Sec. “Mathematical Character Proper-
ties”). Mathematical characters can be found in the following blocks: 

 
Table 2.1 Locations of Mathematical Characters 

Block Name Range Characters 
Basic Latin U+0021—U+007E Variables, operators, digits* 
Letterlike Symbols U+2100—U+214F Variables* 
Arrows U+2190—U+21FF Arrows, arrow-like operators 
Mathematical Operators U+2200—U+22FF Operators 
Miscellaneous Technical Symbols U+2300—U+23FF Braces, operators* 
Geometrical Shapes U+25A0—U+25FF Symbols 
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Misc. Mathematical Symbols –A   
Supplemental Arrows-A   
Supplemental Arrows-B U+2900—U+297F Arrows, arrow-like operators 
Misc. Mathematical Symbols –B U+2980—U+29FF Braces, symbols 
Suppl. Mathematical Operators U+2A00—U+2AFF Operators 
CJK Punctuation U+3000—U+303F Braces* 
Mathematical Alphanumeric Symbols U+1D400—U+1D7FF Variables and digits 
Other blocks … Characters for occasional use

*This block contains nonmathematical characters as well. 
 
In the programming language C, one can see if the character ch is in one of these 

ranges using an if() statement with the IN_RANGE macro. For example, to see if a charac-
ter is in the Letterlike Symbols or Mathematical Alphanumeric Symbols blocks, use 

 
 if(IN_RANGE(0x2100, ch, 0x214F) || IN_RANGE(0x1D400, ch, 0x1D7FF)) {} 
 
where the macro IN_RANGE(n1, ch, n2) is defined by 
 

#define IN_RANGE(n1, b, n2)   ((unsigned)((b) - (n1)) <= unsigned((n2) - (n1))) 
 
This macro effectively has only one goto and is almost as fast as a single compare. Some-
times it is possible to match more than one block with a single invocation.  For example, 
 

IN_RANGE(0x2A00, ch | 0x200, 0x2AFF) 
 

matches all symbols in the Mathematical Operators and Supplemental Mathematical Op-
erators blocks.  

 

2.6 Duplicated Characters 
Some duplicated Greek letters are U+00B5 µ MICRO SIGN, U+2126 Ω OHM SIGN, and 

several characters among the APL functional symbols in the Miscellaneous Technical 
block. 
 

2.7 Accented Characters 
Mathematical characters are often enhanced via use of combining marks in the 

ranges U+0300 – U+036F and the mathematical combining marks in the range U+20D0 – 
U+20FF. These characters follow the base characters as in nonmathematical Unicode text. 
This section discusses these characters and preferred ways of representing accented char-
acters in mathematical expressions. If a span of characters is enhanced by a combining 
mark, e.g., a tilde over AB, typically some kind of higher-level markup is needed as is 
done in MathML. Unicode does include some combining marks that are designed to be 
used for pairs of characters, e.g., U+0360 through U+0362. However, their use for 
mathematical text is not encouraged.  
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There have been many discussions as to various normalization forms for Unicode 
characters; Unicode Technical Report 15 discusses the subject in detail. Math characters 
are no exception: there are multiple ways of expressing various math characters. It would 
be nice to have a single way to represent any given character, since this would simplify 
recognizing the character in searches and other manipulations. Accordingly it is worth-
while to give some guidelines. 

Always use the shortest form of a math operator symbol wherever possible. So 
U+2260 should be used for the not equal sign instead of the combining sequence 
U+003D U+0338.  This rule concurs with Normalization Form C (NFC) used on the web. 
If a negated operator is needed that does not have a precomposed form, the character 
U+0338 COMBINING LONG SOLIDUS OVERLAY can be used to indicate negation. 

On the other hand, for accented alphabetic characters used as variables, use fully 
decomposed sequences, e.g., use <U+0061, U+0308> for ä, not U+00E4. Mathematics 
uses a multitude of combining marks that greatly exceeds the predefined composed char-
acters in Unicode.  It is better to have the math display facility handle all of these cases 
uniformly to give a consistent look between characters that happen to have a fully com-
posed Unicode character and those that do not. The combining character sequences also 
typically have semantics as a group, so it is handy to be able to manipulate and search for 
them individually without having to have special tables to decompose characters for this 
purpose. Note that this rule does not concur with Normalization Form C for the upright 
alphabetic characters in the BMP, but it does work with the math alphabetic characters, 
since the latter have no composed versions. Since material transmitted on the web may be 
subjected to NFC, mathematical software needs to be aware that accented BMP charac-
ters may end up being composed, even though the program that created them did not 
compose them. BMP accented characters used in text appearing in mathematical expres-
sions (see Sec. “Other Characters”) should conform to NFC. 

 

2.8 Operators 
The Unicode blocks U+2200 – U+22FF and U+2A00 – U+2AFF contain many 

mathematical operators, relations, geometric symbols and other symbols with special us-
ages confined largely to mathematical contexts.  In addition to the characters in these 
blocks, mathematical operators are also found in the Basic Latin (ASCII) and Latin-1 
Supplement Blocks. A few of the symbols from the Miscellaneous Technical block and 
characters from General Punctuation are also used in mathematical notation. 

Mathematical operators often have more than one meaning.  Therefore the encoding 
of these blocks is intentionally rather shape based, with numerous instances in which sev-
eral semantic values can be attributed to the same Unicode value.  For example, U+2218 
2218 ◦ RING OPERATOR may be the equivalent of white small circle or composite function or 
apl jot.  The Unicode Standard does not attempt to distinguish all possible semantic val-
ues that may be applied to mathematical operators or relational symbols.  The Standard 
does include many characters that appear to be quite similar to one another, since they 
may well convey different meaning in a given context.  Typically the choice of a vertical 
or forward-slanting stroke seems to be an aesthetic one, but both slants might appear in a 
given context. However, a back-slanted stroke has almost always a distinct meaning 
compared to the forward-slanted stroke. Accordingly Version 3.2 of The Unicode Stan-
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dard does not unify many characters that might appear to be only aesthetic variants of one 
another. 

On the other hand, mathematical operators such as implies ⇔ and if and only if ↔ 
have been unified with the corresponding arrows (U+21D2 RIGHTWARDS DOUBLE ARROW and 
U+2194 LEFT RIGHT ARROW, respectively) in the Arrows block. 

Several mathematical operators derived from Greek characters have been given 
separate encodings since they are used differently than the corresponding letters. These 
operators may occasionally occur in context with Greek-letter variables. They include 
U+2206 ∆ INCREMENT, U+220F ∏ N-ARY PRODUCT, and U+2211 ∑ N-ARY SUMMATION. The lat-
ter two are large operators that take limits. 

Some typographical aspects of operators are discussed in Sec. 2.2.  For example, the 
n-ary operators are distinguished from letter variables by their larger size and the fact that 
they take limit expressions. 

The unary and binary minus sign is preferably represented by U+2212 MINUS SIGN 
rather than by U+002D HYPHEN-MINUS, both because the former is unambiguous and be-
cause it is rendered with a more desirable length. (For a complete list of dashes in the 
Unicode Standard, see Table 6-2 in TUS).  U+22EE – U+22F1 are a set of ellipses used 
in matrix notation. 

 

2.9 Superscripts and Subscripts 
The Unicode block U+2070 – U+209F plus U+00B2, U+00B3, and U+00B9 con-

tain sequences of superscript and subscript digits and punctuation that can be useful in 
mathematics.  If they are used, it is recommended that they be displayed with the same 
font size as other subscripts and superscripts at the corresponding nested script level.  For 
example in the Unicode plain text approach of Sec. 4, a² and a↑2 should be displayed the 
same way when built up.  These subscript/superscript characters are not used in MathML 
and TeX. 

 

2.10 Arrows 
Arrows are used for a variety of purposes in mathematics and elsewhere, such as to 

imply directional relation, to show logical derivation or implication, and to represent the 
cursor control keys. Accordingly Unicode includes a fairly extensive set of arrows 
(U+2190 – U+21FF and U+2900 – U+297F), many of which appear in mathematics.   

 

2.11 Geometrical Shapes 
The basic geometric shapes (circle, square, triangle, diamond, and lozenge) are 

used for a variety of purposes in mathematical texts. Because their shapes are distinct and 
they are easily available in multiple sizes from a variety of widely available fonts, they 
are also often used in an ad-hoc manner.  

Ideal sizes. Mathematical usage requires at least four distinct sizes of simple 
shapes, and sometimes more. The size gradation must allow each size to be recognized, 
even when it occurs in isolation. In other words shapes of the same size should ideally 
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have roughly the same visual “impact ” as opposed to same nominal height or width. For 
mathematical usage simple shapes ideally share a common center. The following diagram 
shows which size relationship across shapes of the same nominal size is considered ideal. 

 
Please note that neither the current set of glyphs in the standard nor the glyphs from many 
commonly available non-mathematical fonts show this kind of size relation. 

Actual sizes. The sizes of existing characters and their names are not always con-
sistent. For mathematical usage, therefore, the MEDIUM SMALL SQUARE should be 
used together with the MEDIUM size of the other basic shapes, and correspondingly for 
the other sizes.(The basic shapes from the Zapf Dingbats font match the unmarked size 
for triangle, diamond and circle and the MEDIUM size for the square.) To achieve the 
correct size relation, mathematical fonts may need to deviate in minor amounts from the 
sizes shown in the character charts. [TBD: summary picture]  

Sizes of derived shapes. Circled and squared operators and similar derived shapes 
are more constrained in their usage than 'plain' geometric shapes. They tend to occur in 
two generic sizes based on function: a smaller size for operators and large size for n-ary 
operators. 

Positioning. For a mathematical font, the centerline should go through the middle 
of a parenthesis, which should go from bottom of descender to top of ascender. This is 
the same level as the minus or the middle of the plus and equal signs. For correct posi-
tioning, the glyph will descend below the baseline for the larger sizes of the basic shapes 
as in the following schematic diagram: 

 
The standard triangles used for mathematics are also center aligned. This is dif-

ferent from the positioning for the reference glyphs of existing characters shown in the 
charts. Mathematical fonts may need to deviate in positioning of these triangles. 

 

2.12 Other Symbols 
Other symbols of use in mathematics are contained in the Miscellaneous Technical 

block (U+2300–U+23FF), the Geometric Shapes block (U+25A0–U+25FF), the Miscel-
laneous Symbols block (U+2600–U+267F), and the General Punctuation block 
(U+2000–U+206F).  

Generally any easily recognized and distinct symbol is fair game for mathemati-
cians faced with the need of creating notations for new fields of mathematics. For exam-
ple, the card suits ♥,♠, etc. can be found as operators as well as subscripts. 
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2.13 Symbol Pieces 
In particular, the Miscellaneous Technical block contains a set of pieces for building 

up large versions of the fences (, ), [, ], {,  and }, and of the large operators ∑, and 
∫. Building up such symbols cannot is different from simple scaling in that the displayed 
stem weights must remain compatible with the accompanying smaller characters.  These 
brace and operator pieces are not used in stored mathematical text, but are often used in 
the data stream created by display and print drivers. 

Some of them occur in legacy character sets. 
[Add info from TUS] 

2.14  Invisible Operators 
In mathematics some operators or punctuation are often implied, but not displayed. 

The “invisible separator” or comma (U+2063) is intended for use in index expressions 
and other mathematical notation where two adjacent variables form a list and are not im-
plicitly multiplied. In mathematical notation, commas are not always explicitly present, 
but need to be indicated for symbolic calculation software to help it disambiguate a se-
quence from a multiplication. For example, the double ij subscript in the variable aij 
means ai, j, i.e., the i and j are separate indices and not a single variable with the name ij.  
Accordingly to represent the implied list separation in the subscript ij we can insert a non-
displaying “invisible separator” between the i and the j.  In addition, use of the invisible 
comma would hint to a math layout program to typeset a small space between the vari-
ables. 

Similarly an expression like mc2 implies that the mass m multiplies the square of the 
speed c.  To represent the implied multiplication in mc2, we insert a nondisplaying “in-
visible times” between the m and the c. A related case is the “function application” sym-
bol for an implied function dependence as in f(x + y). To indicate that this is the function f 
of the quantity x + y and not the expression fx + fy, we can insert the nondisplaying func-
tion application symbol between the f and the left parenthesis. 

Another example is the expression f 
i j(cos(ab)), which means the same as f 

i,j(cos(a×b)), where × represents multiplication, not the cross product. Note that the 
spacing between characters may also depend on whether the adjacent variables are part of 
a list or are to be concatenated, i.e., multiplied. 

2.15 Other Characters 
These include all remaining Unicode characters.  They may appear in mathematical 

expressions, typically in spelled-out names for variables in fractions or simple formulae, 
but they most commonly appear in ordinary text.  An English example is the equation 
 

distance = rate × time, 
 
which uses ordinary ASCII letters to aid in recognizing sequences of letters as words in-
stead of products of individual symbols. Such usage corresponds to identifiers, discussed 
elsewhere.  
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2.16 Variation Selector 
The variation selector VS1 is used to represent well-defined variants of particular 

math symbols. The variations include: different slope of cancellation element in some 
negated symbols, changed orientation of an equating or tilde operator element, and some 
well-defined different shapes. To select one of the predefined variation follow the base by 
the variation selector.  The only characters defined for use with the variant selector are 
the ones given in the following table.  

It is important to not that the variation selector only selects a different appearance 
of an already encoded character. It is not intended as a general code extension mechanism. 
At this time the variations encoded with the variation selector are thought to be primarily 
glyphic variation. Should their usage or interpretation change – over time, or because of 
better evidence about how these shapes are actually used in mathematical notation – it is 
likely that another character would be coded so that the distinction in meaning can be 
kept directly in the character code. 

In extremis, the Unicode Standard considers the variation selector somewhat op-
tional. Processes or fonts that cannot support it should yield acceptable results by ignor-
ing the variation selector. 

 
2268 + VS1 Less-than and not double equal - with vertical stroke 
2269 + VS1 greater-than and not double equal - with vertical stroke 
22DA + VS1 Less-than above slanted equal above greater-than 
22DB + VS1 greater-than above slanted equal above less-than 
2272 + VS1 Less-than or similar - following the slant of the lower leg 
2273 + VS1 greater-than or similar - following the slant of the lower leg 
2A9D + VS1 similar - following the slant of the upper leg - or less-than 
2A9E + VS1 similar - following the slant of the upper leg - or greater-than 
2AAC + VS1 smaller than or slanted equal 
2AAD + VS1 larger than or slanted equal 
228A + VS1 subset not equals - variant with stroke through bottom members 
228B + VS1 superset not equals - variant with stroke through bottom members 
2ACB + VS1 subset not two-line equals - variant with stroke through bottom members 
2ACC + VS1 superset not two-line equals - variant with stroke through bottom members
2A3B + VS1 interior product - tall variant with narrow foot 
2A3C + VS1 righthand interior product - tall variant with narrow foot 
2295 + VS1 circled plus with white rim 
2297 + VS1 circled times with white rim 
229C + VS1 equal sign inside and touching a circle 
2225 + VS1 slanted parallel 
2225 + VS1 + 20E5 slanted parallel with reverse slash 
222A + VS1 union with serifs 
2229 + VS1 intersection with serifs 
2293 + VS1 square intersection with serifs 
2294 + VS1 square union with serifs 
 

2.17 Novel Symbols not yet in Unicode 
Mathematicians are by their nature inventive people and will continue to invent new 

symbols to express their theories. Until these symbols are used by a number of people, 
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they should not be standardized.  Nevertheless, one needs a way to handle these novel 
symbols even before they are standardized. 

The private use area (0xE000 – 0xF8FF) can be used for such nonstandard symbols.  
It is a tricky business, since the PUA is used for many purposes.  For example, it is used 
on Microsoft operating systems to round-trip codes that are not currently in Unicode, 
most notably many Chinese characters.  The precise usage may well change since many 
such symbols may be assigned to plane 2 (Extension B) and hence are standardized. 

When using the PUA, it is a good idea to have higher-level backup to define what 
kind of characters are involved.  If they are used as math symbols, it would be good to 
assign them a math attribute that is maintained in a rich-text layer parallel to the plain text. 
Such layers are used by rich-text programs such as Microsoft Word and Internet Explorer. 

 

3 Mathematical Character Properties 
Unicode assigns a number of mathematical character properties to aid in the default 

interpretation and rendering of these characters. Such properties include the classification 
of characters into operator, digit, delimiter, and variables. These properties may be over-
ridden, or explicitly specified in some environments, such as MathML, which uses spe-
cific tags to indicate how Unicode characters are used, such as <mo> for operator, <md> 
for one or more digits comprising a number, and <mi> for identifier.  TeX is a higher-
level composition system that uses implicit character semantics. In the following, we de-
scribe these properties in greater detail. 

In particular, many Unicode characters nearly always appear in mathematical ex-
pressions and are given the generic mathematics property.  For example, they include the 
math operators in the ranges U+2200 – U+22FF and U+29B0 – U+2AFF, the math com-
bining marks U+20D0 – U+20FF, the math alphanumeric characters (some of the Letter-
like symbols and the mathematics alphanumerics range U+1D400 – U+1D7FF). Other 
characters may occur in mathematical usage depending on context. The math property is 
useful in heuristics that seek to identify mathematical expressions in plain text. 
 

3.1 Classification by Usage Frequency 

3.1.1 Strongly Mathematical Characters 
Strong mathematical characters are all characters that are primarily used for 

mathematical notation. This includes all characters with the math property [Sec. 4.9 of 
TUS] {check that this is true after extension of the properties to the new characters} with 
the following exceptions: 

002D HYPHEN-MINUS 
 
and the following additions {any?} 

3.1.2 Weakly Mathematical Characters 
These characters often appear in mathematical expressions, but they also appear 

naturally in ordinary text. They include the ASCII letters, punctuation, as well as the ar-
rows and many of the geometric and technical shapes.  The ASCII hyphen minus 
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(U+002D) is a weakly mathematical character that may be used for the subtraction opera-
tor, but U+2212 is preferred for this purpose and looks better. Geometric shapes are fre-
quently used as mathematical operators. 

3.1.3 Other 
All other Unicode characters. Many of these may occur in mathematical texts, 

though often not as part of the mathematical expressions themselves. 

3.2 Classification by Typographical Behavior 
Math characters fall into a number of subcategories, such as operators, digits, 

delimiters, and identifiers (constants and variables). This section discusses some of the 
typographical characteristics of these subcategories. These characteristics and classifica-
tions are useful in the absence of overriding information. For example, there is at least 
one document that uses the letter P as a relational operator. 

3.2.1 Alphabetic 
In general italic Latin characters are used to represent single-character Latin vari-

ables. In contrast, mathematical function names like sin, cos, tan, tanh, etc., are repre-
sented by upright serifed text to distinguish them from products of variables. Such names 
should not use the math alphanumeric characters. The upright uppercase Greek are fa-
vored over the italic ones. In Europe, upright d, D, e, and i are used for the two differen-
tial, exponential, and imaginary part functionalities, respectively. In common American 
mathematical practice, these quantities are represented by italic quantities. Products of 
italicized variables have slightly wider spacing than the letters in italicized words in ordi-
nary text. 

3.2.2 Operators 
Operators fall into one or more categories.  These include: 
 

binary some spacing around binary operators 
unary closer to modified character than binary operators 
n-ary often called “large” operators, take limits ordinarily above/below 

when displayed out-of-line and right to/bottom when displayed 
inline 

arithmetic includes binary and unary operators 
logical unary not and binary and, or, exclusive or in a host of guises 
set-theoretic inclusion, exclusion, in a variety of guises 
relational binary operators like less/greater than in many forms 

3.2.3 Large Operator  
These include n-ary operators like summation and integration.  These may expand 

in size to fit their associated expressions. They generally also take limits. The placement 
of the limits of an operator is different when they are used in-line compared to their use in 
displayed formulae. For example ∑n=1

∞ an  versus 
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 ∑
n=1

∞
 an . 

Selection of a particular layout for limit expressions is outside the scope of the Unicode 
Standard. 

3.2.4 Digits 
Digits include 0-9 in various styles.  These have the same widths as one another. 

3.2.5 Delimiters 
Delimiters include punctuation, opening/closing delimiters such as parentheses and 

brackets, braces, and fences.  Opening and closing delimiters and fences may expand in 
size to fit their associated expressions.  Some bracket expressions do not appear to be 
“logical” to readers unfamiliar with the notation, e.g., ]x ,y[. 

3.2.6 Fences 
Fences are similar to opening and closing delimiters, but are not paired.  In addition, 

they include “mid” delimiters, which are not opening or closing in character. 

3.2.7 Combining Marks 
Combining marks are used with mathematical alphabetic characters (see Sec. “Ac-

cented Characters”), instead of precomposed characters. Use U+0061 U+0308 for the 
second derivative of acceleration with respect to time, not the precomposed letter ä. On 
the other hand, precomposed characters are used for operators whenever they exist. Com-
bining slash (solidus) or vertical overlays can be used to indicate negation for operators 
that do not have precomposed negated forms. 

Where both long and short combining marks exist, use the long, e.g., use U+0338, 
not U+0337 and use U+20D2, not U+20D3. The actual shape or position of a combining 
is a typesetting problem and not specified in plain text.  When using combining marks, 
the composite characters have the same typesetting class as the base character. 

3.3 Classification of Operators by Precedence 
Operator precedence reduces the notational complexity of expressions and is com-

monly used for this purpose in computer programming languages, calculus, and algebra.  
A simple precedence table is used in Sec. 4-2 to convert the Unicode plain-text notation 
into a prefix notation used in two-dimensional display code. Although that table has some 
unusual precedence assignments, it shares with ordinary algebra the concept that addition 
and subtraction have lower precedence than multiplication and division.  Some display 
engines, e.g., TeX’s and MathML’s, do not use precedence and instead rely on complete 
specification of operator order via explicit bracketing, either with {} as in TeX or XML 
tags as in MathML. 

[TBD: property files that specify the actual classification] 
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4 Implementation Guidelines 

4.1 Use of Normalization with Mathematical Text 
If Normalization Form C is applied to mathematical text, some accents or overlays 

used with BMP alphabetic characters may be incorrectly composed with their base char-
acter. Parsers should allow for this. Normalization forms KC or KD remove the distinc-
tion between different mathematical alphabets. These forms cannot be used with mathe-
matical texts. For more details on Normalization see Unicode Standard Annex #15 Nor-
malization and the discussion in Sec. “Accented Characters”. 

4.2 Input of Mathematical and Other Unicode Characters 
In view of the large number of characters used in mathematics, we give some dis-

cussion of input methods. The ASCII math symbols are easy to find, e.g., + - / * [ ] ( ) { }, 
but often need to be used as themselves. 

Post-entry correction. From a syntax point of view, the official Unicode minus 
sign (U+2212) is certainly preferable to the ASCII hyphen-minus (U+002D) and the 
prime (U+2032) is preferable to the ASCII apostrophe (U+0027), but users may find the 
ASCII characters more easily. Similarly it is easier to type ASCII letters than italic letters, 
but when used as mathematical variables, such letters are traditionally italicized in print. 
Accordingly a user might want to make italic the default alphabet in a math context, re-
serving the right to overrule this default when necessary. Other post-entry enhancements 
include automatic-ligature and left-right quote substitutions, which can be done automati-
cally by some word processors. Suffice it to say that intelligent input algorithms can dra-
matically simplify the entry of mathematical symbols. 

Math keyboards. A special math shift facility for keyboard entry could bring up 
proper math symbols.  The values chosen can be displayed on an on-screen keyboard. For 
example, the left Alt key can access the most common mathematical characters and 
Greek letters, the right Alt key could access italic characters plus a variety of arrows, and 
the right Ctrl key could access script characters and other mathematical symbols. The 
numeric keypad offers locations for a variety of symbols, such as sub/superscript digits 
using the left Alt key. Left Alt CapsLock could lock into the left-Alt symbol set, etc. This 
approach yields what one might call a “sticky” shift. Other possibilities involve the 
NumLock and ScrollLock keys in combinations with the left/right Ctrl/Alt keys. Pretty 
soon one realizes that this approach rapidly approaches literally billions of combinations, 
i.e., several orders of magnitude more than Unicode can handle! 

Macros. The autocorrect feature of Microsoft Word 97 (and later) offers another 
way of entering mathematical characters for people familiar with TeX. For example, typ-
ing \alpha inserts α if the appropriate autocorrect entry is present. This approach is noti-
cably faster than using menus. 

Hexadecimal input. A handy hex-to-Unicode entry method works with recent Mi-
crosoft text software to insert Unicode characters in general and math characters in par-
ticular. Basically one types a character’s hexadecimal code (in ASCII), making correc-
tions as need be, and then types Alt+x. The hexadecimal code is replaced by the corre-
sponding Unicode character. The Alt+x can be a toggle, that is, type it once to convert a 
hex code to a character and type it again to convert the character back to a hex code. If 
the hex code is preceded by one or more hexadecimal digits, one needs to “select” the 
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code so that the preceding hexadecimal characters aren’t included in the code. The code 
can range up to the value 0x10FFFF, which is the highest character in the 17 planes of 
Unicode.  

Pull-down menus. Pull-down menus are a popular method for handling large char-
acter sets, but they are slow.  A better approach is the symbol box, which is an array of 
symbols either chosen by the user or displaying the characters in a font. Symbols in sym-
bol boxes can be dragged and dropped onto key combinations on the on-screen key-
board(s), or directly into applications. On-screen keyboards and symbol boxes are valu-
able for entry of mathematical expressions and of Unicode text in general. 

Unicode plain-text mathematics. One use of the plain-text format is as a math in-
put method, both for search text and for general editing. 

4.3 Use of Math Characters in Computer Programs 
It can be very useful to have typical mathematical symbols available in computer 

programs (see Sec. 5.3 for a more detailed discussion). A key point is that the compiler 
should display the desired characters in both edit and debug windows. A preprocessor can 
translate MathML, for example, into C++, but it will not be able to make the debug win-
dows use the math-oriented characters unless it can handle the underlying Unicode char-
acters. Java has made an important step in this direction by allowing Unicode variable 
names. The mathematical alphanumeric symbols allow this approach to go further with 
relatively little effort for compilers. 

The advantages of using the Unicode plain text in computer programs are at least 
threefold: 1) many formulas in document files can be programmed simply by copying 
them into a program file and inserting appropriate multiplication dots.  This dramatically 
reduces coding time and errors.  2) The use of the same notation in programs and the as-
sociated journal articles and books leads to an unprecedented level of self-documentation.  
3) In addition to providing useful tools for the present, these proposed initial steps should 
help us figure out how to accomplish the ultimate goal of teaching computers to under-
stand and use arbitrary mathematical expressions. 

5 Unicode Plain Text Encoding of Mathematics 
Getting computers to understand human languages is important in increasing the 

utility of computers. Natural-language translation, speech recognition and generation, and 
programming are typical ways in which such machine comprehension plays a role.  The 
better this comprehension, the more useful the computer, and hence there has been con-
siderable current effort devoted to these areas since the early 1960s. 

Ironically one truly international human language that tends to be neglected in this 
connection is mathematics itself. 

With a few conventions, Unicode can encode most mathematical expressions in 
readable (near-)plain text.  The format is linear, but can be displayed in built-up form. 
The approach uses heuristics based on the Unicode math properties to recognize mathe-
matical expressions without the aid of explicit math-on/off commands. This is facilitated 
by Unicode’s strong support for mathematical symbols. This plain-text representation is 
substantially more compact and easy to read compared to the LaTeX dialect of TeX, 
“Unicode TeX”, or MathML. Most mathematical expressions up through calculus can be 
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represented unambiguously in Unicode plain text. The plain-text encoding can be easily 
exported to (La)TeX, MathML, C++, and symbolic manipulation programs. 

Note that this discussion is intended to illustrate how mathematical plain text might 
be useful, for example, in math input and computer programs. This is intended to be an 
preliminary draft of a specification of how to encode mathematical expressions in plain 
text. Readers are encouraged to comment on the proposed scheme. 

Given the power of Unicode relative to ASCII, how much better can a plain-text 
encoding of mathematical expressions look using Unicode? The most well-known plain-
text ASCII encoding of such expressions is that of TeX, so we use it for comparison.  
MathML is considerably more verbose than TeX, so some of the comparisons apply to it 
as well. Notwithstanding TeX’s phenomenal success in the science and engineering 
communities, a casual glance at its representation of mathematical expressions reveals 
that they do not look very much like the expressions they represent. It is certainly not 
easy to make algebraic calculations directly using TeX’s notation. With Unicode, one can 
represent mathematical expressions more readably, and the resulting plain text can be 
used directly for such calculations. 

For example, one way to specify a TeX fraction numerator consists of the expres-
sion \frac{numerator}{denominator}.  In both the fraction and subscript/superscript cases, 
the { } are not printed.  These simple rules immediately give a “plain text” that is unambi-
guous, but looks quite different from the corresponding mathematical notation, thereby 
making it hard to read. 

Instead, suppose one defines a simple operand to consist of all consecutive letters 
and digits, i.e., a span of characters belong to the Lx and Nd General Categories. As such, 
a simple numerator or denominator is terminated by any operator, including, for example, 
arithmetic operators, the blank, all Unicode characters with codes U+22xx, and a special 
argument “break” operator consisting of a small raised dot.  The fraction operator is given 
by the Unicode fraction slash operator U+2044, which we depict with the glyph //.  So the 
simple built-up fraction 

abc
d   . 

appears in plain text as abc/d. 
For more complicated operands (such as those that include operators), parentheses 

( ), brackets [ ], or braces { } can be used to enclose the desired character combinations.  
If parentheses are used and the outermost parenthesis set is preceded and followed by op-
erators, that set is not displayed in built-up form, since usually one does not want to see 
such parentheses.  So the plain text (a + b) //c displays as 

a + c
d   . 

In practice, this approach leads to plain text that is significantly easier to read than TeX’s, 
e.g., \frac{a + c}{d} , since in many cases, outermost parentheses are not needed, while 
TeX requires { }’s.  To force the display of an outermost parenthesis set, one encloses the 
set, in turn, within parentheses, which then become the outermost set.  For example, ((a + 
b))/c displays as 
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(a + c)
d   . 

A really neat feature of this notation is that the plain text is, in fact, a legitimate 
mathematical notation in its own right, so it is relatively easy to read. In MathML, this 
fraction reads as 
 

<mfrac> 
  <mrow> 

<mi>a</mi> 
<mo>+</mo> 
<mi>c</mi> 

  </mrow> 
  <mrow> 

<mi>d</mi> 
  </mrow> 
 </mfrac> 
 

Subscripts and superscripts are a bit trickier, but they’re still quite readable.  Spe-
cifically, we introduce a subscript by a subscript operator, which we display as the sub-
scripted down arrow ↓.  A simple subscript operand consists of the string of one or more 
characters with the General Categories Lx (alphabetic) and Nd (decimal digits), as well as 
the invisible comma.  For example, a pair of subscripts, such as δµν  is written as δ↓µν.   
Similarly, superscripts are introduced by a superscript operator, which we display as the 
superscripted up arrow ↑. So a↑b means ab.  

Compound subscripts and superscripts include expressions within parentheses, 
square brackets, and curly braces.  So δµ+ν  is written as δ↓(µ+ν). In addition it is worth-
while to treat two more operators, the comma and the period, in special ways.  Specifi-
cally, if a subscript operand is followed directly by a comma or a period that is, in turn, 
followed by whitespace, then the comma or period appears on line, i.e., is treated as the 
operator that terminates the subscript. However a comma or period followed by a non-
operator is treated as part of the subscript. This refinement obviates the need for many 
overriding parentheses, thereby yielding a more readable plain text. 

Another kind of compound subscript is a subscripted subscript, which works using 
right-to-left associativity, e.g., a↓b↓c means abc

.  Similarly a↑b↑c means abc. 
 Parentheses are needed for constructs such as a subscripted superscript like abc, 

which is given by a↑(b↓c). 
As an example of a slightly more complicated example, consider the expression 

W δ1ρ1σ2
3β     has the plain-text format W↑3β↓δ1ρ1σ2. In contrast, for TeX, one types 

 
 

$W^{3\beta}_{\delta_1\rho_1\sigma_2}$ , 
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which is hard to read.  The TeX version looks distinctly better using Unicode for the 
symbols, namely $W^{3β}_{δ_1ρ_1σ_2}$ or $W^{3β}_{δ1ρ1σ2}$, since Unicode has a 
full set of decimal subscripts and superscripts.  However the need to use the {}, not to 
mention the $’s, makes even the last of these harder to read than the plain-text version 
W↑3β↓δ1ρ1σ2. 

For the ratio 
α2

3

β2
3 + γ2

3  , 

 
the Unicode plain text reads α2

3//(β2
3 + γ2

3), while the standard TeX version reads as 
 

${\alpha^3_2 \over \beta^3_2 + \gamma^3_2}$· 
 
The Unicode plain text is a legitimate mathematical expression, while the TeX version 
bears no resemblance to a mathematical expression. 
    TeX becomes very cumbersome for longer equations such as 
 

W δ1ρ1σ2
3β     = U δ1ρ1

3β     + 
1

8π2  
⌡


⌠

α1

α2

dα2´ 








U δ1ρ1

2β   - α2'U 1β
ρ1σ2

 U 0β
ρ1σ2

 . 

 
The Unicode plain-text version of this reads as 
 
W↑β↓δ1ρ1σ2 = U↑3β↓δ1ρ1 + 1/8π2 ∫↓α1

↑α2 dα2' [(U↑2β↓δ1ρ1 - α2'U↑1β↓ρ1σ2)/U↑0β↓ρ1σ2] 
 
while the standard TeX version reads as 
 
${W^{3\beta}_{\delta_1\rho_1\sigma_2} 
 = U^{3\beta}_{\delta_1\rho_1} + {1 \over 8\pi^2} 
 \int_{\alpha_1}^{\alpha_2} d\alpha_2’ \left[ 
 {U^{2\beta}_{\delta_1\rho_1} - \alpha_2’ 
 U^{1\beta}_{\rho_1\sigma_2} \over 
 U^{0\beta}_{\rho_1\sigma_2}} \right] }$ . 
 
In a “Unicoded” TeX, it could read as 
 
${W^{3β}_{δ1ρ1σ2} = U^{3β}_{δ1ρ1} + {1 / 8π2} 
 ∫_{α1}^{α2} dα2' \left[{U^{2β}_{δ1ρ1} - α2'U^{1β}_{ρ1σ2} 
 / U^{0β}_{ρ1σ2}} \right] }$ , 
 
which is significantly easier to read than the ASCII TeX version, although still much 
harder to read than the Unicode plain-text version. 

Brackets [ ], braces { }, and parentheses ( ) represent themselves in the Unicode 
plain text, and a word processing system capable of displaying built-up formulas should 
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expand them to fit around what’s inside them. Here we use U+2032 for \prime and 
U+2044 for \over. 

Certain operators like brackets, braces, parentheses, superscript, subscript, integral, 
etc. have special meaning in this notation. To treat them as normal characters, we preceed 
them by the “literal operator”, for which the per cent sign % is handy.  So %[ is displayed 
as an ordinary left square bracket, with no attempt by the software to match a correspond-
ing right square bracket.  Table 5.1 lists operators that have special meanings. 

 

5.1 Recognizing Mathematical Expressions 
Unicode plain-text encoded mathematical expressions can be used “as is” for simple 

documentation purposes.  Use in more elegant documentation and in programming lan-
guages requires knowledge of the underlying mathematical structure.  This section de-
scribes some of the heuristics that can distill the structure out of the plain text. 

Many mathematical expressions identify themselves as mathematical, obviating the 
need to declare them explicitly as such.  One well-known TeX problem is TeX’s inability 
to detect expressions that are clearly mathematical, but that are not enclosed within $’s.  
If one leaves out a $ by mistake, one gets a slew of error messages because TeX interprets 
subsequent text in the wrong mode.   

An advantage of recognizing mathematical expressions without math-on/math-off 
syntax is that it is much more tolerant to user errors of this sort.  Resyncing is automatic, 
while in TeX one basically has to start up again from the omission in question.  Further-
more, this approach should be useful in an important related endeavor, namely in recog-
nizing and converting the mathematical literature that is not yet available in an object-
oriented machine-readable form, into that form. 

It is possible to use a number of heuristics for identifying mathematical expressions 
and treating them accordingly. These heuristics are not foolproof, but they lead to the 
most popular choices. Special commands discussed at the end of this section can be used 
to overrule these choices. Ultimately the approach could be used as an autoformat style 
wizard that tags expressions with a rich-text math style.  The user could then override 
cases that were tagged incorrectly.  A math style would connect in a straightforward way 
to appropriate MathML tags. 

 The basic idea is that math characters identify themselves as such and potentially 
identify their surrounding characters as math characters as well.  For example, the frac-
tion (U+2044) and ASCII slashes, symbols in the range U+2200 through U+22FF, the 
symbol combining marks (U+20D0 - U+20FF), and in general, Unicode characters with 
the mathematics property, identify the characters immediately surrounding them as parts 
of math expressions. 

If English letter mathematical variables are already given in one of the math alpha-
bets, they are considered parts of math expressions. If they are not, one can still have 
some recognition heuristics as well as the opportunity to italicize appropriate variables. 
Specifically ASCII letter pairs surrounded by whitespace are often mathematical expres-
sions, and as such should be italicized in print.  If a letter pair fails to appear in a list of 
common English and European two-letter words, it is treated as a mathematical expres-
sion and italicized. Many Unicode characters are not mathematical in nature and suggest 
that their neighbors are not parts of mathematical expressions. 
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Strings of characters containing no whitespace but containing one or more unambi-
guous mathematical characters are generally treated as mathematical expressions.  Cer-
tain two-, three-, and four-letter words inside such expressions should not be italicized.  
These include trigonometric function names like sin and cos, as well as ln, cosh, etc.  
Words or abbreviations, often used as subscripts (see the program in Sec. 5.3), also 
should not be italicized, even when they clearly appear inside mathematical expressions. 

Special cases will always be needed, such as in documenting the syntax itself.  The 
literal operator introduced earlier (%) causes the character that follows it to be treated as 
an ordinary character.  This allows the printing of characters without modification that by 
default are considered to be mathematical and thereby subject to a changed display.  
Similarly, mathematical expressions that the algorithms treat as ordinary text can be 
sandwiched between math-on and math-off symbols. For this purpose, it’s tempting to 
use Asian brackets such as the white lenticular brackets (U+3016 and U+3017), a 
matched pair that isn’t common in mathematical expressions. Such “overhead” symbols 
clutter up the text and hopefully will be rarely needed in Unicode plain text. This does 
complicate the preparation of technical documents and although one can get very good at 
it, it is not the most user-friendly way of doing things.  On the other hand, identifying the 
beginning and end of math expressions using $’s or use of extensive markup tags is not 
user friendly either. 
 

5.2 Minimal Operator Summary 
Operands in subscripts, superscripts, fractions, roots, boxes, etc. are defined in part 

in terms of operators and operator precedence.  While such notions are very familiar to 
mathematically oriented people, some of the symbols that we define as operators might 
surprise one at first.  Most notably, the space (ASCII 32) is an important operator in the 
plain-text encoding of mathematics.  A small but common list of operators  
 

Table 5.1 A list of common operators ordered by precedence 

FF CR \ 
(   [ { 

)  ]  }  | 
Space  "  .  ,  =  -  +   LF   Tab 

/  *  ×  ·  •  •   
 √ 

∫  Σ  Π 
↓ ↑ 

 
where Tab = U+0009, LF = U+000A, FF = U+000C, and CR = U+000D.  

As in arithmetic, operators have precedence, which streamlines the interpretation of 
operands.  The operators are grouped above in order of increasing precedence, with equal 
precedence values on the same line.  For example, in arithmetic, 3+1/2 = 3.5, not 2.  
Similarly the plain-text expression α + β/γ means 
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α + 
β
γ   not   

α + β
γ  . 

 
As in arithmetic, precedence can be overruled, so (α + β)/γ gives the latter. 

The following gives a list of the syntax for a variety of mathematical constructs. 
 
exp1/exp2 Create a built-up fraction with numerator exp1 and denominator exp2.  

Numerator and denominator expressions are terminated by operators 
such as /*])↑

↓· and blank (can be overruled by enclosing in parentheses).  
The “/” is given by U+2044. 

 
↑exp1 Superscript expression exp1.  The superscripts 0 - 9 + - ( ) exist as Unicode 

symbols.  Sub/superscripts expressions are terminated by /*])↑
↓· and 

blank. Sub/superscript operators associate right to left. 
 
↓exp1 Subscript expression exp1.  The subscripts 0 - 9 + - ( ) exist as Unicode sym-

bols. 
 
[exp1] Surround exp1 with built-up brackets.  Similarly for { } and ( ). 
 
[exp1]↑exp2 Surround exp1 with built-up brackets followed by superscripted exp2 

(moved up high enough).  Similarly for { } and ( ). 
 
√exp1 Square root of exp1. 
 
· Small raised dot that is not intended to print.  It is used to terminate an 

operand, such as in a subscript, superscript, numerator, or denominator, 
when other operators cannot be used for this purpose.  Similar raised 
dots like • and • also terminate operands, but they are intended to print. 

 
Σ↓ exp1

↑exp2 Summation from exp1 to exp2. ↓exp1 and ↑exp2 are optional. 
 
Π↓exp1

↑exp2 Product from exp1 to exp2. 
 
∫↓exp1

↑exp2 Integral from exp1 to exp2. 
 
exp1exp2 Align exp1 over exp2 (like fraction without bar). Useful for building up 

matrices as a set of columns. 
 

Diacritics are handled using Unicode combining marks (U+0300 - U+036F, U+20D0 - 
U+20FF).  Note that many more operators can be added to fill out the capabilities of the 
approach in representing mathematical expressions in Unicode plain (or almost plain) 
text. 
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5.3 Using Plain-Text Mathematics in Programming Languages 
In the middle 1950’s, the authors of FORTRAN named their computer language af-

ter FORmula TRANslation, but they only went half way.  Arithmetic expressions in For-
tran and other current high-level languages still do not look like mathematical formulas 
and considerable human coding effort is needed to translate formulas into their machine 
comprehensible counterparts.  For example, Fortran’s superscript a**k isn’t as readable 
as ak and Fortran’s subscript a(k) isn’t as readable as ak. Bertrand Russel once said that 
notation is a great teacher and that a perfect notation would be a substitute for thought.  
From this point of view, modern computer languages are badly lacking.  Specialized 
mathematical applications such Mathematica are substantially better in this regard. 

Using real mathematical expressions in computer programs would be far superior in 
terms of readability, reduced coding times, program maintenance, and streamlined docu-
mentation.  In studying computers we have been taught that this ideal is unattainable, and 
that one must be content with the arithmetic expression as it is or some other non-
mathematical notation such as TeX’s.  It is time to reexamine this premise.  Whereas true 
mathematical notation clearly used to be beyond the capabilities of machine recognition, 
we feel it no longer is. 

In general, mathematics has a very wide variety of notations, none of which look 
like the arithmetic expressions of programming languages.  Although ultimately it would 
be desirable to be able to teach computers how to understand all mathematical expres-
sions, we start with our Unicode plain-text format. 

In raw form, these expressions look very like traditional mathematical expressions.  
With use of the heuristics described above, they can be printed or displayed in traditional 
built-up form.  On disk, they can be stored in pure-ASCII program files accepted by stan-
dard compilers and symbolic manipulation programs like Derive, Mathematica, and Mac-
syma.  The translation between Unicode symbols and the ASCII names needed by ASCII-
based compilers and symbolic manipulation programs is carried out via table-lookup (on 
writing to disk) and hashing (on reading from disk) techniques. 

Hence formulas can be at once printable in manuscripts and computable, either nu-
merically or analytically. Note that this is a goal of MathML as well, but attained in a 
relatively complex way using specialized tools. The idea here is that regular program-
ming languages can have expressions containing standard arithmetic operations and spe-
cial characters, such as Greek, italics, script, and various mathematical symbols like the 
square root.  Two levels of implementation are envisaged: scalar and vector.  Scalar op-
erations can be performed on traditional compilers such as those for C and Fortran.  The 
scalar multiply operator is represented by a raised dot, a legitimate mathematical symbol, 
instead of the asterisk.  To keep auxiliary code to a minimum, the vector implementation 
requires an object-oriented language such as C++. 

The advantages of using the Unicode plain text are at least threefold:  
1) many formulas in document files can be programmed simply by copying them 

into a program file and inserting appropriate multiplication dots.  This dramati-
cally reduces coding time and errors.   

2) The use of the same notation in programs and the associated journal articles and 
books leads to an unprecedented level of self documentation.  In fact, since 
many programmers document their programs poorly or not at all, this enlight-
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ened choice of notation can immediately change nearly useless or nonexistent 
documentation into excellent documentation.   

3) In addition to providing useful tools for the present, these proposed initial steps 
should help us figure out how to accomplish the ultimate goal of teaching com-
puters to understand and use arbitrary mathematical expressions.  Such machine 
comprehension would greatly facilitate future computations as well as the con-
version of the existing paper literature and Pen-Windows input into machine us-
able form. 

The concept is portable to any environment that supports a large character set, pref-
erably Unicode, and it takes advantage of the fact that high-level languages like C and 
Fortran accept an “escape” character (“_” and “$”, respectively) that can be used to ac-
cess extended symbol sets in a fashion similar to TeX.  In addition, the built-in C pre-
processor allows niceties such as aliasing the asterisk with a raised dot, which is a legiti-
mate mathematical symbol for multiplication.  The Java and C# languages allow direct 
use of Unicode variable names, which is a major step in the right direction.  Compatibil-
ity with unenlightened ASCII-only compilers can be done via an ASCII representation of 
Unicode characters. 

 

5.4 Comparison of Programming Notations 
To get an idea as to the differences between the standard way of programming 

mathematical formulas and the proposed way, compare the following versions of a C++ 
routine entitled IHBMWM (inhomogeneously broadened multiwave mixing) 
 
void IHBMWM(void) 
{ 
 gammap = gamma*sqrt(1 + I2); 
 upsilon = cmplx(gamma+gamma1, Delta); 
 alphainc = alpha0*(1-(gamma*gamma*I2/gammap)/(gammap + upsilon)); 
 
 if (!gamma1 && fabs(Delta*T1) < 0.01) 
  alphacoh = -half*alpha0*I2*pow(gamma/gammap, 3); 
 else 

{ 
  Gamma = 1/T1 + gamma1; 
  I2sF = (I2/T1)/cmplx(Gamma, Delta); 
  betap2 = upsilon*(upsilon + gamma*I2sF); 
  beta = sqrt(betap2); 
  alphacoh = 0.5*gamma*alpha0*(I2sF*(gamma + upsilon) 
    /(gammap*gammap - betap2)) 
    *((1+gamma/beta)*(beta - upsilon)/(beta + upsilon) 
    - (1+gamma/gammap)*(gammap - upsilon)/ 
    (gammap + upsilon)); 
 } 
 alpha1 = alphainc + alphacoh; 
} 
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void IHBMWM(void) 
{ 
 γ' = γ•√(1 + I2); 
 υ = γ + γ1 + i•∆; 
 αinc = α0•(1 - (γ•γ•I2/γ')/(γ' + υ)); 
 if (!γ1 || fabs(∆•T1) < 0.01) 

αcoh = -.5•α0•I2•pow(γ/γ', 3); 
 else 

{ 
  Γ = 1/T1 + γ1; 
  I2F = (I2/T1)/(Γ + i•∆); 

β2 = υ•(υ + γ•I2F); 
  β = β2 ; 
  αcoh = .5•γ•α0•(I2F.(γ + υ)/(γ'•γ' - β2)) 
   ×((1+γ/β)•(β - υ)/(β + υ) - (1+γ/γ')•(γ' - υ)/(γ' + υ)); 
 } 
 α1 = αinc + αcoh ; 
} 
 
[TBD: Discuss the interaction of C operators like || with math operators] 
 
The above function runs fine with current C++ compilers, but C++ does impose some 
serious restrictions based on its limited operator table.  For example, vectors can be mul-
tiplied together using dot, cross, and outer products, but there’s only one asterisk to over-
load in C++.  In built-up form, the function looks even more like mathematics, namely 
 
void IHBMWM(void) 
{ 
 γ' = γ• 1 + I2 ; 
 υ = γ + γ1 + i•∆; 

 αinc = α0•
1 - (γ•γ•I2/γ')

γ' + υ   ; 

 if (!γ1 || fabs(∆•T1) < 0.01) 
αcoh = -.5•α0•I2•pow(γ/γ', 3); 

 else 
{ 

  Γ = 1/T1 + γ1; 

  I2F = 
I2/T1

Γ + i•∆  ; 

β2 = υ•(υ + γ•I2F); 
  β = β2 ; 

  αcoh = .5•γ•α0•
I2F.(γ + υ)
γ'•γ' - β2  ×















1+

γ
β •

β - υ
β + υ  - 







1+

γ
γ' •

γ' - υ
γ' + υ  ; 

 } 
 α1 = αinc + αcoh ; 
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} 
 

The ability to use the second and third versions of the function was built into the PS 
Technical Word Processor circa 1988.  With it we already came much closer to true for-
mula translation on input, and the output is displayed in standard mathematical notation.  
Lines of code can be previewed in built-up format, complete with fraction bars, square 
roots, and large parentheses.  To code a formula, one copies (cut and paste) it from a 
technical document into a program file, insert appropriate raised dots for multiplication 
and compile.  No change of variable names is needed.  Call that 70% of true formula 
translation!  In this way, the C++ function on the preceding page compiles without modi-
fication.  The code appears nearly the same as the formulas in print [see Chaps. 5 and 8 of 
Meystre and Sargent]. 

 Open issues and future. Questions remain, such as to whether subscript expres-
sions in the Unicode plain text should be treated as part of program-variable names, or 
whether they should be translated to subscript expressions in the target programming lan-
guage.  Similarly, it would be straightforward to automatically insert an asterisk (indicat-
ing multiplication) between adjacent symbols, rather than have the user do it.  However 
here there is a major difference between mathematics and computation: symbolically, 
multiplication is infinitely precise and infinitely fast, while numerically, it takes time and 
is restricted to a binary subset of the rationals with very limited (although often adequate) 
precision.  Consequently for the moment, at least, it seems wiser to consider adjacent 
symbols as part of a single variable name, just as adjacent ASCII letters are part of a vari-
able name in current programming languages.  Perhaps intelligent algorithms will be de-
veloped that decide when multiplication should be performed and insert the asterisks op-
timally. 

Export to TeX is similar to that to programming languages, but has a modified set of 
requirements.  With current programs, comments are distilled out with distinct syntax.  
This same syntax can be used in the Unicode plain-text encoding, although it is interest-
ing to think about submitting a mathematical document to a preprocessor that can recog-
nize and separate out programs for a compiler.   In this connection, compiler comment 
syntax is not particularly pretty; ruled boxes around comments and vertical dividing lines 
between code and comments are noticeably more readable.  So some refinement of the 
ways that comments are handled would be very desirable.  For example, it would be nice 
to have a vertical window-pane facility with synchronous window-pane scrolling and the 
ability to display C code in the left pane and the corresponding // comments in the right 
pane.  Then if one wants to see the comments, one widens the right pane accordingly.  On 
the other hand, to view lines with many characters of code, the // comments needn’t get in 
the way.  Such a dual-pane facility would also be great for working with assembly-
language programs. 

Export to TeX. With TeX, the text surrounding the mathematics is part and parcel 
of the technical document, and TeX needs its $’s to distinguish the two.  These can be in-
cluded in the plain text, but we have repeatedly pointed out how ugly this solution is.  
The heuristics described above go a long way in determining what is mathematics and 
what is natural language.  Accordingly, the export method consists of identifying the 
mathematical expressions and enclosing them in $’s.  The special symbols are translated 
to and from the standard TeX ASCII names via table lookup and hashing, as for the pro-
gram translations.  Better yet, TeX should be recompiled to use Unicode. 
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5.5 Conclusions 
We have shown how with a few additions to Unicode, mathematical expressions 

can usually be represented with a readable Unicode plain-text format.  The text consists 
of combinations of operators and operands.  A simple operand consists of a span of non-
operators, a definition that dramatically reduces the number of parenthesis-override pairs 
and thereby increases the readability of the plain text.  The only disadvantage to this ap-
proach versus TeX’s ubiquitous { } pairs is that the user needs to know what characters 
are operators.  To reveal the operators, operator-aware editors could be instructed to dis-
play operators with a different color or some other attribute.  To simplify the notation, 
operators have precedence values that control the association of operands with operators 
unless overruled by parentheses.  Heuristics can be applied to the Unicode plain text to 
recognize what parts of a document are mathematical expressions.  This allows the Uni-
code plain text to be used in a variety of ways, including in technical document prepara-
tion, symbolic manipulation, and numerical computation. 

The heuristics given for recognizing mathematical expressions work well, but they 
are not infallible.  An effective use of the heuristics would be as an autoformatting wizard 
that delimits what it thinks is mathematics with mathematics on/off codes.  The user 
could then overrule incorrect choices.  Once marked unequivocally as mathematics (an 
alternative to TeX’s $’s), export to MathML, compilers, and other consumers of mathe-
matical expressions is straightforward. We have a workable plain-text encoding of 
mathematics that looks very much like mathematics even with the most limited display 
capabilities.  Appropriate display software can make it look like the real thing.  
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7 Modifications 
This is the first draft version.  
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