
From: John Cowan <jcowan@reutershealth.com>
Date: 2002-04-10 10:53:42 -0700
To: unicoRe@unicode.org
Subject: Re: LS/02-134
Sender: unicore-bounce@unicode.org

I have sent the following as a private response to Mr. Simpson.
UTC, make what use of it you will.

Dear Mr Simpson:

I am writing in response to your paper entitled "Keyboards, Fonts, and
the Unicode Standard". I must emphasize that I am not a member of the
Unicode Technical Committee, and do not speak for the Unicode
Consortium. This response is as correct as I can make it, but must be
interpreted as purely personal.

It seems to me that your paper has one major and a variety of minor
misunderstandings of the Unicode Standard, and I offer this response
to help clear up some of the confusions.

 The problem of mapping

"Latin-script fonts [...] appear to map non-ANSI characters such as
Polish z or Turkish i on a somewhat ad-hoc basis."

There is actually quite a lot of standardization for the Latin as well
as the Greek, Cyrillic, Hebrew, and Arabic scripts in the 8-bit
world. There are ISO standards as well as vendor standards (sometimes
derived from them, sometimes not) for all these scripts. Polish is
normally rendered with ISO 8859-2 (where Western European languages use
ISO 8859-1), and Turkish with ISO 8859-9. I agree that the Indic
languages are much less commonly standardized, although there is an
Indian standard called ISCII (on which the Unicode Standard's Indic
scripts are directly based).

"This approach means that, except for western European languages,
there will not in general be a one-to-one relationship between [...]
the rendered text and the code stream which is stored or transmitted."

In fact essentially all languages using the Latin, Greek, Cyrillic,
Hebrew, Armenian, and CJK scripts will tend to behave like this, with
occasional exceptions.

"But a rendering engine can only select from the repertoire available
in the chosen font, so any sign that has to be printed must be mapped
to some code point."

This is a subtle error which infects most of the rest of your paper.
A font is a combination of informational tables and a set of images.
A rendering engine accepts a stream of characters (expressed in
Unicode or some other character set) and uses the informational tables
to choose which images should be displayed on the output device. It

is only in trivial cases that there are exactly as many images in the
font as there are characters in the character set. In real-life
situations there are typically many more.

Let us consider a simple case: a font meant for rendering English and
a rendering engine that understands only the 96 ASCII printable
characters. A dumb font would simply have 96 images and a trivial
table that maps every character from 0x20 to 0x7F to precisely one of
them, and the rendering engine would have little to do. If the
rendering engine found a ligaturing table, though, it would be able to
take advantage of ligatures present in the font to render the
character sequence 66 69 using a fi-ligature. This would be entirely
transparent to the application making use of the rendering engine:
changing the font would in no way affect the application programmer.

It's true that the font has to have some internal code representing an
fi-ligature, but that code is of no concern to anyone except the font
and the rendering engine, and even the rendering engine discovers what
the code is by looking at the ligaturing table. The entries in the
table conceptually look like this:

 66 69 -> 80

where 80 is the arbitrary font-assigned code for the fi-ligature
image. There is neither need nor reason to standardize this code
provided only that the ligature table is consistent with the numbering
of the glyph images. The value 80 is not a "code point", but rather
an internal image number.

"But if a sign has no code point specified in the Standard, it will
have no 'natural home', as it were, in a font."

In principle no character has a "natural home" in any font. There is
no reason other than convenience why the image number (as I have
called it above) of "A" should be 41; it might perfectly well be 1 or
1001 as long as the CMAP table (which maps individual Unicode
characters to image numbers) correctly records that fact.

"[...] constant need for rendering, 'derendering', and re-rendering
[...]."

No derendering is required. Applications store characters and ask a
rendering engine to render them as needed.

"Anything must be an advance if it simplifies text processing by
reducing the number of stages required between [...] typing and
[rendering]."

In fact text processing, except in the simplest case of a word
processor, often involves complex transformations between typing and
rendering, if rendering is a goal at all; indeed, much text is not
typed by anyone, but automatically generated.

 Characters and glyphs

"[...] case is contextually determined [...]."

Context has influence on the choice of case, but does not *determine*
it. It is easy to construct sentence pairs like:

 He went to the north pole.
 He went to the North Pole.

where the distinction is beyond the power of any computer to insert
automatically. The same is not true of Arabic shaping, except in
exceptional cases for which ZWJ and ZWNJ are provided. I discuss
Arabic shaping further in I.4.

Note: The ARABIC LETTER HEH appears in the charts in initial rather
than isolated form to avoid confusion with the identical-looking
ARABIC-INDIC DIGIT FIVE, as noted on p. 195.

" [...] matras [...] not aksharas [...]."

Processes other than rendering have difficulty coping with characters
that may be either combining marks or base characters. For example,
the DOT ABOVE in Irish use is equivalent to a following LATIN SMALL
LETTER H. However, creating a separate character SEIMHIU which could
be rendered as a dot in Gaelic-style fonts and an "h" in Roman-style
ones would entail difficulties in deciding on letter boundaries, an
otherwise font-independent operation. Therefore, the Unicode Standard
in every case implements matras using a separate codepoint (marked as
a combining mark) from the corresponding independent vowel (marked as
a letter). The design goals of the Unicode Standard require
occasional compromises between rendering and non-rendering processes.

"The sign [ks.a] can hardly be regarded as a variant of either of its
constituents [...] since its form is quite different."

Form is not the issue. Rather, non-rendering processing is improved
if the fact that [ks.a] contains two letters is clearly recognizable.
In addition, exactly which conjuncts are required in Devanagari
writing is language-sensitive: a well-tuned Sanskrit font requires
hundreds of conjuncts that are not used (and would scarcely be
recognized) in modern Hindi writing.

"[...] the font designer must assign a specific code to the conjunct
[...]."

As discussed above in the consideration of ligatures, this code need
not be of concern outside the font. Conjunct tables are in principle
the same as ligaturing tables, and may be identified with them in
particular font standards (I am no expert in font internals).

"[T]he Standard then goes on to assign code points to numerous Latin,
Armenian, Hebrew, Arabic, and Tibetan combinations, ligatures, and
combining blocks [...]"

Unicode is an evolving standard that is over ten years old, and its

predecessor XCCS goes back almost a decade before that. Certain
compromises for backward compatibility or political reasons were
inevitable in the long process of its adoption as an industry as well
as an international standard. The Latin ligatures, for example, were
required for one-to-one transcodability between Unicode and Macintosh
character sets. An absolute consistency in such a large intellectual
creation over such a long stretch of time is not to be looked for,
although certainly desirable. The presence of a character in the
Standard does not mean, especially in the case of compatibility
characters, that it is desirable to use them.

"[...] as well as to the Ethiopic syllabic characters and thousands of
precomposed Hangul syllable blocks [...]"

A preliminary encoding of Ethiopic used a decomposed model with
abstract consonant and vowel characters. However, this is
substantially more artificial than its Arabic-style or Indic-style
analogues. Although Ethiopic syllables consist visually of modifiers
attached to consonant forms, the consonant forms never appear without
the modifiers (unlike the Hebrew and Arabic situations, where
consonant-only text is common). Nor is there any analogue of virama
in the Ethiopic system. Encoding Ethiopic in such a way would be
equivalent to encoding Canadian Syllabics with consonant characters
and "rotate 90", "rotate 180", "rotate 270" and "shrink" characters
for the vowels.

As for the Hangul Syllables block, the original intention was to
encode only the Jamo and a smaller set solely for compatibility with
the Korean national standard, which encoded only the composed
syllables actually in use in modern Korean. In Unicode 1.0, two such
sets were encoded, requiring a large mapping table to convert between
jamo and syllabic form. When the Korean standards body produced
another standard containing every possible combination of (modern)
jamo, whether the resulting syllable was in modern use or not, the
Unicode Consortium and ISO WG2 bit the bullet, removed all the
existing Hangul syllables, and added the new "universal" set (although
Middle Korean cannot be rendered using it, but only with the Jamo).
It was the reverberations of this "Korean mess" that determined UTC
and WG2 never to move any characters again, no matter what.

"In Tibetan, however, subjoined forms are encoded [...]"

This particular model of Tibetan was adopted only after a great deal
of consideration. Unicode 1.0 had a preliminary implementation of
Tibetan on the virama model, which was withdrawn in Unicode 1.1.
Unicode 2.0 reintroduced Tibetan using the current model, and extended
it in Unicode 3.0. Among the Brahmi-derived scripts, Tibetan is an
extreme case for conjunct formation: no other script has such deep
stacks of consonants. Overall, it seemed that the allocation of a
small number of subjoined characters in this one case would be
particularly useful, especially in the expression of Sanskrit in the
Tibetan script.

"Arabic joining forms are encoded [...] yet Syriac joining forms are
not."

Arabic joining forms are provided solely for backward compatibility
with existing standards, as you note. No such standards were in place
for Syriac, so no such characters were encoded.

"[T]here are no separate codes for Arabic-script combining dot
patterns [...]"

The combining characters in the U+0300 block, despite their rather
Latin appearance, are meant for use with all scripts. In general, the
Unicode Standard (tracking various national standards) decided not to
get into the business of decomposing Arabic letters into basic shapes
plus various dots. If such characters are needed, they can be added
as new Arabiform letters, or created ad hoc with the existing
combining characters.

Ampersand and Tamil abbreviations

Abbreviations are in general encoded only if they are distinct from
the letters that form them. "&" is not truly a ligature of "et" any
more:
it would be incorrect to write "AT et T" for "AT&T". A number of
Tamil date abbreviations are being added to Unicode.

"The Hangul Jamo block includes 'final consonants', which might
legitimately be regarded as 'joining forms' [...]."

It was probably a mistake not to classify Hangul vowels and finals as
combining marks, but it's too late to change their status. However,
the natural dividing point in Hangul is between the final and the
following initial, rather than after the vowel as in Indic scripts, so
some distinction must be made between initial and final consonants.

 Alternative placement forms

Alternative placements of diacritics can be managed by the same old
method of contextual glyph image selection within a font. Managing
the two variants of seghol can be done with a table like this:

 aleph seghol -> aleph-image centered-seghol-image
 yod seghol -> yod-image right-displaced-seghol-image

Again, the codes used for these seghol images are internal to the font
and its tables, and need not be standardized.

 "Unicode fonts"

"However, for many scripts a 'pure' Unicode font, i.e. one in which
only Unicode-encoded characters were provided, would be manifestly
insufficient, because it would lack vital conjuncts and combining
forms."

This is true, and could be reworded thus: "[...] on in which only a

single image is provided for each Unicode-encoded character [...]"

"The alternative method requires the use of [ZWNJ] and [ZWJ] to
indicate where joining characters are to be connected [...]."

This is not correct, and is based on a misunderstanding. These
characters need to be used, and should be used, *only* where the
normal rules of Arabic shaping are being violated. In your example,
none of the ZWJ characters are required and none would normally be
used: the substitution of contextually determined forms (initial,
medial, and final) would be entirely automatic.

The implementation of this behavior requires a different kind of table
in the font. This one specifies what images are used for initial,
medial, final, and isolated forms of each Arabic or Syriac character.
The font rendering engine applies a small set of rules, laid out on
pp. 192-93, to decide which particular contextually determined form to
use.

In your example, "what the user types" when rendered into Unicodes is
essentially what is stored. Rendering is then done, as on all modern
GUI systems, from the stored form rather than directly from the
keystrokes. No derendering is necessary or even possible.

Note that in Farsi, the ZWJ and ZWNJ (especially the latter) are much
more commonly required, and actually do appear on keyboards. The
Farsi plural suffix, for example, is never joined to the word
preceding it, so a ZWNJ is used to separate the two. In Arabic
itself, the main use of ZWJ is to display contextual forms in
isolation for exemplary purposes.

 Conclusions

"If there are going to be such things as 'Unicode fonts', they must
still provide a complete range of printed signs."

Absolutely correct; however, I hope to have shown that the internal
numerical codes used for these printed signs (the glyphs of the
Unicode Standard's definitions) need not be standardized for
interchange of plain text, which is the primary purpose of Unicode.

Note, however, that a "Unicode font" in the sense of a font able to
render all of the Unicode Standard is an unwieldy object and not
really necessary or desirable except as a fallback. A well-tuned
Spanish font will contain the character O WITH ACUTE, and so will a
well-tuned Polish font; but the Polish glyph will look rather
different, as the acute-accent part of the glyph will be more steeply
inclined. This is normal and acceptable, since bare legibility is
preserved even if this distinction is ignored. In fine typography,
however, it is still necessary to use separate fonts for separate
linguistic and typographical traditions; what cannot happen in a
Unicode regime is that the bare lexical meaning of a text is
incomprehensible to a non-rendering process because it uses the
"wrong" character encoding.

"Thus the rendering engine must accompany the text at all times."

Not at all. It is merely necessary that the recipient have a
rendering engine that is aware of the semantics of the Unicode
characters used by the text. A rendering engine that can handle all
of Unicode, unlike a universal font, is a perfectly reasonable
component of modern operating systems, though there are still many
legacy systems with old engines. Both Mozilla and Internet Explorer,
for example, have built-in engines to compensate for deficiencies in
the operating systems under which they may be run.

"Unicode format files will in general be larger than rendered-format
files [...]."

Not at all. In UTF-8, standard Arabic will be more compact (two bytes
per character) than pre-shaped Arabic (three bytes per character); in
UTF-16, they occupy the same space except where the standard rules are
being violated, i.e. very occasionally in Arabic text, and rather more
often (but still fairly rarely) in Farsi text. I don't know about the
other languages using the Arabic script.

"Unicode format files will require rendering or derendering whenever
they are displayed, printed, modified, or saved"

As noted, no derendering is required. Unicode files, like other
files, must be rendered when displayed or printed. Internal
operations can and should be done in terms of Unicode characters
rather than rendering-specific glyphs.

 Part II

Coptic:

There is a proposal on the table (with which I personally agree) to
disunify Coptic and Greek. Indeed, Michael Everson has shown that
Coptic is actually rather more readable when rendered with Cyrillic
letters than with ordinary modern Greek minuscules. So far, there has
not been enough pressure from either the Coptic or the typography
community to get this proposal acted on.

Georgian:

More recent versions of the Unicode Standard clarify that the intent
is to use the range U+10D0 to U+10F0 whenever Georgian is written in
the usual monocameral way, and to reserve U+10A0 to U+10C5 solely for
uppercase letters (whatever their form) when Georgian is written in
the archaic or archaizing bicameral style. Thus monocameral
asomtavruli or khutsuri text would be written using the former range
rather than the latter, and the actual distinction between the two,
and between either of them and the modern mkhedruli script, is left to
fonts.

Analogously, the distinction between Fraktur and Antiqua in German

typography is also left to fonts, despite the fact that Fraktur can be
very hard to read for those who only know Antiqua.

--
John Cowan <jcowan@reutershealth.com> http://www.reutershealth.com
I amar prestar aen, han mathon ne nen, http://www.ccil.org/~cowan
han mathon ne chae, a han noston ne 'wilith. --Galadriel, _LOTR:FOTR_

