
ISO
International Organization for Standardization
Organisation Internationale de Normalisation

ISO/IEC JTC 1/SC 2/WG 2

Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC JTC 1/SC 2/WG 2 N2895
L2/05-007

Date: 2005-01-17

Title: Informative Annex on ‘Characters in Identifiers’
Source: USA and Unicode Consortium

(prepared by V.S. Umamaheswaran (umavs@ca.ibm.com)
Action: WG 2 members and Liaison organizations
Reference WG2 / N2818 and WG2 N2754 Resolution M45.23
Distribution: ISO/IEC JTC 1/SC 2/WG 2 members and liaison organizations

This document proposes addition of an informative Annex on ‘Characters in Identifiers’ to
ISO/IEC 10646.

Background:
Document N2818 - Letter from SC22 to SC2 on language identifiers; SC22, via SC2 Secretariat;
2004-06-18, had requested WG2:

“SC 22 would like to ask SC 2/WG 2 to specify those characters which they believe are
suitable for identifiers, leaving each programming language standard (SC 22 and other
SCs and work programs generally) free to specify its own identifier-character list after
considering the tradeoffs between its requirements and the advantages of a consistent,
single, identifier specification in the same manner as the current TR 10176 recommends
that programming language standards can extend or restrict the identifier character list.”

In response, WG2 had taken the following resolution at its meeting M45:

M45.23 (Request from SC22 to SC2/WG2):
With reference to document N2818, WG2 accepts the request from SC22 to classify
characters in ISO/IEC 10646 for their suitability for use in identifiers. WG2 understands
the importance that such information is available at the same time characters are added
to ISO/IEC 10646. SC22 is invited to contribute to this work.

The US national body and the Unicode Consortium believe that WG2 can best meet the above
work in the standard by adding suitable text in the standard pointing to the detailed work done by
the Unicode Consortium on the topic of identifiers as documented in the Unicode Annex – UAX31
– “Identifier and Pattern Syntax” (see http://www.unicode.org/reports/tr31/tr31-4.html. The current
version of TR 31 text is attached for information. Even though its status is Draft as of this writing,
it is expected to be progressed to ‘approved’ status in the near future.

The following proposed text should be considered and added to ISO/IEC 10646 preferably in an
informative Annex.

Proposed Text:

Annex XXX (Informative)
Characters in Identifers

A common task facing an implementer of UCS is the provision of a parsing and/or lexing engine
for identifiers. Each programming language standard has its own identifier syntax; different
programming languages have different conventions for the use of certain characters from the
ASCII (ISO 646-IRV) range ($, @, #, _) in identifiers. Questions as to which characters to use for
syntactic purposes versus which to be allowed in identifiers, whether case-pairing should be
included, normalization should be performed, and other factors enter into the picture when
defining the set of permitted characters for a given identification purpose.

To assist in the standard treatment of identifiers in UCS character-based parsers, a set of
specifications is provided in UAX31 – “Identifier and Pattern Syntax” (see
http://www.unicode.org/reports/tr31/). Those specifications are recommended for determining the
list of UCS characters suitable for use in identifiers.

http://www.unicode.org/reports/tr31/

UTS #31: Identifier and Pattern Syntax

 Technical Reports

Draft Unicode Standard Annex #31

Identifier and Pattern Syntax

Version 4 (draft)

Authors Mark Davis (mark.davis@us.ibm.com)

Date 2004-10-08

This Version http://www.unicode.org/reports/tr31/tr31-4.html

Previous Version http://www.unicode.org/reports/tr31/tr31-3.html

Latest Version http://www.unicode.org/reports/tr31/

Summary

This document describes specifications for recommended defaults for the
use of Unicode in the definitions of identifiers and in pattern-based syntax. It
incorporates the Identifier section of Unicode 4.0 (somewhat reorganized)
and a new section on the use of Unicode in patterns. As a part of the latter, it
presents recommended new properties for addition to the Unicode Character
Database. It also incorporates guidelines for use of normalization with
identifiers (from UAX #15).

● Section 2 supersedes Section 5.15 Identifiers from The Unicode
Standard 4.0.

● Section 5 supersedes Annex 7 in UAX #15.

Status

This document has been approved by the Unicode Technical Committee for
public review as a Draft Unicode Standard Annex. Making this document
available for public review does not imply endorsement by the Unicode
Consortium. This is a draft document which may be updated, replaced, or
superseded by other documents at any time. This is not a stable document; it
is inappropriate to cite this document as other than a work in progress.

http://www.unicode.org/reports/tr31/tr31-4.html (1 of 13) [2005-01-17 16:11:31]

http://www.unicode.org/
http://www.unicode.org/reports
mailto:mark.davis@us.ibm.com
http://www.unicode.org/reports/tr31/tr31-3.html
http://www.unicode.org/reports/tr31/

UTS #31: Identifier and Pattern Syntax

A Unicode Standard Annex (UAX) forms an integral part of the
Unicode Standard, but is published as a separate document. The
Unicode Standard may require conformance to normative content in
a Unicode Standard Annex, if so specified in the Conformance
chapter of that version of the Unicode Standard. The version number
of a UAX document corresponds to the version number of the
Unicode Standard at the last point that the UAX document was
updated.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this
document is found in References. For the latest version of the Unicode
Standard see [Unicode]. For a list of current Unicode Technical Reports see
[Reports]. For more information about versions of the Unicode Standard, see
[Versions].

Contents

1. Introduction
2. Default Identifier Syntax
3. Alternative Identifier Syntax
4. Pattern Syntax
5. Normalization and Case
Acknowledgements
References
Modifications

1. Introduction

A common task facing an implementer of the Unicode Standard is the
provision of a parsing and/or lexing engine for identifiers. To assist in the
standard treatment of identifiers in Unicode character-based parsers, a set of
specifications is provided here as a recommended default for the definition
of identifier syntax. These guidelines are no more complex than current rules
in the common programming languages, except that they include more
characters of different types.

In addition, this document provides the definition of the Unicode properties
used to define stable pattern syntax: syntax that is stable over future
versions of the Unicode Standard. It also provides guidelines for the user of
normalization with identifiers, originally in UAX #15.

1.1 Conformance

http://www.unicode.org/reports/tr31/tr31-4.html (2 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

The following describes the possible ways that an implementation can claim
conformance to this technical standard.

C1. An implementation claiming conformance to this specification at any
Level shall identify the version of this specification and the version of
the Unicode Standard.

C2. An implementation claiming conformance to Level 1 of this
specification shall describe which of the following it observes:

● R1 Default Identifiers
● R2 Alternative Identifiers
● R3 Pattern Whitespace and Syntax Characters
● R4 Normalized Identifiers
● R5 Case-Insensitive Identifiers

2. Default Identifier Syntax

The formal syntax provided here is intended to capture the general intent
that an identifier consists of a string of characters that begins with a letter or
an ideograph, and then includes any number of letters, ideographs, digits, or
underscores. Each programming language standard has its own identifier
syntax; different programming languages have different conventions for the
use of certain characters from the ASCII range ($, @, #, _) in identifiers. To
extend such a syntax to cover the full behavior of a Unicode implementation,
implementers need only combine these specific rules with the syntax
provided here.

D1. Default Identifier Syntax

<identifier> := <identifier_start> <identifier_continue>*

Identifiers are defined by the following sets of character categories from the
Unicode Character Database.

Syntactic Classes for Identifiers

Syntactic Class Properties Coverage

<identifier_start> ID_Start Uppercase letter, lowercase
letter, titlecase letter, modifier
letter, other letter, letter
number, stability extensions

http://www.unicode.org/reports/tr31/tr31-4.html (3 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

<identifier_continue> ID_Continue Plus nonspacing mark, spacing
combining mark, decimal
number, connector
punctuation, formatting code,
stability extensions

The innovations in the identifier syntax to cover the Unicode Standard
include the following:

● Incorporation of proper handling of combining marks
● Allowance for layout and format control characters, which should be

ignored when parsing identifiers

2.1 Combining Marks

Combining marks are accounted for in identifier syntax. A composed
character sequence consisting of a base character followed by any number of
combining marks must be valid for an identifier. This requirement results
from the requirement for combining marks in the representation of many
languages, and the conformance rules in Chapter 3 regarding interpretation
of canonical-equivalent character sequences.

Enclosing combining marks (for example, U+20DD..U+20E0) are excluded
from the syntactic definition of <identifier_continue>, because the
composite characters that result from their composition with letters (for
example, U+24B6 circled latin capital letter a) are themselves not normally
considered valid constituents of these identifiers.

2.2 Layout and Format Control Characters

The Unicode characters that are used to control joining behavior,
bidirectional ordering control, and alternative formats for display are
explicitly defined as not affecting breaking behavior. Unlike space characters
or other delimiters, they do not serve to indicate word, line, or other unit
boundaries. Accordingly, they should normally be ignored for the purposes
of identifier definition. Implementations that cannot ignore characters in
identifiers should exclude these characters.

2.3 Specific Character Adjustments

Specific identifier syntaxes can be treated as tailorings of the generic syntax
based on character properties. For example, SQL identifiers allow an
underscore as an identifier part (but not as an identifier start); C identifiers
allow an underscore as either an identifier part or an identifier start. Specific
languages may also want to exclude the characters that have a
decomposition_type other than canonical or none, or to exclude some
subset of those, such as those with a decomposition_type equal to font.

http://www.unicode.org/reports/tr31/tr31-4.html (4 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

For programming language identifiers, normalization and case have a
number of important implications. For a discussion of these issues, see
Normalization and Case.

2.4 Backward Compatibility

Unicode General Category values are kept as stable as possible, but they can
change across versions of the Unicode Standard. The Other_ID_Start property
contains a small list of characters that qualified as <identifier_start>
characters in some previous version of Unicode solely on the basis of their
General Category properties, but that no longer qualify in the current version.
In Unicode 4.0, this list consists of four characters:

● U+2118 script capital p
● U+212E estimated symbol
● U+309B katakana-hiragana voiced sound mark
● U+309C katakana-hiragana semi-voiced sound mark

Similarly, the Other_ID_Continue property contains a small list of characters
that qualified as <identifier_continue> characters in some previous
version of Unicode solely on the basis of their General Category properties,
but that no longer qualify in the current version.

The Other_ID_Start and Other_ID_Continue properties are thus designed to
ensure that the Unicode identifier specification is backward compatible: Any
sequence of characters that qualified as an identifier in some version of
Unicode will continue to qualify as an identifier in future versions.

R1 Default Identifiers
 To meet this requirement, an implementation shall use the D1 and the

properties ID_Start and ID_Continue to determine whether a string is an
identifier or not;

or shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from ID_Start and ID_Continue.

3. Alternative Identifier Syntax

The down-side of working with the syntactic classes defined above is the
storage space needed for the detailed definitions, plus the fact that with each
new version of the Unicode Standard new characters are added, which an
existing parser would not be able to recognize. In other words, the
recommendations based on that table are not upwardly compatible.

http://www.unicode.org/reports/tr31/tr31-4.html (5 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

One method to address this problem is to turn the question around. Instead
of defining the set of code points that are allowed, define a small, fixed set
of code points that are reserved for syntactic use and allow everything else
(including unassigned code points) as part of an identifier. All parsers written
to this specification would behave the same way for all versions of the
Unicode Standard, because the classification of code points is fixed forever.

The drawback of this method is that it allows “nonsense” to be part of
identifiers because the concerns of lexical classification and of human
intelligibility are separated. Human intelligibility can, however, be addressed
by other means, such as usage guidelines that encourage a restriction to
meaningful terms for identifiers. For an example of such guidelines, see the
XML 1.1 specification by the W3C [XML1.1].

By increasing the set of disallowed characters, a reasonably intuitive
recommendation for identifiers can be achieved. This approach uses the full
specification of identifier classes, as of a particular version of the Unicode
Standard, and permanently disallows any characters not recommended in
that version for inclusion in identifiers. All code points unassigned as of that
version would be allowed in identifiers, so that any future additions to the
standard would already be accounted for. This approach ensures both
upwardly compatible identifier stability and a reasonable division of
characters into those that do and do not make human sense as part of
identifiers.

Some additional extensions to the list of disallowed code points can be made
to further constrain “unnatural” identifiers. For example, one could include
unassigned code points in blocks of characters set aside for future encoding
as symbols, such as mathematical operators.

With or without such fine-tuning, such a compromise approach still incurs
the expense of implementing large lists of code points. While they no longer
change over time, it is a matter of choice whether the benefit of enforcing
somewhat word-like identifiers justifies their cost.

Alternatively, one can use the properties described below, and allow all
sequences of characters to be identifiers that are neither pattern syntax nor
pattern whitespace. This has the advantage of simplicity and small tables, but
allows many more “unnatural” identifiers.

R2 Alternative Identifiers

http://www.unicode.org/reports/tr31/tr31-4.html (6 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

 To meet this requirement, an implementation shall define identifiers to
be any string of characters that contains neither Pattern_White_Space
nor Pattern_Syntax characters;

or shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the sets of code points
defined by these properties.

4. Pattern Syntax

There are many circumstances where software interprets patterns that are a
mixture of literal characters, whitespace, and syntax characters. Examples
include regular expressions, Java collation rules, Excel or ICU number
formats, and many others. These patterns have been very limited in the past,
and forced to use clumsy combinations of ASCII characters for their syntax.
As Unicode becomes ubiquitous, some of these will start to use non-ASCII
characters for their syntax: first as more readable optional alternatives, then
eventually as the standard syntax.

For forwards and backwards compatibility, it is very advantageous to have a
fixed set of whitespace and syntax code points for use in patterns. This
follows the recommendations that the Unicode Consortium made regarding
completely stable identifiers, and the practice that is seen in XML 1.1
[XML1.1]. (In particular, the consortium committed to not allocating
characters suitable for identifiers in the range 2190..2BFF, which is being
used by XML 1.1.)

With a fixed set of whitespace and syntax code points, a pattern language
can then have a policy requiring all possible syntax characters (even ones
currently unused) to be quoted if they are literals. By using this policy, it
preserves the freedom to extend the syntax in the future by using those
characters. Past patterns on future systems will always work; future patterns
on past systems will signal an error instead of silently producing the wrong
results.

Example:

In version 1.3 of program X, '≈' is a reserved syntax character, e.g. it
doesn't perform an operation, but you have to quote it. In version
1.4, '≈' gets a real meaning, e.g. uppercase the subsequent
characters. In this example, '\' quotes the next character; i.e., causes
it to be treated as a literal instead of a syntax character.

● The pattern abc...\≈...xyz works on both version 1.3 and 1.4,
and refers to the literal character since it is quoted in both
cases.

● The pattern abc...≈...xyz works on 1.1 and uppercases the

http://www.unicode.org/reports/tr31/tr31-4.html (7 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

following characters. On version 1.0, the engine (rightfully)
has no idea what to do with ≈. Rather than silently fail (by
ignoring ≈ or turning it into a literal), it has the opportunity
signal an error.

As of Unicode 4.1, there are two Unicode character properties that can be
used for for stable syntax: Pattern_White_Space and Pattern_Syntax.
 Particular pattern languages may, of course, override these
recommendations (for example, adding or removing other characters for
compatibility in ASCII).

For stability, the property values are absolutely invariant; not changing with
successive versions of Unicode. Of course, this doesn't limit the ability of the
Unicode Standard to add more symbol or whitespace characters, but the
syntax and whitespace characters recommended for use in patterns would
not change.

When generating rules or patterns, all whitespace and syntax code points
that are to be literals would require quoting (using whatever quoting
mechanism is available). For readability, it is recommended practice to quote
or escape all literal whitespace and default ignorable code points as well.

Example: consider the following, where the items in angle brackets
indicate literal characters.

● a<SPACE>b => x<ZERO WIDTH SPACE>y + z;

Since <SPACE> is a Pattern_White_Space character, it would require
quoting. Since <ZERO WIDTH SPACE> is a default ignorable
character, it should also be quoted for readability. So if in this
example \uXXXX is used for hex expression, but resolved before
quoting, and single quotes are used for quoting, this might be
expressed as:

● 'a\u0020b' => 'x\u200By' + z;

R3 Pattern Syntax Characters

http://www.unicode.org/reports/tr31/tr31-4.html (8 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

 To meet this requirement, an implementation shall use
Pattern_White_Space characters as all and only those character
interpreted as whitespace in parsing, and shall use Pattern_Syntax
characters as all and only those characters with syntactic use;

or shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the sets of code points
defined by these properties.

● Note: all characters other than those defined by these properties
would be available as identifiers or literals.

5. Normalization and Case

R4 Normalized Identifiers
 To meet this requirement, an implementation shall specify the

normalization form, and shall provide a precise list of any characters
that are excluded from normalization, and if the normalization form is
NFKC, shall apply the modifications in NFKC Modifications. Except for
identifiers containing excluded characters, any two identifiers that have
the same normalization form shall be treated as equivalent by the
implementation.

R5 Case-Insensitive Identifiers
 To meet this requirement, an implementation shall specify either simple

or full case folding, and adhere to the Unicode specification for that
folding. Any two identifiers that have the same case-folded form shall
be treated as equivalent by the implementation.

This section discusses issues that must be taken into account when
considering normalization and case folding of identifiers in programming
languages or scripting languages. Normalization can be used to avoid
problems where apparently identical identifiers are not treated equivalently.
Such problems can appear both during compilation and during linking, in
particular also across different programming languages. To avoid such
problems, programming languages can normalize identifiers before storing
or comparing them. Generally if the programming language has case-
sensitive identifiers then Normalization Form C may be used, while if the
programming language has case-insensitive identifiers then Normalization
Form KC may be more appropriate.

Note: In mathematically oriented programming languages which
make distinctive use of the Mathematical Alphanumeric Symbols
such as U+1D400 MATHEMATICAL BOLD CAPITAL A, NFKC must not be
used without filtering its application to not apply to those characters
with the property value decomposition_type=font. For related
information, see UTR #30: Character Foldings.

http://www.unicode.org/reports/tr31/tr31-4.html (9 of 13) [2005-01-17 16:11:31]

http://www.unicode.org/reports/tr31/tr31-4.html?ch=1D400#here
http://www.unicode.org/reports/tr30/

UTS #31: Identifier and Pattern Syntax

If programming languages are using NFKC to level ("fold") differences
between characters, then they use the following modification of the identifier
syntax from the Unicode Standard to deal with the idiosyncrasies of a small
number of characters. These characters fall into three classes:

NFKC Modifications

1. Middle Dot. Because most Catalan legacy data will be encoded in
Latin-1, U+00B7 MIDDLE DOT needs to be allowed in
<identifier_continue>. (If the programming language is using a
dot as an operator, then U+2219 BULLET OPERATOR or U+22C5 DOT
OPERATOR should be used instead. However, care should be taken
when dealing with U+00B7 MIDDLE DOT, as many processes will
assume its use as punctuation, rather than as a letter extender.)

2. Combining-like characters. Certain characters are not formally
combining characters, although they behave in most respects as if
they were. Ideally, they should not be in <identifier_start>, but
rather in <identifier_continue>, along with combining
characters. In most cases, the mismatch does not cause a problem,
but when these characters have compatibility decompositions, they
can cause identifiers not to be closed under Normalization Form KC.
In particular, the following four characters are to be in
<identifier_continue> and not <identifier_start>:

❍ 0E33 THAI CHARACTER SARA AM
❍ 0EB3 LAO VOWEL SIGN AM
❍ FF9E HALFWIDTH KATAKANA VOICED SOUND MARK
❍ FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

3. Irregularly decomposing characters. U+037A GREEK YPOGEGRAMMENI
and certain Arabic presentation forms have irregular compatibility
decompositions, and must be excluded from both
<identifier_start> and <identifier_continue>. It is
recommended that all Arabic presentation forms be excluded from
identifiers in any event, although only a few of them are required to
be excluded for normalization to guarantee identifier closure.

With these amendments to the identifier syntax, all identifiers are closed
under all four Normalization forms. This means that for any string S,

isIdentifier(S) implies

isIdentifier(toNFD(S))
isIdentifier(toNFC(S))
isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S))

Identifiers are also closed under case operations (with one exception), so that
for any string S,

http://www.unicode.org/reports/tr31/tr31-4.html (10 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

 isIdentifier(S) implies

isIdentifier(toLowercase(S))
isIdentifier(toUppercase(S))
isIdentifier(toFoldedcase(S))

The one exception is U+0345 COMBINING GREEK YPOGEGRAMMENI. In the very
unusual case that U+0345 is at the start of S, U+0345 is not in
<identifier_start>, but its uppercase and case-folder version are. In
practice this is not a problem, because of the way normalization is used with
identifiers.

Note: Those programming languages with case-insensitive
identifiers should use the case foldings described in Section 3.13
Default Case Operations to produce a case-insensitive normalized
form.

When source text (such as program source) is parsed for identifiers, the
identifiers must be parsed before folding distinctions using case mapping or
NFKC.

When source text (such as program source) is parsed for identifiers, the
folding of distinctions (using case mapping or NFKC) must be delayed until
after parsing has located the identifiers. Thus such folding of distinctions
should not be applied to string literals or to comments in program source
text.

Note: The Unicode Character Database [UCD] provides derived
properties that can be used by implementations for parsing
identifiers, both normalized and unnormalized. These are the
properties ID_Start, ID_Continue, XID_Start, and XID_Continue.
Unicode 3.1 also provides support for handling case folding with
normalization: the Unicode Character Database property
FC_NFKC_Closure can be used in case folding, so that a case folding
of an NFKC string is itself normalized. These properties, and the files
containing them, are described in the UCD documentation [UCDDoc].

Acknowledgements

Thanks to Eric Muller, Asmus Freytag, and Martin Duerst for feedback on this
document.

References

http://www.unicode.org/reports/tr31/tr31-4.html (11 of 13) [2005-01-17 16:11:31]

UTS #31: Identifier and Pattern Syntax

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for
technical reports, and for a list of technical reports.

[UCD] Unicode Character Database.
http://www.unicode.org/ucd
For an overview of the Unicode Character Database and a
list of its associated files

[Unicode] The Unicode Consortium. The Unicode Standard, Version
4.0. Reading, MA, Addison-Wesley, 2003. 0-321-18578-1.

[UAX15] UAX #15, Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For information on version numbering, and citing and
referencing the Unicode Standard, the Unicode Character
Database, and Unicode Technical Reports.

[XML1.1] Extensible Markup Language (XML) 1.1
http://www.w3.org/TR/xml11/

Modifications

The following summarizes modifications from the previous version of this
document.

4 ● Removed section 4.1, since the two properties have been
accepted for Unicode 4.1.

● Minor editing

3 ● Made draft UAX
● Incorporated Annex 7 from UAX #15
● Added Other_ID_Continue for Unicode 4.1
● Added conformance clauses
● Changed <identifier_extend> to <identifier_continue> to better

match the property name.
● Some additional edits.

http://www.unicode.org/reports/tr31/tr31-4.html (12 of 13) [2005-01-17 16:11:31]

http://www.unicode.org/reporting.html
http://www.unicode.org/reports/
http://www.unicode.org/ucd
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/reports/tr15/
http://www.unicode.org/versions/
http://www.w3.org/TR/xml11/

UTS #31: Identifier and Pattern Syntax

2 ● Modified Pattern White Space to remove compatibility characters
● Added example explaining use of Pattern White Space

1 ● First version: incorporated section from Unicode 4.0 on
Identifiers plus new section on patterns.

Copyright © 2000-2004 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no
expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No liability
is assumed for incidental and consequential damages in connection with or arising out of the use of
the information or programs contained or accompanying this technical report. The Unicode Terms of
Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

http://www.unicode.org/reports/tr31/tr31-4.html (13 of 13) [2005-01-17 16:11:31]

http://www.unicode.org/copyright.html
http://www.unicode.org/copyright.html

	DrUAX31-4.pdf
	unicode.org
	UTS #31: Identifier and Pattern Syntax

