
Here are the references to Unicode in C# - DIS 23270

Chapter 2 – Conformance: Page 19 – lines 28-30:

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard,
Version 3.0 or later, and ISO/IEC 10646-1. Conforming implementations must accept Unicode source files
encoded with the UTF-8 encoding form.

Chapter 3 – References: Page 21 – lines 20-22:

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version
3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), and Unicode Technical Report #15:
Unicode Normalization Forms.

Chapter 4 – Definitions: Pages 24 – lines 14-15:

Source file — an ordered sequence of Unicode characters. Source files typically have a one-to-one
correspondence with files in a file system, but this correspondence is not required.

Chapter 5 – Notational Conventions: Page 26 – lines 11-12:

for-statement:
for (; ;) embedded-statement
for (for-initializer ; ;) embedded-statement
for (; for-condition ;) embedded-statement
for(; ;for-iterator) embedded-statement
for (for-initializer ; for-condition ;) embedded-statement
for (; for-condition ; for-iterator) embedded-statement
for (for-initializer ; ;for-iterator) embedded-statement
for (for-initializer ; for-condition ; for-iterator) embedded-statement

All terminal characters are to be understood as the appropriate Unicode character from the ASCII range, as
opposed to any similar-looking characters from other Unicode ranges.

Chapter 8 – Language Overview, Section 8.2.1: Page 33 -34:

8.2.1 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.
The predefined reference types are object and string. The type object is the ultimate base type of all other
types. The type string is used to represent Unicode string values. Values of type string are immutable. The
predefined value types include signed and unsigned integral types, floating-point types, and the types bool,
char,anddecimal. The signed integral types are sbyte, short, int,and long; the unsigned integral types are
byte, ushort, uint,andulong; and the floating-point types are float and double.

rick@unicode.org
L2/02-123

The bool type is used to represent boolean values: values that are either true or false. The inclusion of bool
makes it easier to write self-documenting code, and also helps eliminate the all-too-common C++ coding
error in which a developer mistakenly uses “=”when“==” should have been used. In C#, the example
int i = –;
F(i);
if (i = 0) // Bug: the test should be (i == 0)
G();

results in a compile-time error because the expression i = 0 is of type int,andif statements require an
expression of type bool.

The char type is used to represent Unicode characters. A variable of type char represents a single 16-bit
Unicode character.

The decimal type is appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common examples include financial calculations such as tax
computations and currency conversions. The decimal type provides 28 significant digits.

The table below lists the predefined types, and shows how to write literal values for each of them.

Type Description Example
object The ultimate base type of all other types object o = null;
string String type; a string is a sequence of

Unicodecharacters
string s = "hello";

sbyte 8-bit signed integral type sbyte val = 12;
short 16-bit signed integral type short val = 12;
int 32-bit signed integral type int val = 12;
long 64-bit signed integral type long val1 = 12;
 long val2 = 34L;
byte 8-bit unsigned integral type byte val1 = 12;
ushort 16-bit unsigned integral type ushort val1 = 12;
uint 32-bit unsigned integral type uint val1 = 12;
 uint val2 = 34U;
ulong 64-bit unsigned integral type ulong val1 = 12;
 ulong val2 = 34U;
 ulong val3 = 56L;
 ulong val4 = 78UL;
float Single-precision floating point type float val = 1.23F;
double Double-precision floating point type double val1 = 1.23;
 double val2 = 4.56D;
bool Boolean type; a bool value is either true or

false
bool val1 = true;
bool val2 = false;

char Character type; a char value is a Unicode
character

char val = 'h';

decimal Precise decimal type with 28 significant digits decimal val = 1.23M;

Each of the predefined types is shorthand for a system-provided type. For example, the keyword int refers to
the struct System.Int32. As a matter of style, use of the keyword is favored over use of the complete system
type name.

Predefined value types such as int are treated specially in a few ways but are for the most part treated
exactly like other structs. Operator overloading enables developers to define new struct types that behave

much like the predefined value types. For instance, a Digit struct can support the same mathematical
operations as the predefined integral types, and can define conversions between Digit and predefined types.
The predefined types employ operator overloading themselves. For example, the comparison operators ==
and != have different semantics for different predefined types:
 Two expressions of type int are considered equal if they represent the same integer value.
 Two expressions of type object are considered equal if both refer to the same object, or if both are null.
 Two expressions of type string are considered equal if the string instances have identical lengths and

identical characters in each character position, or if both are null.

Chapter 9 – Lexical Structure – Page 65 – 82 – Many references to Unicode

Chapter 11 – Types – Page 106 – Sections 11.1.4 and 11.2.3

11.1.4 Integral types 28
C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong,andchar. The integral types
have the following sizes and ranges of values:

 The sbyte type represents signed 8-bit integers with values between –128 and 127.
 The byte type represents unsigned 8-bit integers with values between 0 and 255.
 The short type represents signed 16-bit integers with values between –32768 and 32767.
 The ushort type represents unsigned 16-bit integers with values between 0 and 65535.
 The int type represents signed 32-bit integers with values between –2147483648 and 2147483647.
 The uint type represents unsigned 32-bit integers with values between 0 and 4294967295.
 The long type represents signed 64-bit integers with values between –9223372036854775808 and

9223372036854775807.
 The ulong type represents unsigned 64-bit integers with values between 0 and

18446744073709551615.
 The char type represents unsigned 16-bit integers with values between 0 and 65535. The set of

possible values for the char type corresponds to the Unicode character set. [Note: Although char
has the same representation as ushort, not all operations permitted on one type are permitted on the
other. end note]

11.2.3 The string type
The string type is a sealed class type that inherits directly from object. Instances of the string class represent
Unicode character strings.

Annex A – Page 349 – to the end – Several references

