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Summary 

Starting with version 3.2, Unicode includes virtually all of the standard 

characters used in mathematics. This set supports a variety of math appli-

cations on computers, including document presentation languages like 

TeX, math markup languages like MathML, computer algebra languages 

like OpenMath, internal representations of mathematics in systems like 

Mathematica and MathCAD, computer programs, and plain text. This 

technical report describes the Unicode mathematics character groups and 

gives some of their default math properties.  
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1 Overview 
This technical report starts with a discussion of the mathematics character repertoire in-
corporating the relevant block descriptions of The Unicode Standard [TUS]. Associated 
character properties are discussed next, including a number of properties that are not yet 
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part of the Unicode Standard. Character classifications by usage, by typography, and by 
precedence are given. Some implementation guidelines for input methods and use of Uni-
code math characters in programming languages are presented next. The final section 
describes how many mathematical expressions can be rendered using a plain—or at least 
nearly plain—text format. Mathematical plain text can be handy for down-level text cop-
ies, e.g., in email, math input methods, computer programs, and in-line math display. 
Most mathematical expressions up through calculus can be represented unambiguously in 
Unicode plain text. Note that the discussion is only intended to show how mathematical 
plain text might be useful. It is not intended to be a complete specification or to be used 
for general information interchange at this stage in its development. 
 

2 Mathematical Character Repertoire 
Unicode 3.2 provides a quite complete set of standard math characters to support  publi-
cation of mathematics on and off the web. Specifically, Unicode 3.1 introduced 996 new 
alphanumeric symbols and Unicode 3.2 introduces 591 new symbols, in addition to the 
340 math specific symbols already encoded in Unicode 3.0 for a total of 1927 mathe-
matical symbols. This repertoire is the result of input from many sources, notably from 
the STIX project, and enables the display of virtually all standard mathematical symbols. 
Nevertheless this work must needs be remain incomplete; mathematicians and other sci-
entists are continually inventing new mathematical symbols and the plan is to add them 
as they become accepted in the scientific communities.  
MathML is a major beneficiary of the increased repertoire for mathematical symbols and 
the working group lobbied in favor of the inclusion of the new characters. In addition, the 
new characters lend themselves to a useful plain text encoding of mathematics (see Sec. 
4) that is much more compact than MathML or TeX. 
 

2.1 Mathematical Alphanumeric Symbols Block  

The Mathematical Alphanumeric Symbols block (U+1D400–U+1D7FF) contains a large 
extension of letterlike symbols used in mathematical notation, typically for variables. The 
characters in this block are intended for use only in mathematical or technical notation; 
they are not intended for use in non-technical text. When used with markup languages, 
for example with MathML Mathematical Markup Language (MathML™) the characters 
are expected to be used directly, instead of indirectly via entity references or by compos-
ing them from base letters and style markup. 
Words Used as Variables. In some specialties, whole words are used as variables, not just 
single letters. For these cases, style markup is preferred because in ordinary mathematical 
notation the juxtaposition of variables generally implies multiplication, not word forma-
tion as in ordinary text. Markup not only provides the necessary scoping in these cases, it 
also allows the use of a more extended alphabet. 

2.2 Mathematical Alphabets 

Basic Set of Alphanumeric Characters. Mathematical notation uses a basic set of 
mathematical alphanumeric characters which consists of: 
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• the set of basic Latin digits (0 - 9) (U+0030..U+0039)  
• the set of basic upper- and lowercase Latin letters (a - z, A - Z)  

• the uppercase Greek letters Α - Ω (U+0391..U+03A9), plus the nabla ∇ (U+2207) 
and the variant of theta Θ given by U+03F4  

• the lowercase Greek letters α - ω (U+03B1..U+03C9), plus the partial differential 
sign ∂ (U+2202) and the six glyph variants of ε, θ, κ, φ, ρ, and π, given by 
U+03F5, U+03D1, U+03F0, U+03D5, U+03F1, and U+03D6. 

Only unaccented forms of the letters are used for mathematical notation, because general 
accents such as the acute accent would interfere with common mathematical diacritics. 
Examples of common mathematical diacritics that can interfere with general accents are 
the circumflex, macron, or the single or double dot above, the latter two of which are 
used in physics to denote derivatives with respect to the time variable. Mathematical 
symbols with diacritics are always represented by combining character sequences, except 
as required by normalization. See Unicode Standard Annex #15, Unicode Normalization 
Forms for more information. 
For some characters in the basic set of Greek characters, two variants of the same charac-
ter are included. This is because they can appear in the same mathematical document with 
different meanings, even though they would have the same meaning in Greek text. 
Additional Characters. In addition to this basic set, mathematical notation also uses the 
four Hebrew-derived characters (U+2135..U+2138). Occasional uses of other alphabetic 
and numeric characters are known. Examples include U+0428 CYRILLIC CAPITAL 
LETTER SHA, U+306E HIRAGANA LETTER NO, and Eastern Arabic-Indic digits 
(U+06F0..U+06F9). However, these characters are used in only the basic form. 

Semantic Distinctions. Mathematics has need for a number of Latin and Greek alphabets 
that on first thought appear to be mere font variations of one another. For example the 
letter H can appear as plain or upright (H), bold (H), italic (H), and script H. However in 
any given document, these characters have distinct, and usually unrelated mathematical 
semantics. For example, a normal H represents a different variable from a bold H, etc. If 
these attributes are dropped in plain text, the distinctions are lost and the meaning of the 
text is altered. Without the distinctions, the well-known Hamiltonian formula 

 

 H = ∫dτ(εE² + µH²), 
 
turns into the integral equation in the variable H 
 

H = ∫dτ(εE² + µH²). 
 

By encoding a separate set of alphabets, it is possible to preserve such distinctions in 
plain text. 
Mathematical Alphabets. The alphanumeric symbols encountered in mathematics are 
given in the following table: 
 

Math style Characters from basic set Plane 
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plain (upright, serifed) Latin, Greek and digits BMP 

bold Latin, Greek and digits Plane 1 

italic Latin and Greek Plane 1* 

bold italic Latin and Greek Plane 1 

script (calligraphic) Latin Plane 1* 
bold script (calligraphic) Latin Plane 1 

fraktur Latin Plane 1* 

bold fraktur Latin Plane 1 

double-struck Latin and digits Plane 1* 

sans-serif Latin and digits Plane 1 

sans-serif bold Latin, Greek and digits Plane 1 
sans-serif italic Latin Plane 1 

sans-serif bold italic Latin and Greek Plane 1 

monospace Latin and digits Plane 1 

 
* Some of these alphabets have characters in the BMP as noted in the following section. 

 
The plain letters have been unified with the existing characters in the Basic Latin and 
Greek blocks. There are 25 double-struck, italic, Fraktur and script characters that already 
exist in the Letterlike Symbols block (U+2100 – U+214F). These are explicitly unified 
with the characters in this block and corresponding holes have been left in the mathe-
matical alphabets. 

Compatibility Decompositions. All mathematical alphanumeric symbols have 
compatibility decompositions to the base Latin and Greek letters -- folding away such 
distinctions, however, is usually not desirable as it loses the semantic distinctions for 
which these characters where encoded. See Unicode Standard Annex #15, Unicode 
Normalization Forms for more information. 

 

2.3 Fonts Used for Mathematical Alphabets 

Mathematicians place strict requirements on the specific fonts being used to represent 
mathematical variables. Readers of a mathematical text need to be able to distinguish sin-
gle letter variables from each other, even when they do not appear in close proximity. 
They must be able to recognize the letter itself, whether it is part of the text or is a 
mathematical variable, and lastly which mathematical alphabet it is from. 
Fraktur. The black letter style is often referred to as Fraktur or Gothic in various 
sources. Technically, Fraktur and Gothic typefaces are distinct designs from black letter, 
but any of several font styles similar in appearance to the forms shown in the charts can 
be used. 
Math italics. Mathematical variables are most commonly set in a form of italics, but not 
all italic fonts can be used successfully. In common text fonts, the italic letter v and 
Greek letter nu are not very distinct. A rounded italic letter v is therefore preferred in a 
mathematical font. There are other characters, which sometimes have similar shapes and 
require special attention to avoid ambiguity. Examples are shown in the table below. 
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Theorems are commonly printed in a text italic font. A font intended for mathematical 
variables should support clear visual distinctions so that variables can be reliably sepa-
rated from italic text in a theorem. Some languages have common single letter words 
(English a, Scandinavian i, etc.), which can otherwise be easily confused with common 
variables. 

Hard-to-distinguish Letters. Not all sans-serif fonts allow an easy distinction between 
lowercase l, and uppercase I and not all monospaced (monowidth) fonts allow a distinc-
tion between the letter l and the digit 1. Such fonts are not usable for mathematics. In 
Fraktur, the letters I and J in particular must be made distinguishable. Overburdened 
Black Letter forms like I and J are inappropriate. Similarly, the digit zero must be dis-
tinct from the uppercase letter O for all mathematical alphanumeric sets. Some characters 
are so similar that even mathematical fonts do not attempt to provide distinguished 
glyphs for them, e.g. uppercase A and uppercase Alpha (A). Their use is normally 
avoided in mathematical notation unless no confusion is possible in a given context,  

Font Support for Combining Diacritics. Mathematical equations require that characters 
be combined with diacritics (dots, tilde, circumflex, or arrows above are common), as 
well as followed or preceded by super- or subscripted letters or numbers. This require-
ment leads to designs for italic styles that are less inclined, and script styles that have 
smaller overhangs and less slant than equivalent styles commonly used for text such as 
wedding invitations. 

Typestyle for Script Characters. In some instances, a deliberate unification with a non-
mathematical symbol has been undertaken; for example, U+2133 is unified with the pre-
1949 symbol for the German currency unit Mark and U+2113 is unified with the com-
mon non-SI symbol for the liter. This unification restricts the range of glyphs that can be 
used for this character in the charts. Therefore the font used for the reference glyphs in 
the code charts uses a simplified ‘English Script’ style, as per recommendation by the 
American Mathematical Society. For consistency, other script characters in the Letterlike 
Symbols block are now shown in the same typestyle. 
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Double-struck Characters. The double-struck glyphs shown in earlier editions of the 
standard attempted to match the design used for all the other Latin characters in the stan-
dard, which is based on Times. The current set of fonts was prepared in consultation with 
the American Mathematical Society and leading mathematical publishers, and shows 
much simpler forms that are derived from the forms written on a blackboard. However, 
both serifed and non-serifed forms can be used in mathematical texts, and inline fonts are 
found in works published by certain publishers. There is no intention to support such sty-
listic preference via character encoding, therefore only one set of doublestruck mathe-
matical alphanumeric symbols have been encoded. 

[ED: this marks the end of the material included in Unicode 3.1] 

2.4 Locating Mathematical Characters 

Mathematical characters can be located by looking in the blocks that contain such charac-
ters or by checking the Unicode MATH property, which is assigned to characters that 
naturally appear in mathematical contexts (see Sec. “Mathematical Character Proper-
ties”). Mathematical characters can be found in the following blocks: 

 

Table 2.1 Locations of Mathematical Characters 

Block Name Range Characters 

Basic Latin U+0021—U+007E Variables, operators, digits* 

Greek U+0370—U+03FF Variables* 

General Punctuation U+2000—U+206F Invisible operators* 

Letterlike Symbols U+2100—U+214F Variables* 

Arrows U+2190—U+21FF Arrows, arrow-like operators 

Mathematical Operators U+2200—U+22FF Operators 

Miscellaneous Technical Symbols U+2300—U+23FF Braces, operators* 

Geometrical Shapes U+25A0—U+25FF Symbols 

Misc. Mathematical Symbols –A U+27C0—U+27EF Symbols and operators 

Supplemental Arrows-A U+27F0—U+27FF Arrows, arrow-like operators 

Supplemental Arrows-B U+2900—U+297F Arrows, arrow-like operators 

Misc. Mathematical Symbols –B U+2980—U+29FF Braces, symbols 

Suppl. Mathematical Operators U+2A00—U+2AFF Operators 

Mathematical Alphanumeric Symbols U+1D400—U+1D7FF Variables and digits 

Other blocks … Characters for occasional use 

*This block contains nonmathematical characters as well. 
 

2.5 Duplicated Characters 

Some Greek letters are re-encoded as technical symbols. These U+00B5 µ MICRO SIGN, 
U+2126 Ω OHM SIGN, and several characters among the APL functional symbols in the 
Miscellaneous Technical block. U+03A9 GREEK LETTER CAPITAL OMEGA is the canonical 
equivalent of U+2126 and its use is preferred. Latin letters duplicated include 212A KEL-
VIN SIGN and U+212B ANGSTROM SIGN. Like the case for the ohm sign the corresponding 
regular Latin letters are the canonical equivalents and therefore their use is preferred. 
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The left and right angle brackets at 2328 and 2329 have long been canonically equivalent 
with the CJK punctuation characters at 3008 and 3009, which implies that the use of the 
latter code points is preferred and that the characters are ‘wide’ characters. See Unicode 
Standard Annex #11, East Asian Width. Unicode 3.2 adds two new angle bracket charac-
ters that are unequivocally intended for mathematical use. 

2.6 Accented Characters 

Mathematical characters are often enhanced via use of combining marks in the ranges 
U+0300 – U+036F and the combining marks for symbols in the range U+20D0 – 
U+20FF. These characters follow the base characters as in nonmathematical Unicode 
text. This section discusses these characters and preferred ways of representing accented 
characters in mathematical expressions. If a span of characters is enhanced by a combin-
ing mark, e.g., a tilde over AB, typically some kind of higher-level markup is needed as is 
done in MathML. Unicode does include some combining marks that are designed to be 
used for pairs of characters, e.g., U+0360 through U+0362. However, their use for 
mathematical text is not encouraged.  
For some Mathematical characters there are multiple ways of the character: as precom-
posed or a as sequence of base character and combining mark. It would be nice to have a 
single way to represent any given character, since this would simplify recognizing the 
character in searches and other manipulations. Selecting a unique representation among 
multiple equivalent representations is called normalization. Unicode Technical Report 15 
discusses the subject in detail, however, due to requirements of non-mathematical soft-
ware, the normalization forms presented there are not ideal from the perspective of 
mathematics. 
Ideally, on always uses the shortest form of a math operator symbol wherever possible. 
So U+2260 should be used for the not equal sign instead of the combining sequence 
U+003D U+0338. This rule concurs with Normalization Form C (NFC) used on the web. 
If a negated operator is needed that does not have a precomposed form, the character 
U+0338 COMBINING LONG SOLIDUS OVERLAY can be used to indicate negation. 
On the other hand, for accented alphabetic characters used as variables, ideally only de-
composed sequences are used since there are no precomposed math alphanumerical sym-
bols.  
Mathematics uses a multitude of combining marks that greatly exceeds the predefined 
composed characters in Unicode. Accordingly, it is better to have the math display facil-
ity handle all of these cases uniformly to give a consistent look between characters that 
happen to have a fully composed Unicode character and those that do not. The combining 
character sequences also typically have semantics as a group, so it is handy to be able to 
manipulate and search for them individually without having to have special tables to de-
compose characters for this purpose. Note that this approach does not concur with Nor-
malization Form C for the upright alphabetic characters (ASCII letters). To facilitate in-
terchange on the Web, accented characters should conform to NFC when interchanged. 
However, to achieve consistent results, a mathematical display system should transiently 
decompose such letters when used in mathematical expressions and use a single algo-
rithm to place embellishments. 
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2.7 Operators 

The Unicode blocks U+2200 – U+22FF and U+2A00 – U+2AFF contain many mathe-
matical operators, relations, geometric symbols and other symbols with special usages 
confined largely to mathematical contexts. In addition to the characters in these blocks, 
mathematical operators are also found in the Basic Latin (ASCII) and Latin-1 Supple-
ment Blocks. A few of the symbols from the Miscellaneous Technical block and charac-
ters from General Punctuation are also used in mathematical notation. 
Mathematical operators often have more than one meaning. Therefore the encoding of 
these blocks is intentionally rather shape based, with numerous instances in which several 
semantic values can be attributed to the same Unicode value. For example, U+2218 2218 

◦ RING OPERATOR may be the equivalent of white small circle or composite function or apl 
jot. The Unicode Standard does not attempt to distinguish all possible semantic values 
that may be applied to mathematical operators or relational symbols. 
The Standard does include many characters that appear to be quite similar to one another, 
but that may well convey different meaning in a given context. On the other hand, 
mathematical operators, and especially relation symbols, may appear in various stan-
dards, handbooks, and fonts with a large number of purely graphical variants. Where 
variants were recognizable as such from the sources, they were not encoded separately. 
For relation symbols, the choice of a vertical or forward-slanting stroke typically seems 
to be an aesthetic one, but both slants might appear in a given context. However, a back-
slanted stroke has almost always a distinct meaning compared to the forward-slanted 
stroke. See Section 13.xx “Variation Selectors” for more information on some particular 
variants. 

Unifications. Mathematical operators such as implies � and if and only if ↔ have been 
unified with the corresponding arrows (U+21D2 RIGHTWARDS DOUBLE ARROW and U+2194 
LEFT RIGHT ARROW, respectively) in the Arrows block. 
 The operator U+2208 element of is occasionally rendered with a taller shape than 
shown in the code charts. Mathematical handbooks and standards consulted treat these 
characters as variants of the same glyph. U+220A small element of is a distinctively 
small version of the element of that originates in mathematical pi fonts. 
The operators U+226B much greater-than and U+226A much less-than are some-
times rendered in a nested shape. Because no semantic distinction applies, the Unicode 
Standard provides a single encoding for each operator. 
A large class of unifications applies to variants of relation symbols involving equality, 
similarity, and/or negation. Variants involving one- or two-barred equal signs, one- or 
two-tilde similarity signs, and vertical or slanted negation slashes and negation slashes of 
different lengths are not separately encoded. Thus, for example, U+2288 neither a sub-
set of nor equal to, is the archetype for at least six different glyph variants noted in 
various collections. 
In two instances, essentially stylistic variants are separately encoded: U+2265 greater- 
than or equal to is distinguished from U+2267 greater-than over equal to; the same dis-
tinction applies to U+2264 less-than or equal to and U+2266 less-than over equal to. This 
exception to the general rule regarding variation results from requirements for character 
mapping to some Asian standards that distinguish the two forms. 
Several mathematical operators derived from Greek characters have been given separate 
encodings since they are used differently than the corresponding letters. These operators 
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may occasionally occur in context with Greek-letter variables. They include U+2206 ∆ 
INCREMENT, U+220F ∏ N-ARY PRODUCT, and U+2211 ∑ N-ARY SUMMATION. The latter two are 
large operators that take limits. Some typographical aspects of operators are discussed in 
Section 3.2 “Classification by Typographical Behavior”. For example, the n-ary operators 
are distinguished from letter variables by their larger size and the fact that they take limit 
expressions. 
The unary and binary minus sign is preferably represented by U+2212 MINUS SIGN rather 
than by U+002D HYPHEN-MINUS, both because the former is unambiguous and because it is 
rendered with a more desirable length. (For a complete list of dashes in the Unicode 
Standard, see Table 6-2 in TUS). U+22EE – U+22F1 are a set of ellipses used in matrix 
notation. 
Miscellaneous Symbols U+2212 – minus sign is a mathematical operator, to be distin-
guished from the ASCII-derived U+002D - hyphen-minus, which may look the same as a 
minus sign, or may be shorter in length. (For a complete list of dashes in the Unicode 
Standard, see Table 6-2.) U+22EE..U+22F1 are a set of ellipses used in matrix notation. 

2.8 Superscripts and Subscripts 

The Unicode block U+2070 – U+209F plus U+00B2, U+00B3, and U+00B9 contain se-
quences of superscript and subscript digits and punctuation that can be useful in mathe-
matics. If they are used, it is recommended that they be displayed with the same font size 
as other subscripts and superscripts at the corresponding nested script level. For example 

in the Unicode plain text approach of Sec. 4, a² and a↑2 should be displayed the same 
way when built up. These subscript/superscript characters are not used in MathML and 
TeX and their use with XML documents is discouraged, see Unicode Technical Reports 
#20, “Unicode and XML”. 

2.9 Arrows 

Arrows are used for a variety of purposes in mathematics and elsewhere, such as to imply 
directional relation, to show logical derivation or implication, and to represent the cursor 
control keys. Accordingly Unicode includes a fairly extensive set of arrows (U+2190 – 
U+21FF and U+2900 – U+297F), many of which appear in mathematics. It does not at-
tempt to encode every possible stylistic variant of arrows separately, especially where 
their use is mainly decorative. For most arrow variants, the Unicode Standard provides 
encodings in the two horizontal directions, often in the four cardinal directions. For the 
single and double arrows, the Unicode Standard provides encodings in eight directions. 
Unifications Arrows expressing mathematical relations have been encoded in the arrows 
block as well as in Supplemental Arrows-A and Supplemental Arrows-B. An example is 

U+21D2 _ rightwards double arrow, which may be used to denote implies. Where 
available, such usage information is indicated in the annotations to individual characters 
in Chapter 14, Code Charts. 

2.10 Geometrical Shapes 

The basic geometric shapes (circle, square, triangle, diamond, and lozenge) are used for a 
variety of purposes in mathematical texts. Because their shapes are distinct and they are 
easily available in multiple sizes from a variety of widely available fonts, they are also 
often used in an ad-hoc manner.  



11 
 

Ideal sizes. Mathematical usage requires at least four distinct sizes of simple shapes, and 
sometimes more. The size gradation must allow each size to be recognized, even when it 
occurs in isolation. In other words shapes of the same size should ideally have roughly 
the same visual “impact ” as opposed to same nominal height or width. For mathematical 
usage simple shapes ideally share a common center. The following diagram shows which 
size relationship across shapes of the same nominal size is considered ideal.�

 
Please note that neither the current set of glyphs in the standard nor the glyphs from many 
commonly available non-mathematical fonts show this kind of size relation. 
Actual sizes. The sizes of existing characters and their names are not always consistent. 
For mathematical usage, therefore, the MEDIUM SMALL SQUARE should be used to-
gether with the MEDIUM size of the other basic shapes, and correspondingly for the 
other sizes.(The basic shapes from the Zapf Dingbats font match the unmarked size for 
triangle, diamond and circle and the MEDIUM size for the square.) To achieve the cor-
rect size relation, mathematical fonts may need to deviate in minor amounts from the 
sizes shown in the character charts. [TBD: summary picture]  
Sizes of derived shapes. Circled and squared operators and similar derived shapes are 
more constrained in their usage than 'plain' geometric shapes. They tend to occur in two 
generic sizes based on function: a smaller size for operators and large size for n-ary op-
erators. 
Positioning. For a mathematical font, the centerline should go through the middle of a 
parenthesis, which should go from bottom of descender to top of ascender. This is the 
same level as the minus or the middle of the plus and equal signs. For correct positioning, 
the glyph will descend below the baseline for the larger sizes of the basic shapes as in the 
following schematic diagram: 

 
The standard triangles used for mathematics are also center aligned. This is different from 
the positioning for the reference glyphs of existing characters shown in the charts. 
Mathematical fonts may need to deviate in positioning of these triangles. 

 

2.11 Other Symbols 

Other symbols of use in mathematics are contained in the Miscellaneous Technical block 
(U+2300–U+23FF), the Geometric Shapes block (U+25A0–U+25FF), the Miscellaneous 
Symbols block (U+2600–U+267F), and the General Punctuation block (U+2000–
U+206F).  
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Generally any easily recognized and distinct symbol is fair game for mathematicians 
faced with the need of creating notations for new fields of mathematics. For example, the 

card suits ♥,♠, etc. can be found as operators as well as subscripts. 

2.12 Symbol Pieces 

Fences are ordinarily sized to the content that they enclose. However, in creating a large 
fence, the glyph is not scaled proportionally, in particular the displayed stem weights 
must remain compatible with the accompanying smaller characters. Thus, simple scaling 
of font outlines cannot be used to create tall brackets. Instead, a common technique is to 
build up the symbol from pieces.  In particular, the characters U+239B through U+23AD 
Miscellaneous Technical block contains a set of pieces for building up large versions of 

the fences (, ), [, ], {,  and }, and of the large operators ∑, and ∫. These brace and operator 
pieces are not used in stored mathematical text, but are often used in the data stream cre-
ated by display and print drivers. Some of these symbol pieces also occur in legacy char-
acter sets. 
The following table shows which pieces are intended to be used together for what sym-
bol. 
 

 2-row 3-row 5-row 
Summation 23B2, 23B3   
Integral 2320, 2321 2320, 23AE, 2321 2320, 3×23AE, 2321 
Left Parenthesis 239B, 239D 239B, 239D 239B, 3×239C, 239D 
Right Parenthesis 239E, 23A0 239E, 239F, 23A0 239E, 3×239F, 23A0 
Left Bracket 23A1, 23A3 23A1, 23A2, 23A4 23A1, 3×23A2, 23A3 
Right Bracket 23A4, 23A6 23A4, 23A5, 23A6 23A4, 3×23A5, 23A6 
Left Brace 23B0, 23B1 23A7, 23A8, 2389 23A7, 23AA, 23A8, 23AA, 

2389 
Right Brace 23B1, 23B0 23AB, 23AC, 

23AD 
23AB, 23AA, 23AC, 
23AA, 23AD 

Table 2.2 Use of symbol pieces 

 
For example, an instance of U+239B can be positioned relative to instances of U+239C 
and U+2390 to form an extra-tall (three or more line) left-parenthesis. The center sections 
encoded here are meant to be used only with the top and bottom pieces encoded adjacent 
to them, since the segments are usually graphically constructed within the fonts so that 
they match perfectly when positioned at the same x coordinates. 
 

2.13  Invisible Operators 

In mathematics some operators or punctuation are often implied, but not displayed. 
U+2063 INVISIBLE SEPARATOR or invisible comma is intended for use in index expres-
sions and other mathematical notation where two adjacent variables form a list and are 
not implicitly multiplied. In mathematical notation, commas are not always explicitly 
present, but need to be indicated for symbolic calculation software to help it disambiguate 
a sequence from a multiplication. For example, the double ij subscript in the variable aij 
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means ai, j, i.e., the i and j are separate indices and not a single variable with the name ij 
or even the product of i and j. Accordingly to represent the implied list separation in the 
subscript ij one can insert a nondisplaying invisible separator between the i and the j. In 
addition, use of the invisible comma would hint to a math layout program to typeset a 
small space between the variables. 
Similarly an expression like mc2 implies that the mass m multiplies the square of the 
speed c. To represent the implied multiplication in mc2, one inserts a nondisplaying 
U+2061 INVISIBLE TIMES between the m and the c. A related case is the use of U+2062 
FUNCTION APPLICATION for an implied function dependence as in f(x + y). To indicate that 
this is the function f of the quantity x + y and not the expression fx + fy, one can insert the 
nondisplaying function application symbol between the f and the left parenthesis. 
Another example is the expression f 

i j(cos(ab)), which means the same as f
 

i,j(cos(a×b)), 
where × represents multiplication, not the cross product. Note that the spacing between 
characters may also depend on whether the adjacent variables are part of a list or are to be 
concatenated, i.e., multiplied. 

2.14 Other Characters 

These include all remaining Unicode characters. They may appear in mathematical ex-
pressions, typically in spelled-out names for variables in fractions or simple formulae, but 
they most commonly appear in ordinary text. An English example is the equation 
 

distance = rate × time, 
 
which uses ordinary ASCII letters to aid in recognizing sequences of letters as words in-
stead of products of individual symbols. Such usage corresponds to identifiers, discussed 
elsewhere.  
 

2.15 Variation Selector 

The variation selector VS1 is used to represent well-defined variants of particular math 
symbols. The variations include: different slope of cancellation element in some negated 
symbols, changed orientation of an equating or tilde operator element, and some well-
defined different shapes. To select one of the predefined variation follow the base by the 
variation selector. The only characters defined for use with the variant selector are the 
ones given in the following table.  
It is important to not that the variation selector only selects a different appearance of an 
already encoded character. It is not intended as a general code extension mechanism. At 
this time the variations encoded with the variation selector are thought to be primarily 
glyphic variation. Should their usage or interpretation change – over time, or because of 
better evidence about how these shapes are actually used in mathematical notation – it is 
likely that another character would be coded so that the distinction in meaning can be 
kept directly in the character code. 
In extremis, the Unicode Standard considers the variation selector somewhat optional. 
Processes or fonts that cannot support it should yield acceptable results by ignoring the 
variation selector. 
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2268 + VS1 Less-than and not double equal - with vertical stroke 

2269 + VS1 Greater-than and not double equal - with vertical stroke 

22DA + VS1 Less-than above slanted equal above greater-than 

22DB + VS1 Greater-than above slanted equal above less-than 

2272 + VS1 Less-than or similar - following the slant of the lower leg 

2273 + VS1 Greater-than or similar - following the slant of the lower leg 

2A9D + VS1 similar - following the slant of the upper leg - or less-than 

2A9E + VS1 similar - following the slant of the upper leg - or greater-than 

2AAC + VS1 Smaller than or slanted equal 

2AAD + VS1 larger than or slanted equal 

228A + VS1 subset not equals - variant with stroke through bottom members 

228B + VS1 superset not equals - variant with stroke through bottom members 

2ACB + VS1 subset not two-line equals - variant with stroke through bottom members 

2ACC + VS1 superset not two-line equals - variant with stroke through bottom members 

2A3B + VS1 Interior product - tall variant with narrow foot 

2A3C + VS1 righthand interior product - tall variant with narrow foot 

2295 + VS1 circled plus with white rim 

2297 + VS1 circled times with white rim 

229C + VS1 equal sign inside and touching a circle 

2225 + VS1 Slanted parallel 

2225 + VS1 + 20E5 Slanted parallel with reverse slash 

222A + VS1 union with serifs 

2229 + VS1 intersection with serifs 

2293 + VS1 Square intersection with serifs 

2294 + VS1 Square union with serifs 

 

2.16 Novel Symbols not yet in Unicode 

Mathematicians are by their nature inventive people and will continue to invent new 
symbols to express their theories. Until these symbols are used by a number of people, 
they should not be standardized. Nevertheless, one needs a way to handle these novel 
symbols even before they are standardized. 
The private use area (0xE000 – 0xF8FF) can be used for such nonstandard symbols. It is 
a tricky business, since the PUA is used for many purposes. Hence when using the PUA, 
it is a good idea to have higher-level backup to define what kind of characters are in-
volved. If they are used as math symbols, it would be good to assign them a math attrib-
ute that is maintained in a rich-text layer parallel to the plain text. 

 

3 Mathematical Character Properties 
Unicode assigns a number of mathematical character properties to aid in the default in-
terpretation and rendering of these characters. Such properties include the classification 
of characters into operator, digit, delimiter, and variables. These properties may be over-
ridden, or explicitly specified in some environments, such as MathML, which uses spe-
cific tags to indicate how Unicode characters are used, such as <mo> for operator, <md> 
for one or more digits comprising a number, and <mi> for identifier. TeX is a higher-level 
composition system that uses implicit character semantics. In the following, these proper-
ties are described in greater detail. 



15 
 

In particular, many Unicode characters nearly always appear in mathematical expressions 
and are given the generic mathematics property. For example, they include the math op-
erators in the ranges U+2200 – U+22FF and U+29B0 – U+2AFF, the math combining 
marks U+20D0 – U+20FF, the math alphanumeric characters (some of the Letterlike 
symbols and the mathematics alphanumerics range U+1D400 – U+1D7FF). Other char-
acters may occur in mathematical usage depending on context. The math property is use-
ful in heuristics that seek to identify mathematical expressions in plain text. 

3.1 Classification by Usage Frequency 

Editors’ note: this classification is a work in progress 

3.1.1 Strongly Mathematical Characters 

Strong mathematical characters are all characters that are primarily used for 
mathematical notation. This includes all characters with the math property [Sec. 4.9 of 
TUS] {check that this is true after extension of the properties to the new characters} with 
the following exceptions: 

002D HYPHEN-MINUS 
and the following additions {any?} 

3.1.2 Weakly Mathematical Characters 

These characters often appear in mathematical expressions, but they also appear naturally 
in ordinary text. They include the ASCII letters, punctuation, as well as the arrows and 
many of the geometric and technical shapes. The ASCII hyphen minus (U+002D) is a 
weakly mathematical character that may be used for the subtraction operator, but U+2212 
is preferred for this purpose and looks better. Geometric shapes are frequently used as 
mathematical operators. 

3.1.3 Other 

All other Unicode characters. Many of these may occur in mathematical texts, though 
often not as part of the mathematical expressions themselves. 

3.2 Classification by Typographical Behavior 

Math characters fall into a number of subcategories, such as operators, digits, delimiters, 
and identifiers (constants and variables). This section discusses some of the typographical 
characteristics of these subcategories. These characteristics and classifications are useful 
in the absence of overriding information. For example, there is at least one document that 
uses the letter P as a relational operator. 

3.2.1 Alphabetic 

In general italic Latin characters are used to represent single-character Latin variables. In 
contrast, mathematical function names like sin, cos, tan, tanh, etc., are represented by up-
right serifed text to distinguish them from products of variables. Such names should not 
use the math alphanumeric characters. The upright uppercase Greek are favored over the 
italic ones. In Europe, upright d, D, e, and i are used for the two differential, exponential, 
and imaginary part functionalities, respectively. In common American mathematical prac-
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tice, these quantities are represented by italic quantities. Products of italicized variables 
have slightly wider spacing than the letters in italicized words in ordinary text. 

3.2.2 Operators 

Operators fall into one or more categories. These include: 
 

binary some spacing around binary operators 
unary closer to modified character than binary operators 
n-ary often called “large” operators, take limits ordinarily above/below 

when displayed out-of-line and right to/bottom when displayed 
inline 

arithmetic includes binary and unary operators 
logical unary not and binary and, or, exclusive or in a host of guises 
set-theoretic inclusion, exclusion, in a variety of guises 
relational binary operators like less/greater than in many forms 

3.2.3 Large Operator  

These include n-ary operators like summation and integration. These may expand in size 
to fit their associated expressions. They generally also take limits. The placement of the 
limits of an operator is different when they are used in-line compared to their use in dis-
played formulae. For example ∑

n=1

∞ an  versus 

 ∑
n=1

∞

 an . 

Selection of a particular layout for limit expressions is outside the scope of the Unicode 
Standard. 

3.2.4 Digits 

Digits include 0-9 in various styles. These have the same widths as one another. 

3.2.5 Delimiters 

Delimiters include punctuation, opening/closing delimiters such as parentheses and 
brackets, braces, and fences. Opening and closing delimiters and fences may expand in 
size to fit their associated expressions. Some bracket expressions do not appear to be 
“logical” to readers unfamiliar with the notation, e.g., ]x ,y[. 

3.2.6 Fences 

Fences are similar to opening and closing delimiters, but are not paired. In addition, they 
include “mid” delimiters, which are not opening or closing in character. 

3.2.7 Combining Marks 

Combining marks are used with mathematical alphabetic characters (see Sec. “Accented 
Characters”), instead of precomposed characters. Use U+0061 U+0308 for the second 
derivative of acceleration with respect to time, not the precomposed letter ä. On the other 
hand, precomposed characters are used for operators whenever they exist. Combining 
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slash (solidus) or vertical overlays can be used to indicate negation for operators that do 
not have precomposed negated forms. 
Where both long and short combining marks exist, use the long, e.g., use U+0338, not 
U+0337 and use U+20D2, not U+20D3. The actual shape or position of a combining is a 
typesetting problem and not specified in plain text. When using combining marks, the 
composite characters have the same typesetting class as the base character. 

3.3 Classification of Operators by Precedence 

Operator precedence reduces the notational complexity of expressions and is commonly 
used for this purpose in computer programming languages, calculus, and algebra. A sim-
ple precedence table is used in Sec. 4-2 to convert the Unicode plain-text notation into a 
prefix notation used in two-dimensional display code. Although that table has some un-
usual precedence assignments, it shares with ordinary algebra the concept that addition 
and subtraction have lower precedence than multiplication and division. Some display 
engines, e.g., TeX’s and MathML’s, do not use precedence and instead rely on complete 
specification of operator order via explicit bracketing, either with {} as in TeX or XML 
tags as in MathML. 
[TBD: property files that specify the actual classification] 
 

4 Implementation Guidelines 

4.1 Use of Normalization with Mathematical Text 

If Normalization Form C is applied to mathematical text, some accents or overlays used 
with BMP alphabetic characters may be incorrectly composed with their base character. 
Parsers should allow for this. Normalization forms KC or KD remove the distinction be-
tween different mathematical alphabets. These forms cannot be used with mathematical 
texts. For more details on Normalization see Unicode Standard Annex #15 Normalization 
and the discussion in Sec. “Accented Characters”. 

4.2 Input of Mathematical and Other Unicode Characters 

In view of the large number of characters used in mathematics, it is useful to give some 
discussion of input methods. The ASCII math symbols are easy to find, e.g., + - / * [ ] ( ) 
{ }, but often need to be used as themselves. 
Post-entry correction. From a syntax point of view, the official Unicode minus sign 
(U+2212) is certainly preferable to the ASCII hyphen-minus (U+002D) and the prime 
(U+2032) is preferable to the ASCII apostrophe (U+0027), but users may find the ASCII 
characters more easily. Similarly it is easier to type ASCII letters than italic letters, but 
when used as mathematical variables, such letters are traditionally italicized in print. Ac-
cordingly a user might want to make italic the default alphabet in a math context, reserv-
ing the right to overrule this default when necessary. Other post-entry enhancements in-
clude automatic-ligature and left-right quote substitutions, which can be done automati-
cally by some word processors. Suffice it to say that intelligent input algorithms can dra-
matically simplify the entry of mathematical symbols. 
Math keyboards. A special math shift facility for keyboard entry could bring up proper 
math symbols. The values chosen can be displayed on an on-screen keyboard. For exam-
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ple, the left Alt key can access the most common mathematical characters and Greek let-
ters, the right Alt key could access italic characters plus a variety of arrows, and the right 
Ctrl key could access script characters and other mathematical symbols. The numeric 
keypad offers locations for a variety of symbols, such as sub/superscript digits using the 
left Alt key. Left Alt CapsLock could lock into the left-Alt symbol set, etc. This approach 
yields what one might call a “sticky” shift. Other possibilities involve the NumLock and 
ScrollLock keys in combinations with the left/right Ctrl/Alt keys. Pretty soon one realizes 
that this approach rapidly approaches literally billions of combinations, i.e., several or-
ders of magnitude more than Unicode can handle! 
Macros. The autocorrect and keyboard macro features of some word processing systems 
provide other ways of entering mathematical characters for people familiar with TeX. For 
example, typing \alpha inserts α if the appropriate autocorrect entry is present. This ap-
proach is noticeably faster than using menus. 
Hexadecimal input. A handy hex-to-Unicode entry method works with recent Microsoft 
text software (similar approaches are available on other systems) to insert Unicode char-
acters in general and math characters in particular. Basically one types a character’s 
hexadecimal code (in ASCII), making corrections as need be, and then types Alt+x. The 
hexadecimal code is replaced by the corresponding Unicode character. The Alt+x can be 
a toggle, that is, type it once to convert a hex code to a character and type it again to con-
vert the character back to a hex code. If the hex code is preceded by one or more hexa-
decimal digits, one needs to “select” the code so that the preceding hexadecimal charac-
ters aren’t included in the code. The code can range up to the value 0x10FFFF, which is 
the highest character in the 17 planes of Unicode.  
Pull-down menus. Pull-down menus are a popular method for handling large character 
sets, but they are slow. A better approach is the symbol box, which is an array of symbols 
either chosen by the user or displaying the characters in a font. Symbols in symbol boxes 
can be dragged and dropped onto key combinations on the on-screen keyboard(s), or di-
rectly into applications. On-screen keyboards and symbol boxes are valuable for entry of 
mathematical expressions and of Unicode text in general. 
Unicode plain-text mathematics. One use of the plain-text format is as a math input 
method, both for search text and for general editing. 

4.3 Use of Math Characters in Computer Programs 

It can be very useful to have typical mathematical symbols available in computer pro-
grams (see Sec. 5.3 for a more detailed discussion). A key point is that the compiler 
should display the desired characters in both edit and debug windows. A preprocessor can 
translate MathML, for example, into C++, but it will not be able to make the debug win-
dows use the math-oriented characters unless it can handle the underlying Unicode char-
acters. Java has made an important step in this direction by allowing Unicode variable 
names. The mathematical alphanumeric symbols allow this approach to go further with 
relatively little effort for compilers. 
The advantages of using the Unicode plain text in computer programs are at least three-
fold: 1) many formulas in document files can be programmed simply by copying them 
into a program file and inserting appropriate multiplication dots. This dramatically re-
duces coding time and errors. 2) The use of the same notation in programs and the associ-
ated journal articles and books leads to an unprecedented level of self-documentation. 3) 
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In addition to providing useful tools for the present, these proposed initial steps should 
help one figure out how to accomplish the ultimate goal of teaching computers to under-
stand and use arbitrary mathematical expressions. 

5 Unicode Plain Text Encoding of Mathematics 
Getting computers to understand human languages is important in increasing the utility of 
computers. Natural-language translation, speech recognition and generation, and pro-
gramming are typical ways in which such machine comprehension plays a role. The bet-
ter this comprehension, the more useful the computer, and hence there has been consider-
able current effort devoted to these areas since the early 1960s. 
Ironically one truly international human language that tends to be neglected in this con-
nection is mathematics itself. 
With a few conventions, Unicode can encode most mathematical expressions in readable 
(near-)plain text. The format is linear, but can be displayed in built-up form. The ap-
proach uses heuristics based on the Unicode math properties to recognize mathematical 
expressions without the aid of explicit math-on/off commands. This is facilitated by Uni-
code’s strong support for mathematical symbols. This plain-text representation is substan-
tially more compact and easy to read compared to the LaTeX dialect of TeX, “Unicode 
TeX”, or MathML. Most mathematical expressions up through calculus can be repre-
sented unambiguously in Unicode plain text. The plain-text encoding can be easily ex-
ported to (La)TeX, MathML, C++, and symbolic manipulation programs. 
Note that this discussion is intended to illustrate how mathematical plain text might be 
useful, for example, in math input and computer programs. This is intended to be a pre-
liminary draft of a specification of how to encode mathematical expressions in plain text. 
Readers are encouraged to comment on the proposed scheme. 
Given the power of Unicode relative to ASCII, how much better can a plain-text encod-
ing of mathematical expressions look using Unicode? The most well-known plain-text 
ASCII encoding of such expressions is that of TeX, so one uses it for comparison. 
MathML is considerably more verbose than TeX, so some of the comparisons apply to it 
as well. Notwithstanding TeX’s phenomenal success in the science and engineering 
communities, a casual glance at its representation of mathematical expressions reveals 
that they do not look very much like the expressions they represent. It is certainly not 
easy to make algebraic calculations directly using TeX’s notation. With Unicode, one can 
represent mathematical expressions more readably, and the resulting plain text can be 
used directly for such calculations. 
For example, one way to specify a TeX fraction numerator consists of the expression 
\frac{numerator}{denominator}. In both the fraction and subscript/superscript cases, the { } 
are not printed. These simple rules immediately give a “plain text” that is unambiguous, 
but looks quite different from the corresponding mathematical notation, thereby making it 
hard to read. 
Instead, suppose one defines a simple operand to consist of all consecutive letters and 
digits, i.e., a span of characters belong to the Lx and Nd General Categories. As such, a 
simple numerator or denominator is terminated by any operator, including, for example, 
arithmetic operators, the blank, all Unicode characters with codes U+22xx, and a special 
argument “break” operator consisting of a small raised dot. The fraction operator is given 
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by the Unicode fraction slash operator U+2044, which is depicted here with the glyph //. 
So the simple built-up fraction 

abc

d
  . 

appears in plain text as abc/d. 
For more complicated operands (such as those that include operators), parentheses ( ), 
brackets [ ], or braces { } can be used to enclose the desired character combinations. If 
parentheses are used and the outermost parenthesis set is preceded and followed by op-
erators, that set is not displayed in built-up form, since usually one does not want to see 
such parentheses. So the plain text (a + b) //c displays as 

a + c

d
  . 

In practice, this approach leads to plain text that is significantly easier to read than TeX’s, 
e.g., \frac{a + c}{d} , since in many cases, outermost parentheses are not needed, while 
TeX requires { }’s. To force the display of an outermost parenthesis set, one encloses the 
set, in turn, within parentheses, which then become the outermost set. For example, ((a + 
b))/c displays as 

(a + c)
d

  . 

A really neat feature of this notation is that the plain text is, in fact, a legitimate mathe-
matical notation in its own right, so it is relatively easy to read. In MathML, this fraction 
reads as 
 

<mfrac> 
  <mrow> 

<mi>a</mi> 
<mo>+</mo> 
<mi>c</mi> 

  </mrow> 
  <mrow> 

<mi>d</mi> 
  </mrow> 
 </mfrac> 

 

Subscripts and superscripts are a bit trickier, but they are still quite readable. Specifically, 
one can introduce a subscript by a subscript operator, which is displayed as the sub-

scripted down arrow ↓. A simple subscript operand consists of the string of one or more 
characters with the General Categories Lx (alphabetic) and Nd (decimal digits), as well as 

the invisible comma. For example, a pair of subscripts, such as δµν  is written as δ↓µν.   
Similarly, superscripts are introduced by a superscript operator, which is displayed here 

as the superscripted up arrow ↑. So a↑
b means ab.  

Compound subscripts and superscripts include expressions within parentheses, square 

brackets, and curly braces. So δµ+ν  is written as δ↓(µ+ν). In addition it is worthwhile to 
treat two more operators, the comma and the period, in special ways. Specifically, if a 
subscript operand is followed directly by a comma or a period that is, in turn, followed by 
whitespace, then the comma or period appears on line, i.e., is treated as the operator that 
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terminates the subscript. However a comma or period followed by a non-operator is 
treated as part of the subscript. This refinement obviates the need for many overriding 
parentheses, thereby yielding a more readable plain text. 
Another kind of compound subscript is a subscripted subscript, which works using right-

to-left associativity, e.g., a↓b↓c means a
b
c

. Similarly a↑
b

↑
c means ab

c
. 

 Parentheses are needed for constructs such as a subscripted superscript like abc, which is 

given by a↑(b↓c). 

As an example of a slightly more complicated example, consider the expression W δ1ρ1σ2

3β   

  has the plain-text format W↑3β↓δ1ρ1σ2. In contrast, for TeX, one types 
 
 

$W^{3\beta}_{\delta_1\rho_1\sigma_2}$ , 
 
which is hard to read. The TeX version looks distinctly better using Unicode for the sym-

bols, namely $W^{3β}_{δ_1ρ_1σ_2}$ or $W^{3β}_{δ1ρ1σ2}$, since Unicode has a full 
set of decimal subscripts and superscripts. However the need to use the {}, not to mention 
the $’s, makes even the last of these harder to read than the plain-text version 

W
↑3β↓δ1ρ1σ2. 

For the ratio 
 , 
 

the Unicode plain text reads α2
3
//(β2

3 + γ23), while the standard TeX version reads as 
 

${\alpha^3_2 \over \beta^3_2 + \gamma^3_2}$· 
 
The Unicode plain text is a legitimate mathematical expression, while the TeX version 
bears no resemblance to a mathematical expression. 
    TeX becomes very cumbersome for longer equations such as 
 

W δ1ρ1σ2

3β     = U δ1ρ1

3β     + 
1

8π2  
⌡


⌠

α1

α2

dα2´ 








U δ1ρ1

2β   - α2'U
1β
ρ1σ2

 U 0β
ρ1σ2

 . 

 
The Unicode plain-text version of this reads as 
 

W
↑β↓δ1ρ1σ2 = U↑3β↓δ1ρ1 + 1/8π2 ∫↓α1

↑α2 dα2' [(U
↑2β↓δ1ρ1 - α2'U

↑1β↓ρ1σ2)/U
↑0β↓ρ1σ2] 

 
while the standard TeX version reads as 
 
${W^{3\beta}_{\delta_1\rho_1\sigma_2} 
 = U^{3\beta}_{\delta_1\rho_1} + {1 \over 8\pi^2} 
 \int_{\alpha_1}^{\alpha_2} d\alpha_2’ \left[ 
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 {U^{2\beta}_{\delta_1\rho_1} - \alpha_2’ 
 U^{1\beta}_{\rho_1\sigma_2} \over 
 U^{0\beta}_{\rho_1\sigma_2}} \right] }$ . 
 
In a “Unicoded” TeX, it could read as 
 

${W^{3β}_{δ1ρ1σ2} = U^{3β}_{δ1ρ1} + {1 / 8π2} 

 ∫_{α1}^{α2} dα2' \left[{U^{2β}_{δ1ρ1} - α2'U^{1β}_{ρ1σ2} 

 / U^{0β}_{ρ1σ2}} \right] }$ , 
 
which is significantly easier to read than the ASCII TeX version, although still much 
harder to read than the Unicode plain-text version. 
Brackets [ ], braces { }, and parentheses ( ) represent themselves in the Unicode plain 
text, and a word processing system capable of displaying built-up formulas should ex-
pand them to fit around what’s inside them. Here U+2032 is used for \prime and U+2044 
for \over. 
Certain operators like brackets, braces, parentheses, superscript, subscript, integral, etc. 
have special meaning in this notation. To treat them as normal characters, one precedes 
them by the “literal operator”, for which the percent sign % is handy. So %[ is displayed 
as an ordinary left square bracket, with no attempt by the software to match a correspond-
ing right square bracket. Table 5.1 lists operators that have special meanings. 
 

5.1 Recognizing Mathematical Expressions 

Unicode plain-text encoded mathematical expressions can be used “as is” for simple 
documentation purposes. Use in more elegant documentation and in programming lan-
guages requires knowledge of the underlying mathematical structure. This section de-
scribes some of the heuristics that can distill the structure out of the plain text. 
Many mathematical expressions identify themselves as mathematical, obviating the need 
to declare them explicitly as such. One well-known TeX problem is TeX’s inability to de-
tect expressions that are clearly mathematical, but that are not enclosed within $’s. If one 
leaves out a $ by mistake, one gets a slew of error messages because TeX interprets sub-
sequent text in the wrong mode.  
An advantage of recognizing mathematical expressions without math-on/math-off syntax 
is that it is much more tolerant to user errors of this sort. Resyncing is automatic, while in 
TeX one basically has to start up again from the omission in question. Furthermore, this 
approach should be useful in an important related endeavor, namely in recognizing and 
converting the mathematical literature that is not yet available in an object-oriented ma-
chine-readable form, into that form. 
It is possible to use a number of heuristics for identifying mathematical expressions and 
treating them accordingly. These heuristics are not foolproof, but they lead to the most 
popular choices. Special commands discussed at the end of this section can be used to 
overrule these choices. Ultimately the approach could be used as an autoformat style wiz-
ard that tags expressions with a rich-text math style. The user could then override cases 
that were tagged incorrectly. A math style would connect in a straightforward way to ap-
propriate MathML tags. 
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 The basic idea is that math characters identify themselves as such and potentially iden-
tify their surrounding characters as math characters as well. For example, the fraction 
(U+2044) and ASCII slashes, symbols in the range U+2200 through U+22FF, the symbol 
combining marks (U+20D0 - U+20FF), and in general, Unicode characters with the 
mathematics property, identify the characters immediately surrounding them as parts of 
math expressions. 
If English letter mathematical variables are already given in one of the math alphabets, 
they are considered parts of math expressions. If they are not, one can still have some 
recognition heuristics as well as the opportunity to italicize appropriate variables. Spe-
cifically ASCII letter pairs surrounded by whitespace are often mathematical expressions, 
and as such should be italicized in print. If a letter pair fails to appear in a list of common 
English and European two-letter words, it is treated as a mathematical expression and 
italicized. Many Unicode characters are not mathematical in nature and suggest that their 
neighbors are not parts of mathematical expressions. 
Strings of characters containing no whitespace but containing one or more unambiguous 
mathematical characters are generally treated as mathematical expressions. Certain two-, 
three-, and four-letter words inside such expressions should not be italicized. These in-
clude trigonometric function names like sin and cos, as well as ln, cosh, etc. Words or 
abbreviations, often used as subscripts (see the program in Sec. 5.3), also should not be 
italicized, even when they clearly appear inside mathematical expressions. 
Special cases will always be needed, such as in documenting the syntax itself. The literal 
operator introduced earlier (%) causes the character that follows it to be treated as an or-
dinary character. This allows the printing of characters without modification that by de-
fault are considered to be mathematical and thereby subject to a changed display. Simi-
larly, mathematical expressions that the algorithms treat as ordinary text can be sand-
wiched between math-on and math-off symbols. For this purpose, it is tempting to use 
Asian brackets such as the white lenticular brackets (U+3016 and U+3017), a matched 
pair that is not common in mathematical expressions. Such “overhead” symbols clutter 
up the text and hopefully will be rarely needed in Unicode plain text. This does compli-
cate the preparation of technical documents and although one can get very good at it, it is 
not the most user-friendly way of doing things. On the other hand, identifying the begin-
ning and end of math expressions using $’s or use of extensive markup tags is not user 
friendly either. 
 

5.2 Minimal Operator Summary 

Operands in subscripts, superscripts, fractions, roots, boxes, etc. are defined in part in 
terms of operators and operator precedence. While such notions are very familiar to 
mathematically oriented people, some of the symbols that are defined here as operators 
might surprise one at first. Most notably, the space (ASCII 32) is an important operator in 
the plain-text encoding of mathematics. A small but common list of operators  
 

Table 5.1 A list of common operators ordered by precedence 

FF CR \ 
(   [ { 

)  ]  }  | 
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Space  "  . ,  =  -  +   LF   Tab 

/  *  ×  ·  •  •   

� √ 
∫  Σ  Π 

↓ ↑ 
 
where Tab = U+0009, LF = U+000A, FF = U+000C, and CR = U+000D.  
As in arithmetic, operators have precedence, which streamlines the interpretation of oper-
ands. The operators are grouped above in order of increasing precedence, with equal 
precedence values on the same line. For example, in arithmetic, 3+1/2 = 3.5, not 2. Simi-

larly the plain-text expression α + β/γ means 
 

α + 
β
γ   not   

α + β
γ  . 

 

As in arithmetic, precedence can be overruled, so (α + β)/γ gives the latter. 
The following gives a list of the syntax for a variety of mathematical constructs. 
 
exp1/exp2 Create a built-up fraction with numerator exp1 and denominator exp2. 

Numerator and denominator expressions are terminated by operators 

such as /*])↑
↓· and blank (can be overruled by enclosing in parentheses). 

The “/” is given by U+2044. 
 
↑
exp1 Superscript expression exp1. The superscripts 0 - 9 + - ( ) exist as Unicode 

symbols. Sub/superscripts expressions are terminated by /*])↑
↓· and 

blank. Sub/superscript operators associate right to left. 
 

↓exp1 Subscript expression exp1. The subscripts 0 - 9 + - ( ) exist as Unicode sym-
bols. 

 
[exp1] Surround exp1 with built-up brackets. Similarly for { } and ( ). 
 

[exp1]
↑
exp2 Surround exp1 with built-up brackets followed by superscripted exp2 

(moved up high enough). Similarly for { } and ( ). 
 

√exp1 Square root of exp1. 
 
· Small raised dot that is not intended to print. It is used to terminate an 

operand, such as in a subscript, superscript, numerator, or denominator, 
when other operators cannot be used for this purpose. Similar raised dots 

like • and • also terminate operands, but they are intended to print. 
 

Σ↓ exp1↑
exp2 Summation from exp1 to exp2. ↓exp1 and ↑exp2 are optional. 

 

Π↓exp1
↑
exp2 Product from exp1 to exp2. 
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∫↓exp1↑
exp2 Integral from exp1 to exp2. 

 

exp1exp2 Align exp1 over exp2 (like fraction without bar). Useful for building up 
matrices as a set of columns. 

 
Diacritics are handled using Unicode combining marks (U+0300 - U+036F, U+20D0 - 
U+20FF). Note that many more operators can be added to fill out the capabilities of the 
approach in representing mathematical expressions in Unicode plain (or almost plain) 
text. 
 

5.3 Using Plain-Text Mathematics in Programming Languages 

In the middle 1950’s, the authors of FORTRAN named their computer language after 
FORmula TRANslation, but they only went part way. Arithmetic expressions in Fortran 
and other current high-level languages still do not look like mathematical formulas and 
considerable human coding effort is needed to translate formulas into their machine com-
prehensible counterparts. For example, Fortran’s superscript a**k isn’t as readable as ak 
and Fortran’s subscript a(k) isn’t as readable as ak. Bertrand Russell once said that nota-
tion is a great teacher and that a perfect notation would be a substitute for thought. From 
this point of view, modern computer languages are badly lacking. Specialized mathemati-
cal applications such Mathematica are substantially better in this regard. 
Using real mathematical expressions in computer programs would be far superior in 
terms of readability, reduced coding times, program maintenance, and streamlined docu-
mentation. In studying computers we have been taught that this ideal is unattainable, and 
that one must be content with the arithmetic expression as it is or some other non-
mathematical notation such as TeX’s. It is time to reexamine this premise. Whereas true 
mathematical notation clearly used to be beyond the capabilities of machine recognition, 
we feel it no longer is. 
In general, mathematics has a very wide variety of notations, none of which look like the 
arithmetic expressions of programming languages. Although ultimately it would be desir-
able to be able to teach computers how to understand all mathematical expressions, it is 
useful to start with the Unicode plain-text format presented here. 
In raw form, these expressions look very like traditional mathematical expressions. With 
use of the heuristics described above, they can be printed or displayed in traditional built-
up form. On disk, they can be stored in pure-ASCII program files accepted by standard 
compilers and symbolic manipulation programs like Derive, Mathematica, and Macsyma. 
The translation between Unicode symbols and the ASCII names needed by ASCII-based 
compilers and symbolic manipulation programs is carried out via table-lookup (on writ-
ing to disk) and hashing (on reading from disk) techniques. 
Hence formulas can be at once printable in manuscripts and computable, either numeri-
cally or analytically. Note that this is a goal of MathML as well, but attained in a rela-
tively complex way using specialized tools. The idea here is that regular programming 
languages can have expressions containing standard arithmetic operations and special 
characters, such as Greek, italics, script, and various mathematical symbols like the 
square root. Two levels of implementation are envisaged: scalar and vector. Scalar opera-
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tions can be performed on traditional compilers such as those for C and Fortran. The sca-
lar multiply operator is represented by a raised dot, a legitimate mathematical symbol, 
instead of the asterisk. To keep auxiliary code to a minimum, the vector implementation 
requires an object-oriented language such as C++. 

The advantages of using the Unicode plain text are at least threefold:  
1) many formulas in document files can be programmed simply by copying them 

into a program file and inserting appropriate multiplication dots. This 
dramatically reduces coding time and errors.  

2) The use of the same notation in programs and the associated journal articles and 
books leads to an unprecedented level of self documentation. In fact, since 
many programmers document their programs poorly or not at all, this enlight-
ened choice of notation can immediately change nearly useless or nonexistent 
documentation into excellent documentation.  

3) In addition to providing useful tools for the present, these proposed initial steps 
should help one figure out how to accomplish the ultimate goal of teaching 
computers to understand and use arbitrary mathematical expressions. Such ma-
chine comprehension would greatly facilitate future computations as well as the 
conversion of the existing paper literature and Pen-Windows input into machine 
usable form. 

The concept is portable to any environment that supports a large character set, preferably 
Unicode, and it takes advantage of the fact that high-level languages like C and Fortran 
accept an “escape” character (“_” and “$”, respectively) that can be used to access ex-
tended symbol sets in a fashion similar to TeX. In addition, the built-in C preprocessor 
allows niceties such as aliasing the asterisk with a raised dot, which is a legitimate 
mathematical symbol for multiplication. The Java and C# languages allow direct use of 
Unicode variable names, which is a major step in the right direction. Compatibility with 
unenlightened ASCII-only compilers can be done via an ASCII representation of Unicode 
characters. 

 

5.4 Comparison of Programming Notations 

To get an idea as to the differences between the standard way of programming mathe-
matical formulas and the proposed way, compare the following versions of a C++ routine 
entitled IHBMWM (inhomogeneously broadened multiwave mixing) 
 
void IHBMWM(void) 
{ 
 gammap = gamma*sqrt(1 + I2); 
 upsilon = cmplx(gamma+gamma1, Delta); 
 alphainc = alpha0*(1-(gamma*gamma*I2/gammap)/(gammap + upsilon)); 
 
 if (!gamma1 && fabs(Delta*T1) < 0.01) 
  alphacoh = -half*alpha0*I2*pow(gamma/gammap, 3); 
 else 

{ 
  Gamma = 1/T1 + gamma1; 
  I2sF = (I2/T1)/cmplx(Gamma, Delta); 
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  betap2 = upsilon*(upsilon + gamma*I2sF); 
  beta = sqrt(betap2); 
  alphacoh = 0.5*gamma*alpha0*(I2sF*(gamma + upsilon) 
    /(gammap*gammap - betap2)) 
    *((1+gamma/beta)*(beta - upsilon)/(beta + upsilon) 
    - (1+gamma/gammap)*(gammap - upsilon)/ 
    (gammap + upsilon)); 
 } 
 alpha1 = alphainc + alphacoh; 
} 
 
void IHBMWM(void) 
{ 

 γ' = γ•√(1 + I2); 

 υ = γ + γ1 + i•∆; 

 αinc = α0•(1 - (γ•γ•I2/γ')/(γ' + υ)); 

 if (!γ1 || fabs(∆•T1) < 0.01) 

αcoh = -.5•α0•I2•pow(γ/γ', 3); 
 else 

{ 

  Γ = 1/T1 + γ1; 
  I2F = (I2/T1)/(Γ + i•∆); 

β2 = υ•(υ + γ•I2F); 

  β = β2 ; 
  αcoh = .5•γ•α0•(I2F

.(γ + υ)/(γ'•γ' - β2)) 

   ×((1+γ/β)•(β - υ)/(β + υ) - (1+γ/γ')•(γ' - υ)/(γ' + υ)); 
 } 

 α1 = αinc + αcoh ; 
} 
 
[TBD: Discuss the interaction of C operators like || with math operators] 
 
The above function runs fine with current C++ compilers, but C++ does impose some 
serious restrictions based on its limited operator table. For example, vectors can be multi-
plied together using dot, cross, and outer products, but there’s only one asterisk to over-
load in C++. In built-up form, the function looks even more like mathematics, namely 
 
void IHBMWM(void) 
{ 

 γ' = γ• 1 + I2 ; 

 υ = γ + γ1 + i•∆; 

 αinc = α0•
1 - (γ•γ•I2/γ')

γ' + υ   ; 

 if (!γ1 || fabs(∆•T1) < 0.01) 

αcoh = -.5•α0•I2•pow(γ/γ', 3); 
 else 
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{ 

  Γ = 1/T1 + γ1; 

  I2F = 
I2/T1

Γ + i•∆  ; 

β2 = υ•(υ + γ•I2F); 

  β = β2 ; 

  αcoh = .5•γ•α0•
I2F

.(γ + υ)

γ'•γ' - β2  ×














1+
γ
β •

β - υ
β + υ  - 









1+
γ
γ' •

γ' - υ
γ' + υ  ; 

 } 

 α1 = αinc + αcoh ; 
} 
 
The ability to use the second and third versions of the function was built into the PS 
Technical Word Processor circa 1988. With it we already came much closer to true for-
mula translation on input, and the output is displayed in standard mathematical notation. 
Lines of code can be previewed in built-up format, complete with fraction bars, square 
roots, and large parentheses. To code a formula, one copies (cut and paste) it from a tech-
nical document into a program file, insert appropriate raised dots for multiplication and 
compile. No change of variable names is needed. Call that 70% of true formula transla-
tion!  In this way, the C++ function on the preceding page compiles without modification. 
The code appears nearly the same as the formulas in print [see Chaps. 5 and 8 of Meystre 
and Sargent]. 
 Open issues and future. Questions remain, such as to whether subscript expressions in 
the Unicode plain text should be treated as part of program-variable names, or whether 
they should be translated to subscript expressions in the target programming language. 
Similarly, it would be straightforward to automatically insert an asterisk (indicating mul-
tiplication) between adjacent symbols, rather than have the user do it. However here there 
is a major difference between mathematics and computation: symbolically, multiplication 
is infinitely precise and infinitely fast, while numerically, it takes time and is restricted to 
a binary subset of the rationals with very limited (although often adequate) precision. 
Consequently for the moment, at least, it seems wiser to consider adjacent symbols as 
part of a single variable name, just as adjacent ASCII letters are part of a variable name in 
current programming languages. Perhaps intelligent algorithms will be developed that 
decide when multiplication should be performed and insert the asterisks optimally. 
Export to TeX is similar to that to programming languages, but has a modified set of re-
quirements. With current programs, comments are distilled out with distinct syntax. This 
same syntax can be used in the Unicode plain-text encoding, although it is interesting to 
think about submitting a mathematical document to a preprocessor that can recognize and 
separate out programs for a compiler.  In this connection, compiler comment syntax is not 
particularly pretty; ruled boxes around comments and vertical dividing lines between 
code and comments are noticeably more readable. So some refinement of the ways that 
comments are handled would be very desirable. For example, it would be nice to have a 
vertical window-pane facility with synchronous window-pane scrolling and the ability to 
display C code in the left pane and the corresponding // comments in the right pane. Then 
if one wants to see the comments, one widens the right pane accordingly. On the other 
hand, to view lines with many characters of code, the // comments need not get in the 
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way. Such a dual-pane facility would also be great for working with assembly-language 
programs. 
Export to TeX. With TeX, the text surrounding the mathematics is part and parcel of the 
technical document, and TeX needs its $’s to distinguish the two. These can be included 
in the plain text, but we have repeatedly pointed out how ugly this solution is. The heuris-
tics described above go a long way in determining what is mathematics and what is natu-
ral language. Accordingly, the export method consists of identifying the mathematical 
expressions and enclosing them in $’s. The special symbols are translated to and from the 
standard TeX ASCII macros via table lookup and hashing, as for the program translations. 
Better yet, TeX should be recompiled to use Unicode. 
 

5.5 Conclusions 

This section has shown how, with a few additions to Unicode, mathematical expressions 
can usually be represented with a readable Unicode plain-text format. The text consists of 
combinations of operators and operands. A simple operand consists of a span of non-
operators, a definition that dramatically reduces the number of parenthesis-override pairs 
and thereby increases the readability of the plain text. The only disadvantage to this ap-
proach versus TeX’s ubiquitous { } pairs is that the user needs to know what characters 
are operators. To reveal the operators, operator-aware editors could be instructed to dis-
play operators with a different color or some other attribute. To simplify the notation, op-
erators have precedence values that control the association of operands with operators 
unless overruled by parentheses. Heuristics can be applied to the Unicode plain text to 
recognize what parts of a document are mathematical expressions. This allows the Uni-
code plain text to be used in a variety of ways, including in technical document prepara-
tion, symbolic manipulation, and numerical computation. 
The heuristics given for recognizing mathematical expressions work well, but they are 
not infallible. An effective use of the heuristics would be as an autoformatting wizard that 
delimits what it thinks is mathematics with mathematics on/off codes. The user could 
then overrule incorrect choices. Once marked unequivocally as mathematics (an alterna-
tive to TeX’s $’s), export to MathML, compilers, and other consumers of mathematical 
expressions is straightforward. We have a workable plain-text encoding of mathematics 
that looks very much like mathematics even with the most limited display capabilities. 
Appropriate display software can make it look like the real thing.  

6 References 

[MathML] http://www.w3.org/mathml 
[Meystre and Sargent] P. Meystre and M. Sargent III (1991), Elements of Quantum Op-
tics, Springer-Verlag 
[TeX] http://www.ams.org/tex/publications.html 
[LaTeX] 
[STIX] http://www.ams.org/STIX. 
 

7 Modifications 

This is the first draft version for public review. 
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