
ISO/IEC FCD 14651 – Second edition

International string ordering and comparison –
 Method for comparing character strings and
 description of the common template tailorable ordering

Classement international de chaînes de caractères –
 Méthode de comparaison de chaînes de caractères et
 description du modèle commun et adaptable de classement

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Contents

.. ii Foreword

Introduction... iii
.. 0 1. Scope

... 1 2. Conformance

.. 1 3. Normative references

.. 2 4. Definitions

5. Symbols and abbreviations.. 2
... 3 6. String comparison

...3 6.1. Preparation of character strings prior to comparison
..3 6.2. Key building and comparison
...3 6.2.1. Preliminary considerations

..5 6.2.2. Reference ordering key formation
...6 6.2.3. Reference comparison method for ordering character strings

..7 6.3. Common Template Table: formation and interpretation
...7 6.3.1. BNF syntax rules for the Common Template Table in Annex A

...11 6.3.2. Well-formedness conditions
...12 6.3.3. Interpretation of tailored tables

..13 6.3.4. Evaluation of weight tables
..14 6.3.5. Conditions for considering specific table equivalences

..14 6.3.6. Conditions for results to be considered equivalent
...14 6.4. Declaration of a delta

..15 6.5. Name of the Common Template Table and name declaration

.. 17 Annex A – Common Template Table (normative)

... 18 Annex B – Example tailoring deltas (informative)
...18 B.1. Example 1 – Minimal tailoring

.............................18 B.2. Example 2 – Reversing the order of lowercase and uppercase letters
...18 B.3. Example 3 – Canadian delta and benchmark

..21 B.4. Example 4 – Danish delta and benchmark
..24 B.5. Example 5 – A tailoring for Khmer

... 27 Annex C – Preparation (informative)
...27 C.1. General considerations

 ..27 C.2. Thai string ordering
...27 C.2.1. Thai ordering principles

...28 C.2.2. Vowel/consonant rearrangement
..29 C.2.3. Example ordered strings

...30 C.3. Handling of numeral substrings in collation
...30 C.3.1. Handling of ‘ordinary’ numerals for natural numbers

..33 C.3.2. Handling of positional numerals in other scripts
C.3.3. Handling of other non-pure positional system numerals or non-positional system numerals

(e.g. Roman numerals)..33
..33 C.3.4. Handling of numerals for whole numbers

...35 C.3.5. Handling of positive positional numerals with fractional parts
..............35 C.3.6. Handling of positive positional numerals with fraction parts and exponent parts

...36 C.3.7. Handling of date and time of day indications

...38 C.3.8. Making numbers less significant than letters
..38 C.3.9. Maintaining determinacy

Annex D – Tutorial on solutions brought by this standard to problems of lexical
ordering (informative)... 39

...39 D.1. Problems
...40 D.2. Solution
..42 D.3. Tailoring

... 43 Annex E – Bibliography (informative)

 i

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

The ISO/IEC 14651 International Standard was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 2, Coded Character Sets.

This second edition cancels and replaces the first edition (ISO/IEC 14651:2001), which has been
technically revised.

 ii

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Introduction
This International Standard provides a method, applicable around the world, for ordering text data,

and provides a Common Template Table which, when tailored, can meet a given language’s ordering
requirements while retaining reasonable ordering for other scripts.

The Common Template Table requires some tailoring in different local environments. Conformance
to this International Standard requires that all deviations from the Template, called "deltas", be declared
to document resultant discrepancies.

This International Standard describes a method to order text data independently of context.

The Technical Report ISO/IEC TR 14652 has specifications for ordering that informatively
complements the specifications in this International Standard, and where additional information may be
sought on ordering keywords defined in this International Standard.

 iii

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

International string ordering and comparison –
Method for comparing character strings and
description of the common template tailorable ordering

1. Scope
This International Standard defines:

• A reference comparison method. This method is applicable to two character strings to
determine their collating order in a sorted list. The method can be applied to strings
containing characters from the full repertoire of ISO/IEC 10646. This method is also
applicable to subsets of that repertoire, such as those of the different ISO/IEC 8-bit
standard character sets, or any other character set, standardised or not, to produce
ordering results valid (after tailoring) for a given set of languages for each script. This
method uses collation tables derived either from the Common Template Table defined in
this International Standard or from one of its tailorings. This method provides a reference
format. The format is described using the Backus-Naur Form (BNF). This format is used to
describe the Common Template Table. The format is used normatively within this
International Standard.

• A Common Template Table. A given tailoring of the Common Template Table is used by
the reference comparison method. The Common Template Table describes an order for all
characters encoded in ISO/IEC 10646:2003 up to Amendment 2, plus characters
DEVANAGARI LETTER GGA, DEVANAGARI LETTER JJA, DEVANAGARI
LETTER DDDA and DEVANAGARI LETTER BBA (respectively, characters U097B,
U097C, U097E and U097F).

It allows for a specification of a fully deterministic ordering. This table enables the specification of
a string ordering adapted to local ordering rules, without requiring an implementer to have
knowledge of all the different scripts already encoded in the UCS.

NOTE 1: This Common Template Table is to be modified to suit the needs of a local environment. The main
benefit, worldwide, is that for other scripts, often no modification may be required and that the order
will remain as consistent as possible and predictable from an international point of view.

NOTE 2: The character repertoire used in this International Standard is equivalent to that of the Unicode
Standard version 5.0.

• A reference name. The reference name refers to this particular version of the Common
Template Table, for use as a reference when tailoring. In particular, this name implies that
the table is linked to a particular stage of development of the ISO/IEC 10646 Universal
multiple-octet coded character set.

• Requirements for a declaration of the differences (delta) between the collation table and
the Common Template Table.

This International Standard does not mandate:

• A specific comparison method; any equivalent method giving the same results is
acceptable.

• A specific format for describing or tailoring tables in a given implementation.

• Specific symbols to be used by implementations except for the name of the Common
Template Table.

• Any specific user interface for choosing options.

 0

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

• Any specific internal format for intermediate keys used when comparing, nor for the table
used. The use of numeric keys is not mandated either.

• A context-dependent ordering.

• Any particular preparation of character strings prior to comparison.

NOTE 1: It is normally necessary to do preparation of character strings prior to comparison even if it is not
prescribed by this International standard (see informative Annex C).

NOTE 2: Although no user interface is required to choose options or to specify tailoring of the Common
Template Table, conformance requires always declaring the applicable delta, a declaration of
differences with this table. It is recommended that processes present available tailoring options to
users.

2. Conformance
A process is conformant to this International Standard if it produces results identical to those that

result from the application of the specifications described in subclauses 6.2 to 6.5.

A declaration of conformity to this International Standard shall be accompanied by a statement,
either directly or by reference, of the following:

• The number of levels that the process supports; this number shall be at least three.

• Whether the process supports the forward,position processing parameter.

• Whether the process supports the backward processing parameter and at which level.

• The tailoring delta described in clause 6.4 and how many levels are defined in the delta.

• If a preparation process is used, the method used shall be declared.

It is the responsibility of implementers to show how their delta declaration is related to the table
syntax described in 6.3, and how the comparison method they use, if different from the one mentioned in
clause 6, can be considered as giving the same results as those prescribed by the method specified in
clause 6. The use of a preparation process is optional and its details are not specified in this International
Standard.

3. Normative references
The following standards contain provisions which, through reference in this text, constitute

provisions of this International Standard. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this International Standard are
encouraged to investigate the possibility of applying the most recent editions of the standards listed
below.

Members of IEC and ISO maintain registers of currently valid International Standards.

• ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character
Set (UCS)

• ISO/IEC 10646:2003/Amd.1:2005 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Amendment 1: Glagolitic, Coptic, Georgian and other characters.

• ISO/IEC 10646:2003/Amd.2:2006 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Amendment 2: N'Ko, Phoenician and other characters.

 1

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

4. Definitions
For the purposes of this International Standard, the following definitions apply:

4.1 character string a sequence of characters considered as a single object

4.2 collation equivalent to the term “ordering”

4.3 collating symbol a symbol used to specify weights assigned to a collating element

4.4 collation (weighting) table
a mapping from collating elements to weighting elements

4.5 collating element a sequence of one or more characters that are considered a single entity for
ordering

4.6 delta list of the differences between a given collation table and another one. The
given collation table, together with a given delta, forms a new collation table.
Unless otherwise specified in this International Standard, the term "delta"
always refers to differences from the Common Template Table as defined in
this International Standard

4.7 (collation) level the sequence number for a subkey in the series of subkeys forming a key

4.8 ordering a process by which two strings are determined to be in exactly one of the
relationships of less than, greater than, or equal to one another

4.9 ordering key a sequence of subkeys used to determine an order

4.10 (collation) preparation
a process in which given character strings are mapped to (other) character
strings logically before the calculation of the ordering key for each of the
strings

4.11 reference comparison method
the method for establishing an order between two ordering keys (see clause
6)

4.12 subkey a sequence of weights computed for a character string.

4.13 symbol collating element

4.14 (collation) weight a positive integer value, used in subkeys, reflecting the relative order of
collating elements

4.15 weighting element
a list of a given number of weights sequentially ordered by level

5. Symbols and abbreviations
Following ISO/IEC 10646, characters are referenced as UX where X stands for a series of one to

eight hexadecimal digits (using upper case letters where applicable) and refers to the value of that
character in ISO/IEC 10646. This convention is used throughout this International Standard.

 2

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

In the Common Template Table arbitrary symbols representing weights are used according to the
BNF notation description in clause 6.3.1.

6. String comparison

6.1. Preparation of character strings prior to comparison

It may be necessary to transform character strings before the reference comparison method is
applied to them (see annex C for an example of such preparation). Although not part of the scope of this
International Standard, preparation may be an important part of the ordering process. See Annex C for
some examples of preparation.

Where applicable, it can be an important part of the preparation phase to map characters from a
non-UCS encoding scheme to the UCS for input to the comparison method. This task can amongst other
things encompass the correct handling of escape sequences in the originating encoding scheme, the
mapping of characters without an allocated UCS codepoint to an application-defined codepoint in the
private zone area and change the sequence of characters in strings that are not stored in logical order.
For example, for visual order Arabic code sets, input strings must be put into logical order; and for some
bibliographic code sets, strings with combining accents stored before their respective base character
require that the combining accents be put after their base character. The resulting string sequence may
then have to be remapped into its original encoding scheme.

NOTE 1: The Common Template Table is designed so that combining sequences and corresponding single
characters (precomposed) will have precisely the same ordering. To avoid inadvertently breaking
this invariant (and in the process breaking Unicode conformance), tailoring should reorder
combining sequences when corresponding characters are reordered. For example, if Ä is reordered
after Z, then the sequence <A>+<combining diaeresis> should also be reordered. To avoid
exposing encoding differences that may be invisible to the end-user, it is recommended that strings
be normalized according to Unicode normalization form NFD to achieve this equivalence – see
Bibliography, Unicode Technical Report no. 15.

NOTE 2: Escape sequences and control characters constitute very sensitive data to interpret, and it is highly
recommended that preparation should filter out or transform these sequences.

NOTE 3: Since the reference method is a logical statement for the mechanism for string comparison, it does
not preclude an implementation from using a non-UCS character encoding only, as long as it
produces results as if it were using the reference comparison method.

6.2. Key building and comparison

6.2.1. Preliminary considerations

6.2.1.1. Assumptions

The collation table is a mapping from collating elements to weighting elements. In each weighting
element, four levels are described in the Common Template Table. This number of levels can be
extended or reduced, but not below 3 levels, in tailoring.

NOTE: In the Common Template Table, levels generally have the following characteristics, although this
purpose is not absolute:

 3

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

 Level 1: This level generally corresponds to the set of common letters of the alphabets for that script,
if the script is alphabetic, and to the set of common characters of the script if the script is ideographic
or syllabic.

 Level 2: This level generally corresponds to diacritical marks affecting each basic character of the
script. For some languages, letters with diacritics are always considered an integral part of the basic
letters of the alphabet, and are not considered at this second level, but rather at the first. For
example, in Spanish, N TILDE is considered a basic letter of the Latin script. Therefore, tailoring for
Spanish will change the definition of N TILDE from "the weight of an N in the first level and the
weight of a TILDE in the second level" to "the weight of an N TILDE (placed after N and before O) in
the first level, and indication of the absence of a diacritic in the second level". For some characters,
variant letter shapes are also dealt with on level 2. An example of this is ß, the LATIN LETTER
SHARP S, which is treated as equivalent to ss on level 1, but traditionally distinguished from it on
level 2.

Level 3 : This level generally corresponds to case distinctions or to distinctions based on variant
letter shapes (like the distinction between Hiragana and Katakana).

Level 4 : This level generally corresponds to weighting differences that are less significant than those
at the other levels. Often the last level (level 4 in the Common Template Table) is intended to specify
additional weighting for "special" characters, i.e., characters normally not part of the spelling of
words of a language (such as dingbats, punctuation, etc.), sometimes called "ignorable" characters
in the context of computerized ordering.

6.2.1.2. Processing properties

A given tailored table has specific scanning and ordering properties. These properties may have
been changed by the tailoring.

A scanning direction (forward or backward) for each level is used to indicate how to process the
string. The scanning direction is a global property of each level defined in the tailored table.

An optional property of the last level of comparison, if that level is greater than three, is that before
comparing weights of each “ignorable” character, a comparison on the numeric position of each such
character in the two strings may be effected. This processing property is known as the ‘position’ option.
In other words, for two strings equivalent at all levels except the last one, the string having an ignorable
in the lowest position comes before the other one. In case corresponding “ignorables” are at the same
position, then their weights are considered, until a difference is found. Support for this kind of processing
is optional and is not necessary to claim conformance.

NOTE: The scanning direction (forward or backward) is not normally related to the natural writing direction
of scripts. The scanning direction applies to the logical sequence of the coded character string.

 According to ISO/IEC 10646, for scripts written right to left, such as Arabic, the lowest positions in
the logical sequence of characters correspond to the rightmost characters of a string (from the point
of view of their natural presentation sequence). Conversely, for the Latin script, written left to right,
the lowest positions in the logical sequence of characters correspond to the leftmost characters of
the string (from the point of view of their natural presentation sequence).

 Scanning forward starts with the lowest position in the logical sequence, while scanning backward
starts from the highest position, independently of the presentation sequence. The scanning direction
for ordering purposes is a global property of each level described in the table.

 In ISO/IEC 10646, the Arabic script is artificially separated into two pseudo-scripts: 1) the logical,
intrinsic Arabic, coded independently of shapes, and 2) the Arabic presentation forms. Both allow
the complete coding of Arabic, but intrinsic Arabic is normally preferred for better processing, while
presentation-form Arabic is preferred by some presentation-oriented applications. ISO/IEC 10646
does not prescribe that the presentation forms be stored in any specific order, and in some
implementations, the storage order for the latter is the reverse of the storage order used for intrinsic
Arabic. It is therefore advisable that prehandling be used to make sure that Arabic presentation
forms and other Arabic characters be fed to the comparison method in logical order.

 4

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

A tailored table may be separated into sections for ease of tailoring. Each section is then assigned a
name consistent with the specification in subclause 6.3.1. One of the tailoring possibilities is to assign a
given order to each section and to change the relative order of an entire section relative to other
sections.

6.2.2. Reference ordering key formation

When two strings are to be compared to determine their relative order, the two strings are first
broken up into a sequence of collating elements taking into account the multi-character “collating-
element” statements declared and used in a tailored table (if the syntax of clause 6.3.1 is used). For the
syntax used for expressing the Common Template Table, the name of a collating element consisting of a
single character, is formed by the UCS value of the character, expressed as a hexadecimal string,
prefixed with “U”. For multi-character collating elements, the name and association to characters can be
found via the collating elements declarations.

Then a sequence of m intermediary subkeys is formed out of a character string, where m is the
number of levels described in a tailored collation weighting table.

Each ordering key is a sequence of subkeys. Each subkey is a list of numeric weights. A subkey is
formed by successively appending the list of the weights assigned, at the level of the subkey, to each
collating element of the string. The keyword “IGNORE” in the Common Template Table at the place of a
sequence of collating symbols at a level, indicates that the sequence of weights at that level for that
collating element is an empty sequence of weights.

There are three ways of forming subkeys: subkeys formed using the “forward” processing
parameter; subkeys formed using the “backward” processing parameter; and subkeys formed using the
“forward,position” processing parameter. Subkeys that use the “position” option can only occur
at the last level, and only if that level is greater than three. Support of the “position” option is not
required for conformance. If the processing parameter “forward,position” is not supported,
“forward,position” shall be interpreted as if the processing parameter had been “forward”.

If there is no entry in the tailored table for a character of the input string, then the character’s weights
are undefined. Characters with undefined weights should be ordered, with respect to characters that
have defined weights, as if the undefined ones were given the weight named “UNDEFINED” at the first
level. If there is no weight assignment to the symbol “UNDEFINED” before the symbol <SFFFF>’s
weight assignment in a given tailored table, then the table shall be interpreted as if “UNDEFINED” was
weighted just before <SFFFF> (the maximal level 1 weight). The ordering of characters with undefined
weights with respect to other characters with undefined weights is not specified in this standard.

NOTE: A possible way to order characters with undefined weights is as if there were tailoring lines like this
one added to the table, in UCS code point order (call the maximal level 4 weight <PLAIN> here):

 <UXXXX> "<UNDEFINED><UXXXX>";<BASE>;<MIN>;<PLAIN>

6.2.2.1. Formation of a subkey with the “forward” level processing parameter

Subkeys, at a particular level, formed with the “forward” level processing parameter, are built in
the following way:

During forward scanning of each collating element of the input character string, one or more weights
are obtained. These weights are obtained by matching the collating element in the given tailored
collation weighting table, obtaining the list of weights assigned to the collating element at the particular
level. The obtained weight list is appended to the end of the subkey.

6.2.2.2. Formation of a subkey with the “backward” level processing parameter

Subkeys, at a particular level, formed with the “backward” level processing parameter are built by
forming a subkey as with the “forward” parameter, then reversing that subkey weight by weight.

 5

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

6.2.2.3. Formation of a subkey with the “forward,position” level processing parameter

Subkeys, at the last level, formed with the “forward,position” level processing parameter are
formed by forming a subkey as with the “forward” parameter, but for collating elements that are not
"IGNORE"d at all levels but the last one, their last level weighting (list of weights) is replaced by a single
weight (call it <PLAIN> here) that is larger than all other weights at the last level in the given tailored
table. Collating elements that are "IGNORE"d at all levels but the last one, retain their weighting
according to the given tailored table. Finally, any trailing sequence of the maximal weight (<PLAIN>) is
removed from the subkey, effectively replacing each trailing maximal weight with a zero weight.

NOTE: For any level, implementations are allowed to apply an order-preserving reduction of all subkeys at
that level. Such an order-preserving subkey reduction is useful for levels 2, 3, and 4. Level 2 often
has long stretches of the weight named <BASE> in Annex A. Level 3 often has long stretches of the
weight named <MIN> in Annex A. Level 4 often has long stretches of the weight named <PLAIN>
here. One such ordering preserving subkey reduction technique effectively encodes, in the last level
subkey, the (relative) position, as single number each, of each otherwise ignored character; hence
the name of the “position” option.

6.2.3. Reference comparison method for ordering character strings

The reference comparison method for ordering two given character strings (after collation
preparation, which is not part of the reference comparison method itself) is to compare ordering keys
generated by the reference key formation method described in subclause 6.2.2 of this International
Standard:

• Begin by building an ordering key, using a given tailored collation weighting table, for each
of the two given character strings being compared.

• Then compare the resulting keys according to the key ordering definition below in this
subclause. Keys can be compared either up to a given level, or up to the last level of the
given tailored collation weighting table.

NOTE 1: The comparison may be made while generating the ordering keys for two strings to be compared,
stopping the key generation when the order of the strings can be determined. Such a technique is
sometimes termed lazy evaluation, and some systems support it by default. This avoids generating
the full ordering key, when an ordering difference may be found early in the keys. When a bigger set
of strings are to be ordered, it may be advisable to generate the ordering keys, and store each key
or an initial segment of each, before comparing the keys.

Weights for different levels should not be compared, which implies that subkeys at different levels
should not be compared. Nor should keys generated from different tailored tables be compared.

NOTE 2: This allows implementations to assign weightings at each level independently of the other levels,
and independently of other tailorings.

m is the maximal level of a given tailored table. Recall that a key is a list, of length m, of subkeys; a
subkey is a list of weights; and a weight is a positive integer. Other notations used below are:

• Lz is the length of the subkey z, i.e., the number of weights in the subkey.
• zwt(a), where 1 ≤ a ≤ Lz, is the weight at index position a (an integer > 0) of the subkey z.
• usk(b), where 1 ≤ b ≤ m, is the subkey at level b (an integer > 0) of the key u.

The orderings of weights, subkeys, and ordering keys (up to a given level, or up to the last level) are
total orders, defined for a given tailored collation table as follows:

1. Weights are positive integer values (in the reference method), and are compared as
such for the purposes of collation.

 6

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

2. A subkey v is less than a subkey w (written v < w) if and only if there exists an integer
i, where 1 ≤ i ≤ Lv+1 and i ≤ Lw, such that for all integers j, where 1 ≤ j < i, the equality
vwt(j) = wwt(j) holds; and either i ≤ Lv and vwt(i) < wwt(i), or i = L +1 and 0 < wv wt(i).

 A subkey v is greater than a subkey w (written v > w) if and only if w is less than v.
A subkey v is equal to a subkey w (written v = w) if and only if neither v is less than w,
nor w is less than v.

3. An ordering key x is less than an ordering key y at level s (written x <s y) if and only if
there exists an integer i, where 1 ≤ i ≤ s and i ≤ m, such that for all integers j, where
1 ≤ j < i, the equality xsk(j) = ysk(j) holds; and x < ysk(i) sk(i).

 An ordering key x is greater than an ordering key y at level s (written x >s y) if and
only if y is less than x at level s. An ordering key x is equal to an ordering key y at level
s (written x =s y) if and only if neither x is less than y at level s, nor y is less than x at
level s.

4. For ordering keys, <, >, and = are defined as <m, >m, and =m respectively.

NOTE 3: For ordering keys, x <t y implies x <t+1 y, x >t y implies x >t+1 y, x =t y implies x =t−1 y, x <0 y is
false, x >0 y is false, and x =0 y is true. Above level m, for a given tailored table, there are no further
ordering distinctions. Note that this definition implies that if two ordering keys are in the ‘less than’
relationship at level 1, they will also be in the ‘less than’ relationship at levels 2, 3, 4, etc. In general,
whenever two ordering keys are less than at a given level, they will also automatically be less than
at all subsequent, higher levels. Conversely, if two ordering keys are equal at a given level, they will
also automatically be equal at all preceding, lower levels.

6.3. Common Template Table: formation and interpretation

This clause specifies:

• The syntax used to form the Common Template Table in Annex A of this International
Standard or a tailored table based upon the Common Template Table as expressed in
Annex A.

• Conditions of well-formedness of a table using this syntax.

• Interpretation of tailoring statements in deltas for tables formed using this syntax.

• Evaluation from symbols to weights of tailored tables formed using this syntax.

• Conditions for considering two tables as equivalent.

• Conditions for considering comparison results as equivalent.

6.3.1. BNF syntax rules for the Common Template Table in Annex A

Definitions between <angle brackets> make use of terms not defined in this BNF syntax, and
assume general English usage.

Other conventions:
 * indicates 0 or more repetitions of a token or a group of tokens;
 + indicates 1 or more repetitions of a token or a group of tokens;
 ? indicates optional occurrence of a token or a group of tokens (0 or 1 occurrences);
 parentheses are used to group tokens;
 production rules are terminated by a semicolon;

Define collation tables as sequences of lines:

 7

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

weight_table = common_template_table | tailored_table ;

common_template_table =
simple_line+ ;

tailored_table = table_line+ ;

Define the line types:

simple_line = (symbol_definition | collating_element |
 weight_assignment | order_end)? line_completion ;

table_line = simple_line | tailoring_line ;

tailoring_line = (reorder_after | order_start | reorder_end |
 section_definition | reorder_section_after)
line_completion ;

Define the basic syntax for collation weighting:

symbol_definition =
’collating-symbol’ space+ symbol_element ;

symbol_element = symbol | symbol_range ;

symbol_range = symbol ’..’ symbol ;

symbol = simple_symbol | ucs_symbol ;

ucs_symbol = (’<U’ one_to_eight_digit_hex_string ’>’) |
(’<U-’ one_to_eight_digit_hex_string ’>’) ;

simple_symbol = ’<’ identifier ’>’ ;

collating_element =
’collating-element’ space+ symbol space+
’from’ space+ quoted_symbol_sequence ;

quoted_symbol_sequence =
’"’ symbol+ ’"’ ;

weight_assignment =
simple_weight | symbol_weight ;

simple_weight = symbol_element | ’UNDEFINED’ ;

symbol_weight = symbol_element space+ weight_list ;

weight_list = level_token (semicolon level_token)* ;

level_token = symbol_group | ’IGNORE’ ;

symbol_group = symbol_element | quoted_symbol_sequence ;

order_end = ’order_end’ ;

Define the tailoring syntax:

reorder_after = ’reorder-after’ space+ target_symbol ;

target_symbol = symbol ;

order_start = ’order_start’ space+ multiple_level_direction ;

 8

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

multiple_level_direction =
(direction semicolon)* direction (’,position’)? ;

direction = ’forward’ | ’backward’ ;

reorder_end = ’reorder-end’ ;

section_definition =
section_definition_simple |
section_definition_list ;

section_definition_simple =
’section’ space+ section_identifier ;

section_identifier =
identifier ;

section_definition_list =
’section’ space+ section_identifier space+
symbol_list ;

symbol_list = symbol_element (semicolon symbol_element)* ;

reorder_section_after =
’reorder-section-after’ space+ section_identifier
space+ target_symbol ;

Define low-level tokens used by the rest of the syntax:

identifier = (letter | digit) id_part* ;

id_part = letter | digit | ’-’ | ’_’ ;

line_completion =
space* comment? EOL ;

comment = comment_char character* ;

one_to_eight_digit_hex_string =

 hex_upper | hex_upper hex_upper |

 hex_upper hex_upper hex_upper |

 hex_upper hex_upper hex_upper hex_upper |

 hex_upper hex_upper hex_upper hex_upper hex_upper |

 hex_upper hex_upper hex_upper

 hex_upper hex_upper hex_upper |

 hex_upper hex_upper hex_upper

 hex_upper hex_upper hex_upper hex_upper |hex_upper
hex_upper hex_upper hex_upper
hex_upper hex_upper hex_upper hex_upper ;

hex_numeric_string =
hex_upper+ ;

space = ’ ’ | <TAB> ;

 9

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

semicolon = ’;’ ;

comment_char = ’%’ ;

digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ |
’5’ | ’6’ | ’7’ | ’8’ | ’9’ ;

hex_upper = digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ ;

letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ |
’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ |
’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ |
’v’ | ’w’ | ’x’ | ’y’ | ’z’ |
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ |
’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ |
’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ |
’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ ;

EOL = <end-of-line in the text conventions in use> ;

character = <any member of the repertoire of the encoded
 character set in use, not including any
 characters used to delimit the end of lines> ;

6.3.1.1 Keyword usage

The usage of the following locale syntax keywords is as follows:

collating-symbol Define a collating symbol representing a weight.

collating-element Define a collating element symbol representing a multi-character collating
element.

order_start Define collation rules. This statement is (after reordering is done) followed by
one or more collation order statements, assigning multi-level collation
weightings to collating elements. A collating element is either a character or a
defined substring.

order_end Specify the end of the collating order statements.

reorder-after Redefine collating rules. Specify after which collating symbol weighting the
lines between the reorder-after and the next (or reorder-end) are to be moved.
This statement is followed by one or more collation table lines. The result is to
reassign collating symbol’s values or collating elements’s weightings.

reorder-end Specify the end of the "reorder-after" collating order statements.

section Define a section of the table. A section can be moved as a whole by reorder-
section-after.

reorder-section-after Redefine the order of sections. This statement is followed by a section symbol
and a target symbol. The result is to reassign collating symbol’s values or
collating elements’s weightings.

 10

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

6.3.2. Well-formedness conditions

WF 1. Any simple_symbol occurring in a weight_list shall also occur in the initial symbol_element
of the symbol_weight in which that weight_list occurs, or in a symbol_definition that occurs
earlier in the sequence of lines that constitute a weight_table.

NOTE: All simple_symbols must be “defined” before they are “used”.

WF 2. No symbol that occurs in a symbol_definition in a weight_table that contains no
tailoring_lines may occur in another symbol_definition in the same weight_table.

NOTE: Duplication of collation weighting symbols is prohibited. This is true for the Common Template Table
itself. It must remain true for a tailored_table after all reordering of lines has been applied.

WF 3. All weight_lists in a tailored_table shall contain the same number of level_tokens. An empty
level_token shall be interpreted as the collating_element itself.

NOTE: A tailorable table must be consistent in its use of levels throughout.

WF 4. A tailored_table shall contain one order_start statement. This statement shall appear after
the symbol_definition entries and before the symbol_weight entries after all reordering of
lines has been applied.

WF 5. A multiple_level_direction in a tailored_table shall contain the same number of directions as
the number of level_tokens of any weight_list in that tailored_table.

NOTE: Any order_start must have the same number of levels as is generally used in the table.

WF 6. If a level_token in a weight_list consists of a symbol_group, all successive level_tokens
in that weight_list shall also consist of a symbol_group.

NOTE: IGNORE must not be used at a level after an explicit symbol for a weighting.

WF 7. Any section_identifier occurring in a reorder_section_after shall occur in a section_definition
that occurs earlier in the sequence of table_lines that constitutes a tailored_table.

NOTE: All section_identifiers must be “defined” before they are “used”.

WF 8. No two section_definitions in a tailored_table shall contain the same values in their
section_identifiers.

NOTE: Multiple definitions of sections are prohibited; section_identifiers must be unique.

WF 9. Each reorder_after in a tailored_table shall be followed at a later point in that tailored table
by a reorder_end or another reorder_after.

WF 10. A tailored_table shall contain one order_start and one order_end.

WF 11. No reorder_section_after shall contain a target_symbol whose value is the same as any
symbol in the section_definition_list whose section_identifier is the same as the
section_identifier in that reorder_section_after.

NOTE: A section must not be reordered after a line which the section itself contains; attempts at recursive
relocation of lines are prohibited.

 11

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

WF 12. Any symbol_range shall contain two symbols which meet the following conditions: 1) Each
of the two symbols shall contain a common prefix. 2) The portions of identifier of each of the
two symbols following the common prefix shall be a hex_numeric_string containing the
same number of hexadecimal digits. 3) When interpreted as numeric values, the
hex_numeric_string of the first symbol shall be less than the hex_numeric_string of the
second symbol. One plus the positive integral difference between the hex_numeric_string of
the second symbol, interpreted as a numeric value, and the hex_numeric_string of the first
symbol, interpreted as a numeric value, constitutes the number of values of the
symbol_range.

NOTE: A well-formed symbol_range is of a form such as <S4E00>..<S9FA5>, where the common prefix is
“S”, and the rest of the identifier portion of each symbol is a hex_numeric_string.

WF 13. Any symbol_weight that contains more than one symbol_range shall contain only
symbol_ranges that meet the following requirement: Each symbol_range following the first
symbol_range shall have the same number of values in its range as that of the first
symbol_range.

NOTE: This condition guarantees that all expanded ranges will be well-formed, since for any one
symbol_weight, all of the range expansions will have the same number of values.

6.3.3. Interpretation of tailored tables

I 1. A section consists either 1) of the list of simple_lines which contain a symbol_definition
whose value is equal to any symbol contained in the symbol_list in a section_definition_list,
or 2) of the list of simple_lines following a section_definition_simple in a tailored_table.

NOTE: A section is defined 1) by a specific symbol_list, or 2) by taking all the lines following the
section_definition until another tailoring line such as an order_start, a reorder_section_after, another
section_definition, or the end of the entire table is encountered.

I 2. A simple_line consisting of a symbol_definition containing a symbol_range is equivalent to a
sequence of simple_lines, where each of those lines contain a symbol in place of the
symbol_range. The symbol for each successive simple_line is generated by concatenating a
hex_numeric_string to the common prefix of the symbol_range, in numeric order, starting
with the hex value associated with the hex_numeric_string of the first symbol the range, and
ending with the hex value associated with the hex_numeric_string of the second symbol.
The hex_numeric_string concatenated to the common prefixes must contain the same
number of digits as the hex_numeric_string of the first symbol. The number of simple_lines
thus generated is equal to the number of symbols in the symbol_range.

NOTE: A symbol_definition of the form “collating-symbol <S0301>..<S0303>” is equivalent to the three
lines:
collating-symbol <S0301>
collating-symbol <S0302>
collating-symbol <S0303>

I 3. A simple_line consisting of a symbol_weight containing one or more symbol_ranges is
equivalent to a sequence of simple_lines, where each symbol_range has been expanded
into a sequence of symbols, as described in I 2 for symbol_definitions

NOTE A symbol_weight of the form “<U2000>..<U2002> <S0301>..<S0303>;<BASE>;<MIN>;
<U2000>..<U2002>” is equivalent to the three lines

<U2000> <S0301>;<BASE>;<MIN>;<U2000>
<U2001> <S0302>;<BASE >;<MIN>;<U2001>
<U2002> <S0303>;<BASE >;<MIN>;<U2002>

I 4a. A tailored_table containing a reorder_after is equivalent to the tailored_table where:

 12

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

1. all table_lines that were ahead of the reorder_after and that contained
symbol_definitions whose symbol matches the symbol of any symbol_definition in the
table_lines between the reorder_after and reorder_end have been removed,

2. the table_lines between that reorder_after and the first subsequent reorder_end to
immediately follow the first table_line in the tailored_table containing a symbol_definition
whose symbol is the same as the target_symbol in the reorder_after have been
reordered, and

3. that reorder_after and that reorder_end have been removed.

NOTE: Move the block of lines between the reorder_after and the reorder_end to follow the target_symbol,
delete any prior lines that duplicate the symbol_definitions of the reordered lines, and remove the
reorder_after and reorder_end themselves.

I 4b. When a tailored_table contains multiple groups of lines to be reordered, the table is
interpreted by processing each reorder_after sequentially, starting from the first line of the
table.

NOTE: Subsequent line reorderings may impact lines that themselves were reordered by prior reorderings.

I 5. A tailored_table containing a reorder_section_after is equivalent to the tailored_table with
the section associated with that section-reorder_after reordered (in the same relative order
as the table_lines have in that section) to immediately follow the last table_line in the
tailored_table containing a symbol_definition whose symbol is the same as the
target_symbol in the reorder_section_after, and with that reorder_section_after removed.

I 6. A weight_table is said to be in normal form when it contains no reorder_afters or
reorder_section_afters.

NOTE: A tailored_table can be put into normal form by the operations implied by I 4 and I 5.

6.3.4. Evaluation of weight tables

E 1. A weight_table in normal form is said to be evaluated when each weight_assignment in the
weight_table is mapped to a positive integer value (a weight) such that those values
increase monotonically by the order in which the weight_assignments occur in the
weight_table.

NOTE 1: The table_lines of the weight_table can first be mapped to the set of positive integers, by sequential
order in the table. This mapping defines an ordered set of line numbers. The weight_assignments
are then mapped to a set of positive integers (weights) that varies monotonically with the set of line
numbers.

NOTE 2: This does not restrict the starting number for the weight of the first weight_assignment (other than it
must be positive) nor does it require that the numbers for these weights be immediately consecutive.

E 2. An evaluated weight_table is said to be collating-element-weighted when each
simple_symbol occurring in each weight_list in that evaluated weight_table has been
mapped to the weight that corresponds to the weight_assignment that contains the same
simple_symbol.

NOTE 3: Each weight_list can be interpreted as containing either symbol’s mapped to integral weight values
or as instances of the string ‘IGNORE’, which denotes the empty sequence of weights. At this point,
the mathematical injection of strings can be defined using the weight_table.

 13

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

NOTE 4: In a tailored table the value of any hex_numeric_string associated with a symbol typically does not
reflect the numeric weighting of the symbol.

6.3.5. Conditions for considering specific table equivalences

A weight_table TBL1 and a weight_table TBL2 are said to be equivalent at a particular level if any
comparison of strings using those tables up to that level results in the same ordering.

NOTE: If one takes two strings, builds keys for each based on TBL1 and compares them, one should
always get the same results as when one builds keys for those strings based on TBL2 and
compares them, if those two tables are claimed to be equivalent.

6.3.6. Conditions for results to be considered equivalent

An implementation of international string ordering is conformant with this International Standard if,
for any set of strings S defined on a repertoire R, the implementation can duplicate the same
comparisons as those resulting from comparison of the numbers from an injection constructed according
to the rules of clause 6.2.3 of this International Standard.

6.4. Declaration of a delta

Tailoring shall be based upon the Common Template Table described in annex A. Tailoring may be
accomplished using any syntax that is equivalent to the one described in this International Standard.

NOTE 1: For example, ISO/IEC TR 14652, uses a compatible extension of the syntax used in this
International Standard for tailoring. A tailoring delta can also be expressed using the syntax of the
Unicode collation algorithm (see Bibliography - Unicode Technical Report no. 10). It has also been
demonstrated that a tailoring delta can also be expressed using an XML-conformant mark-up
scheme.

Any declaration of conformance to this International Standard shall be accompanied with a
declaration of the differences between the collation weighting table and the Common Template Table. A
delta shall contain the equivalent of:

1. At least one valid order_start entry described in clause 6.3.1; an unlimited number of
sections containing an order_start entry and an order_end entry may be declared.

2. The number of levels used for comparison.

3. The list of symbol_definition weights (as defined in 6.2.1) added and after which
symbol_definition entry each insertion is made.

4. The list of simple_line entries (as defined in 6.2.1) deleted or inserted, referencing after
which simple_line entry in the Common Template Table the insertions are made

NOTE 2: It is recommended that a delta should not be bigger than necessary.

In cases where a process has provision to allow the end-user to tailor the table himself or herself, a
statement of conformance shall indicate which of the 4 elements of the previous list are tailorable and
which of those 4 elements are not tailorable. For those which are not tailorable, the delta of fixed
elements relative to the Common Template Table shall be declared.

NOTE 3: The declaration may use a different syntax from the one specified in 6.3 provided that the
relationship with this syntax can be reasonably established. For example, the following declarations
are valid:

 "Collate U+00E5 after U+00FE at the primary level.
 Collate U+00E4 after U+00E5 at the primary level. "

 14

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

 or

 "The primary alphabet order is modified so that in all cases z < þ < å < ä".

 Note that the letters å and ä are sorted after Icelandic letter thorn (þ), itself already coming after all
the variants of the letter z, i.e. they have a weight value higher at level 1 than the one for thorn (þ),
which itself comes after the ones for all variants of the letter z.

 The above two informal expressions can reasonably be considered to be equivalent to the following
more precise expression (which also give weights at levels 2 and 3 and explicitly take care of
accented å's, accented ä's and the Ångström sign):

reorder-after <S00FE> % Weighting for THORN (after z; and unlike z, THORN has no variants).

% Declare new collation symbols (weight names):
collating-symbol <S00E5> % for å
collating-symbol <S00E4> % for ä

% Declare new collating elements for the decompositions (substring names):
collating-element <U0061_030A> from "<U0061><U030A>" % decomposition of å
collating-element <U0041_030A> from "<U0041><U030A>" % decomposition of Å
collating-element <U0061_0308> from "<U0061><U0308>" % decomposition of ä
collating-element <U0041_0308> from "<U0041><U0308>" % decomposition of Ä

% Assign weights to the new collation symbols (after THORN):
<S00E5> % for å
<S00E4> % for ä
reorder-end

reorder-after <SFFFF> % The only place where we can put the order_start line.
order_start forward;forward;forward;forward

% Use the new weighted collation symbols and collating elements to tailor the collation rules:

% The letter Å:
<U00E5> <S00E5>;<BASE>;<MIN>;<U00E5> % LATIN SMALL LETTER A WITH RING ABOVE
<U0061_030A> <S00E5>;<BASE>;<MIN>;"<U0061_030A>" % decomposition of å
<U00C5> <S00E5>;<BASE>;<CAP>;<U00C5> % LATIN CAPITAL LETTER A WITH RING ABOVE
<U0041_030A> <S00E5>;<BASE>;<CAP>;"<U0041_030A>" % decomposition of Å
<U212B> <S00E5>;<BASE>;<CAP>;<U212B> % ÅNGSTRÖM SIGN (the letter Å really)

<U01FB> <S00E5>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FB> % LATIN SMALL LETTER A
 WITH RING ABOVE AND ACUTE
<U01FA> <S00E5>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FA> % LATIN CAPITAL LETTER A
 WITH RING ABOVE AND ACUTE

% The letter Ä:
<U00E4> <S00E4>;<BASE>;<MIN>;<U00E5> % LATIN SMALL LETTER A WITH DIAERESIS
<U0061_0308> <S00E4>;<BASE>;<MIN>;"<U0061_0308>" % decomposition of ä
<U00C4> <S00E4>;<BASE>;<CAP>;<U00C4> % LATIN CAPITAL LETTER A WITH DIAERESIS
<U0041_0308> <S00E4>;<BASE>;<CAP>;"<U0041_0308>" % decomposition of Ä

<U01DF> <S00E4>;"<BASE><MACRO>";"<MIN><MIN>";<U01DF> % LATIN SMALL LETTER A
 WITH DIAERESIS AND MACRON
<U01DE> <S00E4>;"<BASE><MACRO>";"<CAP><MIN>";<U01DE> % LATIN CAPITAL LETTER A
 WITH DIAERESIS AND MACRON
reorder-end

6.5. Name of the Common Template Table and name declaration

Whenever the Common Template Table is referred externally as a base point in a given context,
whether in a process, contract, or procurement requirement, it shall be referenced using the name
ISO14651_2006_TABLE1. If another name is used due to practical constraints, a declaration of

 15

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

conformance shall indicate how the correspondence between this other name and the name
ISO14651_2006_TABLE1 is taken care of.

The use of a defined name is necessary to manage the different stages of development of this
table. This follows from the nature of the reference character repertoire, for which development will be
ongoing for a number of years or even decades.

 16

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Annex A – Common Template Table (normative)
In order to minimize formatting problems and the risk of errors in reproduction, the common

template table is provided separately in a machine-readable file as a normative component of this
International Standard. The file name for this language version is different from the normative reference
name specified in clause 6.5 of this International Standard due to the existence of file versions
commented in other natural languages. The file for this language version can also be retrieved on the
ITTF web site at the following URL:

ISO14651_2006_TABLE1_en.txt [final URL to be provided by ITTF at publication stage]

There is an official French version of the file which only differs in its comments (its technical content
is identical), and its name is: ISO14651_2006_TABLE1_fr.txt

NOTE 1 This International standard deprecates, but does not preclude specific reference to, the previous
tables, which contained and still contain ordering information applicable to the repertoires of previous versions of
ISO/IEC 10646 and their amendments. The previous tables can be found at the following URLs:

[ordering information on the repertoire of characters as defined in ISO/IEC 10646-1:1993 including
Amendments 1-9] http://www.iso.org/ittf/ISO14651_2000_TABLE1.htm

[ordering information on the combined repertoire of characters of ISO/IEC 10646-1:2000 and ISO/IEC
10646-2:2001] http://www.iso.org/ittf/ISO14651_2002_TABLE1_en.txt

[ordering information on the repertoire of characters as defined in ISO/IEC 10646:2003]
http://www.iso.org/ittf/ISO14651_2003_TABLE1_en.txt

The current Common Template Table reflects the repertoire of characters as defined in ISO/IEC 10646:2003
including its amendment 1.

NOTE 2 The repertoire targeted by this International standard is equivalent to the repertoire of The Unicode
Standard Version 5.0, published by The Unicode Consortium.

When ordering data applicable to other amendments of ISO/IEC 10646:2003 becomes available, this International
Standard and specifically its Common Template Table will be amended accordingly to cover the ordering of the
additional characters and scripts. To meet cultural requirements of specific communities, delta declarations will
have to be applied to the amended table as defined in this International Standard.

ISO_14651_2005_TABLE1 is the name that is used for referring to this table in this version of this
International Standard.

 17

http://www.iso.ch/ittf/ISO14651_2000_TABLE1.txt
http://www.iso.org/ittf/ISO14651_2002_TABLE1_en.txt
http://www.iso.org/ittf/ISO14651_2002_TABLE1_en.txt

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

Annex B – Example tailoring deltas (informative)

B.1. Example 1 – Minimal tailoring

The following is a minimal tailoring of the Common Template Table:

reorder_after <SFFFF>
order_start forward;forward;forward;forward
reorder-end

B.2. Example 2 – Reversing the order of lowercase and uppercase letters

The following is a simple tailoring example to show how to reverse the order of uppercase versus
lowercase from the order specified in the Common Template Table.

% Make uppercase letters sort before lowercase
% and scanning of accents done forward at level 2.

% The entire range of tertiary weight symbols
% <MIN>..<CIRCLE> are moved after <CIRCLECAP>, so that they order after
% <CAP> <WIDECAP> <COMPATCAP <FONTCAP> <CIRCLECAP> in the same
% relative order with respect to themselves. This has the effect of
% also making all the compatibility uppercase letters sort before
% their respective compatibility lowercase letters. (For example,
% U+24B6 CIRCLED LATIN CAPITAL LETTER A will sort before
% U+24D0 CIRCLED LATIN SMALL LETTER A.

% To do this correctly, an order_start is
% inserted to make the delta conformant.

reorder-after <CIRCLECAP>
<MIN>
<WIDE>
<COMPAT>

<CIRCLE>

reorder_after <SFFFF>
order_start forward;forward;forward;forward,position
reorder-end

% End of the uppercase/lowercase tailoring

B.3. Example 3 – Canadian delta and benchmark

This annex describes benchmark 1, based on Canadian standard CAN/CSA Z243.4.1-1998 (and
1992). The delta that precedes the benchmark has been simplified for illustration here; a larger delta is
required, mainly for special characters, for full conformance to this Canadian standard, and is given here
as an example only, limited to what is required for the benchmark. For complete information, the
Canadian standard CAN/CSA Z243.4.1 should be consulted. The example tailoring is to be applied to the
Common Template Table of annex A, with the following delta:

1. Level processing properties:

 forward; backward; forward; forward,position

2. Number of levels: 4 (unchanged).

3. No symbol changes.

4. The following ordering changes are done:

 18

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

• æ sorted as if it were separate letters "ae" at level 1. The letters "ae" are distinguished at
level 2 from the character "æ" and is ordered before it.

• ð sorted as if it were the letter "d" at level 1. The letter "ð" is distinguished at level 2 from
the letter "d" and is ordered after it.

• þ sorted as if it were separate letters "th" at level 1. The letters "th" is distinguished at level
2 from the letter "þ" and is ordered before it.

A Canadian tailoring expressed in the tailoring syntax for this International Standard (normative only
for Annex A) can be:

% copy ISO14651_2002_TABLE1

reorder-after <SFFFF>
order_start forward;backward;forward;forward,position

<U00E6> "<S0061><S0065>";"<BASE><VRNT1><BASE>";"<MIN><COMPAT><MIN>";<U00E6> % æ
<U00C6> "<S0061><S0065>";"<BASE><VRNT1><BASE>";"<CAP><COMPAT><CAP>";<U00C6> % Æ

<U01E3> "<S0061><S0065>";"<BASE><VRNT1><BASE><MACRO>";"<MIN><COMPAT><MIN><MIN>";<U01E3>

% æ WITH MACRON
<U01E2> "<S0061><S0065>";"<BASE><VRNT1><BASE><MACRO>";"<CAP><COMPAT><CAP><MIN>";<U01E2>

% Æ WITH MACRON

<U01FD> "<S0061><S0065>";"<BASE><VRNT1><BASE><AIGUT>";"<MIN><COMPAT><MIN><MIN>";<U01FD> % ǽ
<U01FC> "<S0061><S0065>";"<BASE><VRNT1><BASE><AIGUT>";"<CAP><COMPAT><CAP><MIN>";<U01FC> % Ǽ

<U00F0> <S0064>;<VRNT1>;<MIN>;<U00F0> % ð
<U00D0> <S0064>;<VRNT1>;<CAP>;<U00D0> % Ð

<U00FE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<MIN><COMPAT><MIN>";<U00FE> % þ
<U00DE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<CAP><COMPAT><CAP>";<U00DE> % Þ

reorder-end

 19

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

Unordered list (required test case as per Canadian standard CAN/CSA Z243.4.1-
1998, plus additions)

août Grossist pêcher ou
NOËL vice-presidents' offices les lésé
@@@@@ Copenhagen CÔTÉ péché
L'Haÿ-les-Roses côte résumé vice-président
CÔTE McArthur Ålborg 9999
COTE Mc Mahon cañon OÙ
côté Aalborg du haïe
coté Größe haie coop
aide vice-president's offices pécher caennais
air cølibat Mc Arthur lèse
vice-president PÉCHÉ cote dû
modelé COOP colon air@@@
Thorvardur @@@air l'âme côlon
MODÈLE VICE-VERSA resume bohème
maçon gêne élève gêné
MÂCON CO-OP Þorvarður meðal
pèche révélé Canon lamé
pêché révèle lame pêche
medal çà et là Bohême LÈS
ovoïde MacArthur 0000 vice versa
pechère Noël relève C.A.F.
ode île gène Þorsmörk
péchère aïeul casanier cæsium
œil Île d'Orléans élevé resumé

nôtre COTÉ Bohémien
notres co-op relevé

 20

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

List with required results as per Canadian standard CAN/CSA Z243.4.1-1998
pêche lamé COOP @@@@@

péché les CO-OP 0000

PÉCHÉ LÈS Copenhagen 9999

pêché lèse cote Aalborg

pécher lésé COTE Aide

pêcher L'Haÿ-les-Roses côte aïeul

pechère MacArthur CÔTE air

péchère MÂCON coté @@@air

relève maçon COTÉ air@@@

relevé McArthur côté Ålborg

resume Mc Arthur CÔTÉ août

resumé Mc Mahon du bohème

résumé medal dû Bohême

révèle meðal élève Bohémien

révélé MODÈLE élevé caennais

Þorsmörk Modelé gène cæsium

Thorvardur Noël gêne çà et là

Þorvarður NOËL gêné C.A.F.

vice-president notre Größe Canon

vice-président nôtre Grossist cañon

vice-president's offices ode haie casanier

vice-presidents' offices œil haïe cølibat

vice versa ou île colon

VICE-VERSA OÙ Île d'Orléans côlon

ovoïde lame coop

pèche l'âme co-op

B.4. Example 4 – Danish delta and benchmark

The following is a Danish example tailoring delta. This formal specification corresponds to Danish
standard DS 377 and to "Retskrivningsordbogen", the Danish orthography specification.
% This tailoring is in accordance with Danish Standard DS 377 (1980)
% and the Danish Orthography Dictionary (Retskrivningsordbogen par 4, 1986).
% It is also in accordance with Greenlandic orthography.

collating-symbol <LIGHT> % Symbolic weight for lighter than <BASE>

% Define collating elements for <AA> - LETTER A WITH RING ABOVE
% and combinations with combining accents
collating-symbol <A-A> % symbolic weight for <AA>
collating-element <A-plus-combining-ring> from "<U0041><U030A>"
collating-element <a-plus-combining-ring> from "<U0061><U030A>"

% Define collating elements for sequences of a-plus-a
collating-element <A-plus-A> from "<U0041><U0041>"

 21

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

collating-element <A-plus-a> from "<U0041><U0061>"
collating-element <a-plus-A> from "<U0061><U0041>"
collating-element <a-plus-a> from "<U0061><U0061>"

% Define collating elements for combinations with combining accents
collating-element <U-plus-combining-diaeresis> from "<U0055><U0308>"
collating-element <u-plus-combining-diaeresis> from "<U0075><U0308>"
collating-element <U-plus-combining-doubleacute> from "<U0055><U030B>"
collating-element <u-plus-combining-doubleacute> from "<U0075><U030B>"
collating-element <O-plus-combining-diaeresis> from "<U004F><U0308>"
collating-element <o-plus-combining-diaeresis> from "<U006F><U0308>"
collating-element <O-plus-combining-doubleacute> from "<U004F><U030B>"
collating-element <o-plus-combining-doubleacute> from "<U006F><U030B>"

% Add the obligatory order_start line.
reorder-after <SFFFF>
order_start forward;backward;forward;forward,position

% copy ISO14651_2002_TABLE1

% Make capital letters sort before lowercase.
% Cf. example 2 for more explanation.
reorder-after <CIRCLECAP>
<CAP>
<WIDECAP>
<COMPATCAP>
<FONTCAP>
<CIRCLECAP>
<MIN>
<WIDE>
<COMPAT>

<CIRCLE>

% Introduce a weight that is lighter than <BASE>
reorder-after <BASE>
<LIGHT>
<BASE>

% A list of reweighting statements to deal with specific collation
% behaviour for Danish. All of these define or redefine weight_list's,
% and so the entire block could simply be reordered after the
% order-start entry in the table. However, for clarity here and for
% stability, each separate set of weightings is reordered locally in
% the table around the first entry for that set of weightings.

% Actually a number of other reweighting statements should be specified
% with respect to the ISO/IEC 14651 table so that all accents be
% ignored on the first level, while the 14651 table distiguish
% for example between different accented versions of <l> and a number
% of other latin letters. This is considered less important
% and too elaborate for this example.

% Also this example delta does not include specifications for reordering
% of special characters like the currency denominators DOLLAR SIGN,
% CENT SIGN, and POUND SIGN, and unit denominators like the
% ANGSTROM SIGN, which have first-level weights in the CTT, while
% rules in DS 377 prescribe that special characters are ignored.

% Reorder Danish letters at the end of the alphabet, after z
reorder-after <S007A> % z
<S00E6> % <AE> - LETTER AE
<S00F8> % <O/> - LETTER O WITH STROKE
<A-A> % <AA> - LETTER A WITH RING ABOVE

reorder-after <U007A> % z - this *line* only given for stability
% The letter ae is a separate letter in Danish
<U00C6> <S00E6>;<BASE>;<CAP>;<U00C6> % AE
<U00E6> <S00E6>;<BASE>;<MIN>;<U00E6> % ae
<U01FC> <S00E6>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FC> % AE WITH ACUTE
<U01FD> <S00E6>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FD> % ae WITH ACUTE

% The letter <a:> is given the same primary
% weight as <ae>, with unique variant weights at the secondary level.
<U00D6> <S00E6>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D6> % A WITH DIAERESIS
<U00F6> <S00E6>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F6> % a WITH DIAERESIS

 22

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

% And replicate the weighting for the collating-element's formed with
combining accents
<A-plus-combining-diaeresis> <S00E6>;"<BASE><VRNT1>";"<CAP><MIN>";"<U0041><U0308>"
<a-plus-combining-diaeresis> <S00E6>;"<BASE><VRNT1>";"<MIN><MIN>";"<U0061><U0308>"

% The letter <o/> - O WITH STROKE - is a separate letter in Danish
<U00D8> <S00F8>;<BASE>;<CAP>;<U00D8> % <O/>
<U00F8> <S00F8>;<BASE>;<MIN>;<U00F8> % <o/>
<U01FE> <S00F8>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FE> % <O/> WITH ACUTE
<U01FF> <S00F8>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FF> % <o/> WITH ACUTE

% The letters <o:> and <o"> are given the same primary
% weight as <o/>, with unique variant weights at the secondary level.
<U00D6> <S00F8>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D6> % O WITH DIAERESIS
<U00F6> <S00F8>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F6> % o WITH DIAERESIS
<U0150> <S00F8>;"<BASE><VRNT2>";"<CAP><MIN>";<U0150> % O WITH DOUBLE ACUTE
<U0151> <S00F8>;"<BASE><VRNT2>";"<MIN><MIN>";<U0151> % o WITH DOUBLE ACUTE

% Replicate the weighting for the collating-element's formed with combining accents
<O-plus-combining-diaeresis> <S00F8>;"<BASE><VRNT1>";"<CAP><MIN>";"<U004F><U0308>"
<o-plus-combining-diaeresis> <S00F8>;"<BASE><VRNT1>";"<MIN><MIN>";"<U006F><U0308>"
<O-plus-combining-doubleacute> <S00F8>;"<BASE><VRNT2>";"<CAP><MIN>";"<U004F><U030B>"
<o-plus-combining-doubleacute> <S00F8>;"<BASE><VRNT2>";"<MIN><MIN>";"<U006F><U030B>"

% The letter <aa> - A WITH RING ABOVE - is weighted following the letter <o/> (see above)
<U00C5> <A-A>;<BASE>;<CAP>;<U00C5> % <AA>
<U00E5> <A-A>;<BASE>;<MIN>;<U00E5> % <aa>
<U01FA> <A-A>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FA> % <AA> WITH ACUTE
<U01FB> <A-A>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FB> % <aa> WITH ACUTE

% And replicate the weighting for the collating-element's formed with combining accents
<A-plus-combining-ring> <A-A>;<BASE>;<CAP>;<U00C5>
<a-plus-combining-ring> <A-A>;<BASE>;<MIN>;<U00E5>

% The sequences of letters a-plus-a are weighted as secondary variants of <AA>
<A-plus-A> <A-A>;"<BASE><VRNT1>";"<CAP><CAP>";"<U0041><U0041>" % AA
<A-plus-a> <A-A>;"<BASE><VRNT1>";"<CAP><MIN>";"<U0041><U0061>" % Aa
<a-plus-A> <A-A>;"<BASE><VRNT1>";"<MIN><CAP>";"<U0061><U0041>" % aA
<a-plus-a> <A-A>;"<BASE><VRNT1>";"<MIN><MIN>";"<U0061><U0061>" % aa

% The letters u with diaresis and u with double-acute are given the same primary
% weight as y, with unique variant weights at the secondary level.
reorder-after <U00DC> % this *line* only given for stability
<U00DC> <S0079>;"<BASE><VRNT1>";"<CAP><MIN>";<U00DC> % U WITH DIAERESIS
<U00FC> <S0079>;"<BASE><VRNT1>";"<MIN><MIN>";<U00FC> % u WITH DIAERESIS
<U0170> <S0079>;"<BASE><VRNT2>";"<CAP><MIN>";<U0170> % U WITH DOUBLE ACUTE
<U0171> <S0079>;"<BASE><VRNT2>";"<MIN><MIN>";<U0171> % u WITH DOUBLE ACUTE

% And replicate the weighting for the collating-element's formed with combining accents
<U-plus-combining-diaeresis> <S0079>;"<BASE><VRNT1>";"<CAP><MIN>";"<U0055><U0308>"
<u-plus-combining-diaeresis> <S0079>;"<BASE><VRNT1>";"<MIN><MIN>";"<U0075><U0308>"
<U-plus-combining-doubleacute> <S0079>;"<BASE><VRNT2>";"<CAP><MIN>";"<U0055><U030B>"
<u-plus-combining-doubleacute> <S0079>;"<BASE><VRNT2>";"<MIN><MIN>";"<U0075><U030B>"

% The letter eth is equated to d
% with a secondary difference to distinguish it from d
reorder-after <U0064> % this *line* only given for stability
<U00D0> <S0064>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D0> % ETH
<U00F0> <S0064>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F0> % eth

% The letter thorn is treated as a sequence of t + h, with a variant weight
% at the secondary level
reorder-after <U00DE> % this *line* only given for stability
<U00DE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<CAP><MIN><MIN>";<U00DE> % THORN
<U00FE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<MIN><MIN><MIN>";<U00FE> % thorn

% The letter oe is treated as a sequence of o + e, with a special weight
% at the secondary level
reorder-after <U006F> % this *line* only given for stability
<U01D2> "<S006F><S0065>";"<BASE><LIGHT>";"<CAP><MIN>";<U01D2> % OE
<U01D3> "<S006F><S0065>";"<BASE><LIGHT>";"<MIN><MIN>";<U01D3> % oe

% Space, hyphen-minus, hyphen, and solidus are given a primary weight
% before any letter or digit, with hyphen-minus and solidus
% given a secondary difference from the weight for space.

 23

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

reorder-after <U0020> % this *line* only given for stability
<U0020> <S0020>;<BASE>;<MIN>;<U0020> % SPACE
<U002D> <S0020>;"<BASE><VRNT1>";"<U002D><MIN>";<U002D> % HYPHEN-MINUS
<U2010> <S0020>;"<BASE><VRNT1>";"<U0010><MIN>";<U2010> % HYPHEN
<U002F> <S0020>;"<BASE><VRNT2>";"<U002F><MIN>";<U002F> % SOLIDUS

% The letter kra (for Greenlandic) is equated to a lowercase q,
% with a secondary difference to distinguish it from q itself.
reorder-after <U0071> % q - this *line* only given for stability
<U0138> <S0071>;"<BASE><VRNT1>";"<MIN><MIN>";<U0138> % kra

% The letter sharp s is treated as a sequence of s + s
% with a special weight at the secondary level to make it come
% before s-plus-s - shorter precedes longer.
reorder-after <U0073> % s - this *line* only given for stability
<U00DF> "<S0073><S0073>;"<BASE><LIGHT>";"<MIN><MIN>";<U00DF> % SHARP S

% To facilitate deterministic ordering, all controls have a unique
% weight at the 4th level.
reorder-after <U0000>
<U0000>..<U001F> IGNORE;IGNORE;IGNORE;<U0000>..<U001F>
<U007F>..<U009F> IGNORE;IGNORE;IGNORE;<U007F>..<U009F>

reorder-end

% End of the example tailoring for Danish

Benchmark for Danish (sorted order)
STORM PETERSEN RÉE, A D.S.B. A/S
STORMLY REE, B DSC ANDRE
THORVALD RÉE, L EKSTRA-ARBEJDE ANDRÉ
THORVARDUR REE, V EKSTRABUD ANDREAS
ÞORVARÐUR SCHYTT, B EKSTRAARBEJDE AS
THYGESEN SCHYTT, H HØST CA
VESTERGÅRD, A SCHÜTT, H HAAG ÇA
VESTERGAARD, A SCHYTT, L HÅNDBOG CB
VESTERGÅRD, B SCHÜTT, M HAANDVÆRKSBANKENÇC
ÆBLE ß Karl DA
ÄBLE SS karl ÐA
ØBERG SSA NIELS JØRGEN DB
ÖBERG STORE VILDMOSE NIELS-JØRGEN ÐC
Århus STOREKÆR NIELSEN DSB

B.5. Example 5 – A tailoring for Khmer
The Khmer script is mainly used in Cambodia. The tailoring given below is not included in
the CTT (see annex A) itself in order to keep the CTT simple, especially for rare letterforms.
E.g. the Khmer ROBAT for which the tailoring below may not be desirable for efficiency
reasons, since this letter occurs very rarely, but the tailoring for handling it correctly may
affect the efficiency of collation also for texts that do not contain any ROBAT..
reorder-after <MAX>

% Khmer:
collating-symbol <S1794_S17C9> % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN
collating-symbol <S1794_S17CA> % KHMER LETTER BA, KHMER SIGN TRIISAP
collating-symbol <S17BB_S17C6> % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT
collating-symbol <S17B6_S17C6> % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT
collating-symbol <C1780>..<C179C>

 % Declaration of Khmer contractions
collating-element <U1794_17C9> from "<U1794><U17C9>" % KHMER LETTER BA, KHMER SIGN

MUUSIKATOAN
collating-element <U1794_17CA> from "<U1794><U17CA>" % KHMER LETTER BA, KHMER SIGN TRIISAP
collating-element <SW_17CC_1780>..<SW_17CC_17A2> from "<U1780>..<U17A2><U17CC>"
% KHMER LETTER KA, KHMER SIGN ROBAT..KHMER LETTER QA, KHMER SIGN ROBAT

 24

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

collating-element <SW_17CC_17A5>..<SW_17CC_17B3> from "<U17A5>..<U17B3><U17CC>"
% KHMER INDEPENDENT VOWEL QI, KHMER SIGN ROBAT..KHMER INDEPENDENT VOWEL QAU�, KHMER SIGN

ROBAT
collating-element <U17C6_17BB> from "<U17BB><U17C6>" % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT

(OM properly spelled)
collating-element <U17BB_17C6> from "<U17C6><U17BB>" % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN U

(OM with the wrong sequence of the characters)
collating-element <U17C6_17B6> from "<U17B6><U17C6>" % KHMER VOWEL SIGN AA, KHMER SIGN

NIKAHIT (AM properly spelled)
collating-element <U17B6_17C6> from "<U17C6><U17B6>" % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN

AA (AM with the wrong sequence of the characters)
collating-element <U17D2_1780>..<U17D2_179C> from "<U17D2><U1780>..<U179C>"
% COENG, KHMER LETTER KA..COENG, KHMER LETTER QA
collating-element <U17D2_17A5>..<U17D2_17B3> from "<U17D2><U17A5>..<U17B3>"
% COENG, KHMER INDEPENDENT VOWEL QI..COENG, KHMER INDEPENDENT VOWEL QAU

reorder-after <S1794> % KHMER LETTER BA
<S1794_17C9> % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN
<S1794_17CA> % KHMER LETTER BA, KHMER SIGN TRIISAP

reorder-after <S17C5> KHMER VOWEL SIGN AU
<S17BB_17C6> % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT

reorder-after <S17C6> KHMER SIGN NIKAHIT
<S17B6_17C6> % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT

reorder-after <S17D2>
<C1780>..<C1794> % COENG, KHMER LETTER KA..COENG, KHMER LETTER BA
<C1795>..<C179A> % COENG, KHMER LETTER PHA..COENG, KHMER LETTER RO
<C17AB> % COENG, KHMER INDEPENDENT VOWEL RY
<C17AC> % COENG, KHMER INDEPENDENT VOWEL RYY
<C179B> % COENG, KHMER LETTER LO
<C17AD> % COENG, KHMER INDEPENDENT VOWEL LY
<C17AE> % COENG, KHMER INDEPENDENT VOWEL LYY
<C179C>..<C17A2> % COENG, KHMER LETTER VO..COENG, KHMER LETTER QA

reorder-after <SFFFF>
order_start forward;forward;forward;forward

<U1794_17C9> <S1794_17C9>;<BASE>;<MIN>;<U1794_17C9> % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN
<U1794_17CA> <S1794_17CA>;<BASE>;<MIN>;<U1794_17CA> % KHMER LETTER BA, KHMER SIGN TRIISAP

%% The ROBAT contractions should be used only in an "advanced" tailoring for
%% Khmer, since ROBAT is rather rarely used, and these contractions
%% may impact on the efficiency of the key computation even if ROBAT does not
%% occur, since these contractions begin with commonly used letters.

<SW_17CC_1780>..<SW_17CC_17A2> "<S179A><S17D2><S1780>..<S17A2>";

"<BASE><VRNT1><BASE><BASE>";"<MIN><MIN><MIN><MIN>"; <SW_17CC_1780>..<SW_17CC_17A2>

% KHMER LETTER KA, KHMER SIGN ROBAT..KHMER LETTER QA, KHMER SIGN ROBAT

<SW_17CC_17A5>..<SW_17CC_17A6> "<S179A><S17D2><S17A2><S17B7>..<S17B8>";

"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";"<MIN><MIN><MIN><MIN><MIN><MIN>";
<SW_17CC_17A5>..<SW_17CC_17A6> % KHMER INDEPENDENT VOWEL QI, KHMER SIGN ROBAT..KHMER
INDEPENDENT VOWEL QII, KHMER SIGN ROBAT

<SW_17CC_17A7> "<S179A><S17D2><S17A2><S17BB>";"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";
"<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17A7>

% KHMER INDEPENDENT VOWEL QU, KHMER SIGN ROBAT

<SW_17CC_17A8> "<S179A><S17D2><S17A2><S17BB>";"<BASE><VRNT1><BASE><BASE><VRNT2><BASE>";

"<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17A8>

% KHMER INDEPENDENT VOWEL QUK; KHMER SIGN ROBAT

<SW_17CC_17A9> "<S179A><S17D2><S17A2><S17BC>";"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";

"<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17A9>

% KHMER INDEPENDENT VOWEL QUU; KHMER SIGN ROBAT

<SW_17CC_17AA> "<S179A><S17D2><S17A2><S17BC>";"<BASE><VRNT1><BASE><BASE><VRNT2><BASE>";

"<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17AA>

% KHMER INDEPENDENT VOWEL QUUV; KHMER SIGN ROBAT

 25

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

<SW_17CC_17AF>..<SW_17CC_17B1> "<S179A><S17D2><S17A2><S17C2>..<S17C4>";

"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";"<MIN><MIN><MIN><MIN><MIN><MIN>";
<SW_17CC_17AF>..<SW_17CC_17B1> % KHMER INDEPENDENT VOWEL QE, KHMER SIGN ROBAT..KHMER
INDEPENDENT VOWEL QOO TYPE ONE, KHMER SIGN ROBAT

<SW_17CC_17B2> "<S179A><S17D2><S17A2><S17C4>";"<BASE><VRNT1><BASE><BASE><VRNT2><BASE>";
"<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17B2>

% KHMER INDEPENDENT VOWEL QOO TYPE TWO; KHMER SIGN ROBAT

<SW_17CC_17B3> "<S179A><S17D2><S17A2><S17C5>";"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";

"<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17B3>

% KHMER INDEPENDENT VOWEL QAU; KHMER SIGN ROBAT

%%% Khmer OM and AAM (the NIKAHIT should be written after the vowel):
<U17BB_17C6> <S17BB_17C6>;<BASE>;<MIN>;<U17BB_17C6> % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT
<U17C6_17BB> <S17BB_17C6>;<BASE>;<MIN>;<U17C6_17BB> % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN U
<U17B6_17C6> <S17B6_17C6>;<BASE>;<MIN>;<U17B6_17C6> % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT
<U17C6_17B6> <S17B6_17C6>;<BASE>;<MIN>;<U17C6_17B6> % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN AA
reorder-end

 26

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Annex C – Preparation (informative)

C.1. General considerations

Preparation is necessary only for modification and/or duplication of original strings to render them
context-independent prior to the comparison phase. A non-duplicating preparation maps a given string to
one string. A non-duplicating preparation can be composed with the key generation and comparison, as
e.g. is needed for Lao and Thai (see Annex C.2), or proper ordering of numerals (see Annex C.3). A
duplicating preparation can map a given string to several strings (to be sorted).

Examples of non-duplicating preparations are:

• Vowel-consonant rearrangement, as is needed for Thai (see C.2) and Lao.

• Transformation of numbers so that the result will be ordered in numerical order, as
opposed to positional order (see C.3). Numeric ordering is particularly delicate and
requires special consideration in many cases.

• Removal or rotation of characters that are a nuisance for special requirements of ordering;
for example, removing articles (language dependent) in sorting book names as in:

 Tale of two cities, A

• Transformation of abbreviated data into a fuller form. For example: transformation of
"McArthur" to give "MacArthur".

Some examples of a duplicating preparation are:

• Duplicating a string into several ’rotations’, like when producing a keyword-in-context index:
 International string ordering
 International string ordering
 International string ordering

• Duplication of a string such as "41" for as it is spelled out in different languages (Irish
Gaelic, German, English, and French):

 daichead a haon
 einundvierzig
 forty-one
 quarante-et-un

C.2. Thai string ordering

This annex explains some of the principles behind the tailoring of the CTT given in annex B.5
above, as well as the CTT ordering for Thai (and to some extent Lao).

C.2.1. Thai ordering principles

The widely accepted standard for Thai lexicographical ordering is defined in the Royal Institute
Dictionary 2542 B.E. Edition (1999 A.D.), the official standard Thai dictionary. The ordering principles,
expanded to cover the full range of the Thai script and its computerisation, are:

• Words are ordered alphabetically, not phonetically. Consonants order is:

ก ข ฃ ค ฅ ฆ ง จ ฉ ช ซ ฌ ญ ฎ ฏ ฐ ฑ ฒ ณ ด ต ถ ท
 ธ น บ ป ผ ฝ พ ฟ ภ ม ย ร ฤ ล ฦ ว ศ ษ ส ห ฬ อ ฮ

• Vowels, and nikhahit, are also ordered by written forms, not by sounds. Vowels and
nikhahit order is:

o - ํ -ะ - ั -า -ๅ -ำ - ิ - ี - ึ - ื - ุ - ู เ- แ- โ- ใ- ไ- - ฺ

 27

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

o อ ว ย are always ordered as consonants, although they sometimes act as
vowels.

o ๅ is a long-legged variant of า, used with the long-legged consonants ฤ and ฦ:
ฤๅ and ฦๅ.

o ำ is logically an า followed by a ํ. However, the Unicode compatibility
decomposition of the precomposed character is to a ํ followed by an า, so this
misspelling must be handled as well.

• No syllable structure or word boundary analysis is required, as Thai lexicons are ordered
alphabetically, not phonetically. Note that Thai normally does not use any word separator,
except, and exceptionally, zero width space.

• String comparison is performed from left to right, but treating leading vowels (เ- แ- โ-
ใ- ไ-, corresponding to characters U+0E40-U+0E44), as though they followed the
consonant that immediately follows them. Therefore, rearrangement (in some way) is
needed before comparison.

• Tones and diacritics are ignored at level 1. At level 2 their order is:

 - ๎ - - ็ - - - -

• Since Thai, Lao, and Khmer are uncased, it may seem that the third level is not needed for
Thai, Lao, and Khmer string ordering. However, the third level is used to differentiate
LAKKHANGYAO (ๅ) as a variant of SARA AA (า), since similar variants in other scripts are
differentiated in a like manner at level 3, as well as for other variation cases in Thai, Lao,
and Khmer.

• When Thai punctuation marks (๛ ๚ ฯ ๏ ๆ) are concerned, another level of weights is
required for them. This corresponds to the fourth level in the Common Template Table. In
string ordering, punctuation marks are less significant than any tone marks and diacritics, and
must be ignored in all the first three levels. Note that PAIYANNOI (ฯ) and THAI CHARACTER
MAIYAMOK (repeat mark ๆ) are regarded and ordered as punctuation marks, not letters,
despite their Unicode general category as “Lo” and “Lm” respectively. For example, “ขางๆ,
ขางกบ, ขางๆ คูๆ, ขางจัน” is a valid order in the Royal Institute Dictionary. In the first level, the
considered weights correspond to ขาง, ขางกบ, ขางค ู, and ขางจัน respectively.

• The ten Thai decimal digits (๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙), each semantically equivalent to
Arabic digit 0-9, respectively. Their weights are then equal to their corresponding Arabic
digit in the first level, and are different in the second level, to distinguish script.

C.2.2. Vowel/consonant rearrangement
Regarding the handling of pre-vowels, either a collation preparation or collating-element grouping (as in
the tailoring in annex B.5 above) is required. The collation preparation scans the string once and swaps
every leading Thai vowel with its succeeding character (ideally only if the succeeding character is a
Thai consonant). The prepared string is then passed to the normal weight calculation process. Another
way to manage this is by means of collating-element formation – the approach taken both by the CTT of
this standard and by the collation weighting table of the Unicode Collation Algorithm (UTS #10). Every
possible pair of leading vowel and consonant is defined as a collating-element, whose weight is equal
to that of the rearranged substring. In addition, since two เ in sequence look just like a แ, two เ in
sequence should be handled just like a แ.

Note that the rearrangement of each leading vowel is simply performed with its immediate
succeeding consonant. No consonant cluster analysis is needed. Indeed, doing so would result in
ambiguities or yield a different order than that specified in the Royal Institute Dictionary. For example:

“เพลา”.1. Ambiguities: The problem with ambiguity is illustrated by the word It has two potential
pronunciations: either as a two-syllable word, “phe-la” (meaning “time”), or as a one-syllable

 28

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

word, “phlao” (meaning “axle” or “abate”). A rearrangement algorithm which follows the distinct
pronunciation of the potential cluster ‘พล “พเลา”’ in this string would result in distinct keys, and
“พลเา”, and therefore different weights, which are equally legal. Both words need to have the
same weight to be sortable, however.

2. Non-conforming ordering: To illustrate the difference in ordering caused by the treatment of
consonant clusters, consider these words, shown in conforming order: “เพล, เพลง, เพศ”. The
correct rearrangement ignores any clusters and results in the following: “พเล, พเลง, พเศ”,
which sorts in the order shown. If, however, pairs of consonants that form legal clusters were
grouped as single collation elements (regardless of actual pronunciation where the potential
pronunciation is ambiguous), then the results of rearrangement would be “<พล>เ, <พล>เง,
พเศ “เพศ, เพล, เพลง”.”, which would yield the (non-conforming) ordering Again, if actual
clusters were grouped as single collation elements (with some disambiguation effort), then the
results of rearrangement would be “พเล, <พล>เง, พเศ”, which would yield the (non-
conforming) ordering “เพล, เพศ, เพลง”.

C.2.3. Example ordered strings
Here is an ordering example: Example for Thai (sorted order)
กก โกน แขงขัน ผัด
กรรม โกรน แขน ฯพณฯ
กรรม ใกล ครรภ- พณิชย
-กระแยง ไก ครรภ ยอง
กราบ ไกล จุมพล รอง

จ ุํพล กะเกณฑ ขน ฤทธิ์
กัก ขนาบ ฤษี ชาย
กาว ขาง ฤๅษี เฒา
กํา ขางๆ ลลิตา เณร
กิน ขางกระดาน ฦๅชา ตลาด
กี่ ขางขึ้น วก ทูลเกลา
กึ๋น ขางควาย ศาล ทูลเกลาฯ
กุน ขางๆ คูๆ หริภุญชัย ทูลเกลาทูลกระหมอม
กูด ขางเงิน หฤทัย นา
เกง ขางออก หลง นํ้า
เกลา เขน แหง น้ี
เกลียว เข็น แหง บุญหลง
เกา เขน แหนม บุญ-หลง
เกาะ เข็ด แหนหวง ปา
เก่ียว แข็ง แหบ ปา
เก๊ียะ แขง แหม ปา
เกือก แขง อาน ปา
แกง แขงขวา ฮาปา
แกะ แข็งขัน ปาน

 29

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

C.3. Handling of numeral substrings in collation

A numeral is a string representing a number. The examples here deal with numerals that represent
values in R, the real numbers, or, really, subsets of R, as these have a predetermined order. Only
decimal numerals are dealt with in the examples given here.

The presentation below will first give positional system decimal numerals for natural numbers using
the digits 0-9. It will progress to numerals for whole numbers, numerals with a fraction part, a fraction
part and an exponent. There is also a brief discussion on numerals with digits from other scripts, scripts
that sometimes uses another syntax with digits for numerals (such as Hàn numerals), and Roman
numerals. There are circumstances where digits do not represent numerical values, such as in part
numbers and telephone numbers. The preparations described below have undesirable consequences in
cases where apparent numerals do not represent numerical values, such as when the ordering
telephone numbers or part ‘numbers’, and should be avoided in those cases.

C.3.1. Handling of ‘ordinary’ numerals for natural numbers

The Common Template Table has no means of ordering strings with numbers in such a way that
the resulting order reflects the number values represented by the numerals. For example, given the
following randomly-arranged strings:

 Release 1
 Release 20
 Release 12
 Release 2
 Release 9

the method described in the this International Standard yields the following order for these strings:

 Release 1
 Release 12
 Release 2
 Release 20
 Release 9

(It is sufficient simply to look positionally at just the first digit in each numeral to see why this
ordering results.) A more acceptable ordering is:

 Release 1
 Release 2
 Release 9
 Release 12
 Release 20

The Common Template Table defined in this International Standard cannot be tailored to give this
result. However, preparation can be done prior to the basic collation step to achieve the desired results
when numeric value order is desired. The prepared strings are normally not presented to the user; only
the original strings are. The prepared strings are normally only used for the collation key construction. A
simple, but not very general, way of preparing numerals for natural ordering is to pad them with zeroes to
a given number of digits. If one pads the numerals in our original example strings up to three digits, the
following will result:

 Release 001
 Release 020
 Release 012
 Release 002
 Release 009

 30

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Using the Common Template Table defined in this International Standard one then obtains the
strings in a better order (here showing the strings as they are after preparation, which are normally not
shown in the result):

 Release 001
 Release 002
 Release 009
 Release 012
 Release 020

However, there are two problems with this approach:

• One must determine beforehand a (usually small) number of digits to pad up to. If the
number of digits to pad up to is too large, the strings after preparation can become rather
long, especially if there are several numerals in each string. If the number of digits to pad
up to is too small, however, the risk is greater that there are actually occurring numerals
with more digits than one has padded up to, which results in partially getting back to the
original situation, where the numerals’ values are not taken entirely into account.

• Determinacy is lost, if some of the original numerals were already partially zero-padded.
For example, if the original strings were:

 Release 01
 Release 1

 the strings after preparation are identical, and the end result (as the user would normally see it)
could be either

 Release 01
 Release 1

 or

 Release 1
 Release 01

 and the relative order may come out differently for different occurrences of numerals, or different
runs of the collation process applying the same rules. This kind of indeterminacy is undesirable.

There are many ways to deal with these problems. The following is one such way.

To each maximal digit subsequence prepend a fixed-number-of-digits numeral which represents the
original number of digits in the numeral. For most cases a two-digit count would suffice (allowing up to 99
digits in the original integer numerals). For example, given the original strings:

 Release 1
 Release 01
 Release 20
 Release 12
 Release 2
 Release 09
 Release 9

one obtains after this preparation the following strings:

 Release 011
 Release 0201
 Release 0220
 Release 0212
 Release 012
 Release 0209
 Release 019

 31

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

which would be ordered by the basic mechanism of this International Standard to:

 Release 011
 Release 012
 Release 019
 Release 0201
 Release 0209
 Release 0212
 Release 0220

and are normally presented to the user as:

 Release 1
 Release 2
 Release 9
 Release 01
 Release 09
 Release 12
 Release 20

This particular method puts numerals with a like original number of digits close to each other, even if
the actual value represented is smaller due to the original zero-padding. If the represented values should
be kept close together, one should instead duplicate the numeral: first a count of digits for the leading-
zero-stripped numeral, the leading-zero-stripped numeral itself, followed by the original numeral. The
duplication is needed to get determinacy relative to the original strings. For example, using the same
original strings as above:

 Release 011 1
 Release 011 01
 Release 0220 20
 Release 0212 12
 Release 012 2
 Release 019 09
 Release 019 9

which would be ordered by the basic mechanism of this standard to:

 Release 011 01
 Release 011 1
 Release 012 2
 Release 019 09
 Release 019 9
 Release 0212 12
 Release 0220 20

and normally be presented to the user as:

 Release 01
 Release 1
 Release 2
 Release 09
 Release 9
 Release 12
 Release 20

The originally zero-padded numerals consistently come before the numeral without (or with less)
original zero-padding. The preparation processing could move the original numerals (in order of
occurrence) to the very end of each string, if one wants to give the original zero-padding lesser
significance than the text following the numerals.

The presence of several natural numerals in each string causes no additional problem.

 32

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Taking care of the natural number numerals is in most cases sufficient, and it is recommended that it
be included as part of the usual preparation of strings to be collated. However, such preparation is not
required by this International Standard.

C.3.2. Handling of positional numerals in other scripts

ISO/IEC 10646 encodes decimal digits for a number of scripts. In most cases these are used in a
positional system, just like 0-9 usually are. However, one should not regard a sequence of numerals
mixed from different scripts as a single numeral; rather, one should consider each maximal substring of
digits of the same script to be a numeral.

C.3.3. Handling of other non-pure positional system numerals or non-positional
system numerals (e.g. Roman numerals)

Chinese and some other languages can use decimal digits (in the Hàn script, for instance)
interspersed with ideographs for “one thousand”, “ten”, etc. If such numerals are to be collated according
to the value they represent, one can proceed as above, adding a step just after the initial duplication:
convert the copy to the corresponding positional system numeral in the syntax used here for whole
numerals.

Roman numerals, if handled, can be handled in a similar fashion to that described above. Duplicate,
and replace the first copy with the same natural number expressed in the decimal positional system. E.g.
“Louis V”, where the V is determined to be a Roman numeral, can be modified to “Louis 5 V”.

Caveat: In this case human interactive intervention or an expert system may be required, as in the
following example involving the French language: CHAPITRE DIX might mean CHAPTER 10 or
CHAPTER 509 ("dix" is the French word for 10, it is also the Roman numeral for 509).

C.3.4. Handling of numerals for whole numbers

If numerals for negative whole numbers are also to be ordered according to their value, there are a
number of issues to be considered. Most frequently, negative whole values are given numerals that begin
with a negation sign. The negation sign may be HYPHEN-MINUS U+002D (but this character may often
represent a true hyphen, rather than a negation), or MINUS SIGN U+2212. However, there are other
conventions also, like using a SOLIDUS U+002F or a PERCENT SIGN U+0025 to indicate negativeness;
or the negation indicator can come after the digits rather than before; or negativeness can be indicated by
putting the digits between parenthesis, and/or putting the digits in a contrasting colour (often red). In the
examples here, only the case that negativeness is indicated by an immediately prepended MINUS SIGN
is dealt with. Positiveness is indicated by either the absence of a MINUS SIGN, or the presence of a
PLUS SIGN U+002B.

Example strings:

 Temperature: –9 °C
 Temperature: 0 °C
 Temperature: –14 °C
 Temperature: 05 °C
 Temperature: +5 °C
 Temperature: –0 °C
 Temperature: –09 °C
 Temperature: 105 °C
 Temperature: +05 °C
 Temperature: 5 °C

One preparation to get an acceptable and determinate order for numerals (in this syntax) for whole
numbers is as follows (actual implementations should do something equivalent, but more efficient):

 33

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

1. Duplicate the numerals in the string (including sign indications), putting the ‘original’ ones
(not to be touched by the following steps) in order of original occurrence at the end or the
string, leaving the copies to be modified at the original positions. This step ensures
determinacy.

2. Ensure that all of the copies have an explicit initial sign indicator.

3. Remove leading zeroes in the copies of the numerals (systematically either leaving one
zero digit for zero or representing 0 by the empty string of digits); alternatively, let all
numeral copies have exactly one leading zero.

4. Between the sign indicator and the digits in the copies of the numerals, insert a (two-digit)
count of how many digits there were (after removing the leading zeroes).

5. Do 9’s complement on each digit in each copy of a negated numeral. 9’s complement of a
digit that individually represents the value x, is 9–x. That is, 9’s complement of 0 is 9, of 9 is
0, of 5 is 4, etc.

For the basic collation step, use a tailoring of the template given in this standard, namely, a tailoring
where the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and where
the MINUS SIGN has less weight than the PLUS SIGN. (In the example below, it is assumed that the
weight of PLUS SIGN is less than the weight of 0, but this is not a prerequisite for getting an acceptable
ordering.)

Our example strings after this preparation:

 Temperature: –980 °C –9
 Temperature: +00 °C 0
 Temperature: –9785 °C –14
 Temperature: +015 °C 05
 Temperature: +015 °C +5
 Temperature: –99 °C –0
 Temperature: –980 °C –09
 Temperature: +03105 °C 105
 Temperature: +015 °C +05
 Temperature: +015 °C 5

The ordering for these, using the basic mechanism of this standard, is:

 Temperature: –9785 °C –14
 Temperature: –980 °C –09
 Temperature: –980 °C –9
 Temperature: –99 °C –0
 Temperature: +00 °C 0
 Temperature: +015 °C +05
 Temperature: +015 °C +5
 Temperature: +015 °C 05
 Temperature: +015 °C 5
 Temperature: +03105 °C 105

and normally presented to the user as:

 Temperature: –14 °C
 Temperature: –09 °C
 Temperature: –9 °C
 Temperature: –0 °C
 Temperature: 0 °C
 Temperature: +05 °C
 Temperature: +5 °C
 Temperature: 05 °C

 34

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

 Temperature: 5 °C
 Temperature: 105 °C

This preparation results in a determinate ordering of strings that have zero or more numerals for
whole numbers in them, such that the numerals are ordered according to the integer value they
represent.

The process for other syntaxes for whole numbers can be similar. Just add a step to convert the
copies to the syntax used here for whole numbers.

This technique for handling negative numerals can be used also for numerals with a fractional part,
and so on (see below).

C.3.5. Handling of positive positional numerals with fractional parts

The method presented above can easily be adapted to the case where fraction parts may occur and
are to be taken into account. A problem is, however, that the characters often used to delimit the integer
part from the fraction part are also used for other purposes. The separator character is generally either
FULL STOP U+002E, or COMMA U+002C. These characters also have other uses, also in conjunction
with digits.

For the examples here, assume that FULL STOP is used (only) as a fraction part delimiter.

Do as above, but count only the digits in the integer part of the numeral for the count of digits to be
prepended. The fraction part delimiter character (here: FULL STOP) can be removed.

For example:

 –12.34
 12.34
 3.1415
 3.14

After preparation:

 –978765 –12.34
 +021234 12.34
 +013.1415 3.1415
 +01314 3.14

Ordered:

 –978765 –12.34
 +01314 3.14
 +0131415 3.1415
 +021234 12.34

As presented to the user:

 –12.34
 3.14
 3.1415
 12.34

C.3.6. Handling of positive positional numerals with fraction parts and exponent parts
7For very large, or very small, values, one often uses formats like 2.5*10 (to illustrate just one possible

way of writing these for the purposes of the examples here). Here there is already an exponent, which
must be combined with the “number of integer part digits” (here: digits before the decimal point), by
adding those two numbers to get a resulting fixed-number-of-digits exponent to prepend just before the

 35

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

first digit. For this example, with a three-digit exponent: we get +00825. One problem here is that the
resulting exponent may be negative. To handle this, use an exponent bias. For a three-digit exponent a
bias of 500 may be suitable, which gives us for this example numeral: +50825, and for the numeral
2.5*10–7 7 we get +49425. Negative values are handled as before, with 9’s complement. –2.5*10 gives –
49174, and –2.5*10–7 gives –50574. This method should be familiar to anyone with knowledge about
(radix 10) floating point arithmetic.

Thus:

 2.5*10–7
 7–2.5*10
 2.5*107
 –7–2.5*10

After preparation (including a duplicate of the original, for determinacy):

 +49425 2.5*10–7
 –49174 – 72.5*10
 +50825 2.5*107
 –50574 – –72.5*10

Ordered:

 –49174 – 72.5*10
 –50574 – –72.5*10
 +49425 2.5*10–7
 +50825 2.5*107

As presented to the user:
 7–2.5*10

 –7–2.5*10
 2.5*10–7
 2.5*107

C.3.7. Handling of date and time of day indications

Going a bit beyond plain numerals, date and time-of-day indications often employ numerals (as well
as names for months, weekdays, etc.) for the parts of the date and time-of-day indication. It is not
uncommon to want to order this kind of information also when it occurs within strings.

The preparation needed to obtain date and time-of-day indications, of some predetermined syntaxes,
ordered according to point in time is similar to what has been described above.

1. Duplicate all date and time-of-day indications to maintain determinacy of collation when the
original strings differ, but point in time identical. Leave the originals at the end of the strings,
untouched by the following steps.

2. Convert the copies of the date and time indications to the same calendar system, if there
are several calendar (sub)systems used and handled. The calendar (sub)system converted
to, must be suitable for being able to get proper time order. We will here use the Gregorian
calendar system and the subsystem of year, month, day-of-month.

3. Put the date and time-of-day elements in order of decreasing significance (to the resolution
taken into account): Full year, month, day-of-month, hour, minute, second, fraction of
second.

4. Use a 24-hour/day clock for the time-of-day indications. Remove A.M. or P.M. indications, if
present and handled, in the date-time indication copies.

 36

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

5. Use the UTC (Co-ordinated Universal Time) time zone for the date and time-of-day
indications. Remove time zone indications, if present, in the date-time indication copies.

6. Use month numbers, rather than month names. Use two digits each for month, day-of-
month, hour, minute, second.

7. Use full year number representation, as many digits as needed. Take abbreviations into
account so that the full year number is used. E.g. ‘98’ might denote year 98 or year 1998, or
1898, etc. No indeterminacy regarding year due to abbreviations like these may be present
after the preparation step.

8. For years AD, use an initial PLUS SIGN. For years BC, use an initial MINUS SIGN.
Remove the original AD or BC indication from the copies. (To nitpick, year n BC should be
represented by year (1–n), which is less or equal to zero if n is positive.)

9. For the year indications, insert between the sign indication and the first digit for the year
indication a digit telling how many digits there are in the full year indication. One digit for
this should suffice.

10. For negative years, replace the each digit in the year indication (including the digit telling
the number of digits in the original full year indication) with its 9’s complement digit.

11. Make sure the textual format for all of the date indication copies is the same (paying
attention to hyphens, spaces, etc.). (This is most easily accomplished by printing them in
the same format from an internal, non-string, representation.)

12. Alternatively, use a number indicating the point of time on a linear time scale (for example,
hours, milliseconds, or days from a predetermined point in time), to the resolution desired,
and handle this as an ordinary numeral (see above).

For the basic collation step, use a tailoring of the template given in this standard. Use a tailoring
where the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and where
the MINUS SIGN has less weight than the PLUS SIGN.

For example:

 Dated: July 19, 1955, at 1 p.m. GMT
 Dated: January, 20 BC
 Dated: Sept. 20, 1995, at 1 p.m. PST
 Dated: 11-june/345 AD

After preparation:

 Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT
 Dated: –780-01 January, 20 BC
 Dated: +1995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST
 Dated: +3345-06-11 11-june/345 AD

Ordered:

 Dated: –780-01 January, 20 BC
 Dated: +3345-06-11 11-june/345 AD
 Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT
 Dated: +41995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST

As presented to the user:

 Dated: January, 20 BC
 Dated: 11-june/345 AD

 37

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

 Dated: July 19, 1955, at 1 p.m. GMT
 Dated: Sept. 20, 1995, at 1 p.m. PST

C.3.8. Making numbers less significant than letters

In many cases, numerals preceding letters should be considered as less significant than the
following alphabetic part. However, the Common Template Table specifies digits to be level 1 significant.
To make numerals less significant than letters, either tailor the weight table so that numerals are ignored
at level 1 (but significant at level 2 or 3), or alternatively leave them significant at level 1, but prepare the
strings so that numerals are moved to the end of the string or moved to a less significant field. When
doing such a move, one must pay attention not to map different strings to identical strings (or identical
string fields), so that determinacy is maintained (see C.3.9).

Some examples where it is appropriate to consider numerals as less significant than letters: Street
or block names with one or more numbers to indicate where in the street/block, if that/those number(s)
precede the street or block name (common for example in the US and in Japan); chemical compound
names which have prepended numerals, e.g., 1,2-diclorobenzol.

C.3.9. Maintaining determinacy

As noted above in several cases, part of the string has been duplicated to maintain determinacy in
collation, when the original strings are different, but when preparation may otherwise turn different strings
into identical strings.

This method of concatenating a copy of a substring in order to maintain determinacy can be used
more generally, so if there are several preparations affecting different parts of the strings, one may
simply duplicate the original strings to begin with, and only perform the preparation (without additional
copying) on the given string, then concatenating on the initial copy.

One disadvantage with just concatenating the two copies is that the base letters of the second half
of the “doubled” string count as more significant than the accents and case of the resulting first half of the
“doubled” string. This International Standard has no mechanism for handling this in a better way, where
the “original” (the second half of the “doubled” string) would count as less significant than the entire first
half of the “doubled” string. This may be handled better by having the original and copy in different
‘fields’, and construct the collation key by combining the full keys for each ‘field’. Such processing is
beyond the scope of this International Standard, however.

Maintenance of determinacy when some of the original strings to be collated are identical, is out of
the scope of this International Standard. A sorting processor should document if it is ‘stable’ (maintaining
initial relative order of identical strings) or not. This is useful to know when sorting on one field of multi-
field data.

 38

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Annex D – Tutorial on solutions brought by this standard to
problems of lexical ordering (informative)

Why does not existing standard character codes, with character-by-character comparisons, give
appropriate resulting ordering of strings? What must be done in order to get appropriate resulting
orderings? In this discussion will illustrate this with examples the Latin script.

D.1. Problems

1. Sorting, in any language using the Latin script, including English, using, e.g., ISO/IEC 646
coding, does not follow traditional dictionary sequence, which is the minimum the average
user needs.

 For example: Ordering the list "august", "August", "container", "coop”, “co-op",
"Vice-president", "Vice versa" gives the following order, if ISO/IEC 646 coding is used and a
simple sort following binary order is performed:

 August
 Vice versa
 Vice-president
 august
 co-op
 container
 coop

 This ordering is obviously incorrect.

2. Transforming uppercase to lowercase and removing special characters yields a sorted list
acceptable to users, but also yields unpredictable results.

 For example: Sorting the list "August", "august", "coop", "co-op" gives the following order:
 August
 august
 coop
 co-op

 Sorting the same list with a different initial order, say, "august", "co-op", "August", "coop"
may give a different order with this method:

 august
 August
 co-op
 coop

3. If accented characters are introduced using for example any ISO/IEC 8-bit character set,
the same problems as encountered above are amplified but they share the same causes.

4. If character code point tables were reorganized to make all related characters contiguous,
one might think that a simplified single-character sort would result, but this does not work
either. Take upper- and lowercase unaccented letters as an example. If code position 01 is
assigned to "a", code position 02 assigned to "A", code position 03 to "b", code position 04
to "B" and so on, a list sorted directly according to these rearranged values will yield the
following:

 Sorted Internal
 List Values

 aaaa 01010101
 abbb 01030303
 Aaaa 02010101
 Abbb 02030303

 This is also predictable, but remains obviously incorrect for any country with regard to
cultural expectations.

 39

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

D.2. Solution

The only solution to the above problems is to consider the initial data in multiple levels in a way that
will respect traditional lexical order, and at the same time ensure absolute predictability. For the Latin
script, this can be achieved by comparing in four (or more) levels:

1. The first level renders the texts to be sorted case-insensitive and insensitive to diacritical
marks, and to all special characters (which have no pre-established traditional order).

 An example for English:

 "résumé" (’curriculum vitae’) becomes "resume" (‘begin again’), without any accent.

 An example for French:

 "Vice-légation" becomes "vicelegation", with no accent, no uppercase and no
hyphen.

 An example for German:

 "groß" becomes "gross", with the sharp-s being converted to double-s for the
ordering.

 In some languages, including Spanish and the Nordic languages, some extra letters are
added to the 26 letters of the English, French, and German alphabets. The additional
letters are not ordered according to the expectations in other languages. This demonstrates
the need for adaptability.

2. The second level breaks ties on quasi-homographs, that is, strings that differ only because
they have different diacritical marks.

 In English, "resumé" and "résumé" are quasi-homographs. Traditional English lexical order
requires that "resume" always comes before "résumé" (which sorting using only the first
level would not guarantee). In this case, the tradition does not explicitly specify whether
"resumé" should come before "résumé", though this would seem logical: most English and
German dictionaries only state that unaccented words precede the accented words.
However, German dictionaries generally employ the German standard DIN 5007, which
states rules that are more precise.

 Here another characteristic is introduced. In French, because of the large number of
multiple quasi-homograph groups formed of more than 2 instances, the most important
dictionaries follow the following rule: Accents are generally not taken into account for
sorting, but in case of homographic ties, the last difference in the word determines the
correct order between two given words. A priority order is assigned to each type of accent.
According to this, "coté" should be sorted after "côte" but before "côté". This is easy to
implement with “backwards” tailoring: A number is assigned to each character of the data to
be sorted, representing either a letter with an accent or a letter with no accent at all, but
these numbers are prepended instead of being appended to the result being constructed.
In other words, the resulting string is made starting from the last character of the original
data and processing in a backwards direction.

 For example: To obtain an order respecting this rule: "cote, "côte", "coté", "côté", numbers
could be assigned indicating respectively "****", "**C*", "A***", "A*C*", where "*" means no
accent, "A" means acute accent, "C" circumflex accent. This scheme is sufficient to break
the tie correctly at this second level.

3. The third level breaks ties for quasi-homographs that differ only because uppercase and
lowercase characters are used.

 40

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

 This time, the tradition is well established in German dictionaries, where lowercase always
precedes uppercase in homographs, while the tradition is not well established in French
dictionaries, which generally use only accented capital letters for common word entries. In
known French dictionaries where upper- and lowercase letters are mixed, the capitals
generally come first, though this is not an established and stated rule, because there are
numerous exceptions. English has no monolithic practice for this, a bit like French.
Therefore, for a Common Template it is advisable to use the well-established German
tradition, if one wants to group the largest possible number of languages together without
affecting others. Note that in Denmark, uppercase is specified to precede lowercase, a
different but well-established rule. This is a second fact that demonstrates the need for
adaptability in the model used in this International Standard.

 For example: to have the following order: "august", "August", numbers could be assigned
indicating respectively "LLLLLL", "ULLLLL", where "L" means lowercase and "U"
uppercase.

4. The fourth level breaks the final tie that, in general, does not correspond to any strong
tradition, namely, the tie between quasi-homographs differing only because they contain
special characters.

 Breaking this tie is essential to ensure the predictability of ordering as well as enabling the
ordering of strings composed only of special characters. Since the traces of special
characters were removed from the original data to form the three first levels, simply putting
them sequentially in the fourth order of decomposition would mean that their position would
be lost. These positions are needed to resolve remaining ties, so the original positions of
these special characters must be retained somehow. E.g., two quasi-homographs could
each contain a common special character in different positions and thus be strictly different
(example: "ab*cd" is different from "a*bcd" despite they share one and only one common
special character).

 For example: To obtain the following order: "coop", "co-op", "coop-", numbers could be
assigned respectively according to the following pattern: "", "3-", and "5-"; where "3-" means
a hyphen in (relative) position 3 of the original string. "5-" means a hyphen in (relative)
position 5, and so on. Note that "coop.", "co-op.", "coop-." (adding a period at the end of
each string) get the numbers assigned as "5.", "3-3.", and "5-1.", and are thus ordered:
"co-op.", "coop.", "coop-.".

These four levels can be composed to a four-level key, concatenating the subkeys from the most
significant to the least significant, putting the lowest value possible as a delimiter between each subkey.
The ordering result can then be obtained through the numeric order of the keys.

If the assignment of weight numbers is done properly, one can eliminate some of the delimiter
weights. To eliminate the level delimiter between the first and second level subkeys, choose the
numbers for the second level weights be less than numbers for the first level weights. To eliminate the
level delimiter between the second and third level subkeys, choose the numbers for the third level
weights be less than numbers for the second level weights.

Subkey reduction techniques have been designed to considerably shorten space requirements. As
no implementation is required to use specific numbers for weights and reduction is not required, this
issue is outside the scope of this International Standard. Nevertheless, it is interesting to note that
implementation can be optimised. This has been improved over time and is easy to accomplish, some
methods being more efficient than others. This method for string collation was described with tables in
Règles du classement alphabétique en langue française et procédure informatisée pour le tri, Alain
LaBonté, Ministère des Communications du Québec, 1988-08-19, ISBN 2-550-19046-7. A public-
domain subkey reduction technique is described (with several examples) in Technique de réduction -
Tris informatiques à quatre clés, Alain LaBonté, Ministère des Communications du Québec, 1989-06,
ISBN 2-550-19965-0. See also the paper by Rolf Gavare, Alphabetic ordering in a lexicological

 41

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

perspective, Studies in Computer-Aided Lexicology, 1988, pp. 63–102, which also describes a multi-
level string collation technique, with subkey compression.

D.3. Tailoring

For a number of languages, the Common Template Table presented in this standard will need to be
adapted. Adaptation may be needed both in the table values for the four levels of subkeys, which can
require redefining weightings for characters or introducing multi-character collating elements into the
table; as well as changes in the potential context analysis processing necessary to achieve culturally
correct results for users of these languages.

To illustrate this, without discussing context analysis which is not necessary in what follows,
examples of dictionary sequences are given here for two languages whose expected ordering rules are
not covered the Common Template Table:

 For traditional Spanish, where "ch" is greater than "cu" and "ña" is greater than "no":

 cuneo < cúneo < chapeo < nodo < ñaco

 Comparative French/English/German sort of the same strings:

 chapeo < cuneo < cúneo < ñaco< nodo

 For Danish, where "a" is less than "c", "cz" is less than "cæ" and "cø", and "aa" is
equivalent to "å", which is greater than "z", even in cases where it is pronounced differently:

 Alzheimer < czar < cæsium < cølibat < Aachen < Aalborg < Århus

 Comparative French/English/German sort of the same strings:

 Aachen < Aalborg < Alzheimer < Århus < cæsium < cølibat < czar

Similarly, Japanese will need tailoring in order to handle the length mark properly. For many other
orthographies, some degree of tailoring will be necessary.

 42

©ISO/IEC ISO/IEC FCD 14651:2006 (E)

Annex E – Bibliography (informative)
The following standards and documents are considered relevant to this standard, in addition to the

normative references.

• CAN/CSA Z243.230-1998 – Minimum Canadian Software Localisation Conventions, A
National Standard of Canada.

• CAN/CSA Z243.4.1-1998 – Canadian Alphanumeric Ordering Standard, A National
Standard of Canada, Canadian Standards Association.

• DS 377:1980 – Alfabetiseringsregler, Dansk Standard.

• Gavare, Rolf, Alphabetic ordering in a lexicological perspective, Studies in Computer-Aided
Lexicology, 1988, pp. 63–102.

• ISO/IEC 10646-1:1993/Amd.9:1997 Information technology – Universal Multiple-Octet
Coded Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane
Amendment 9: Identifiers for characters.

• ISO/IEC 2022, Information technology – Character code structure and extension
techniques.

• ISO/IEC 646, Information technology – ISO 7-bit coded character set for information
interchange.

• ISO/IEC 6937, Information technology – Coded graphic character set for text
communication – Latin alphabet.

• ISO/IEC 8859-1, Information technology – 8-bit single-byte coded graphic character sets –
Part 1: Latin alphabet No. 1.

• ISO/IEC 8859-2, Information technology – 8-bit single-byte coded graphic character sets –
Part 2: Latin alphabet No. 2.

• ISO/IEC 8859-3, Information technology – 8-bit single-byte coded graphic character sets –
Part 3: Latin alphabet No. 3.

• ISO/IEC 8859-4, Information technology – 8-bit single-byte coded graphic character sets –
Part 4: Latin alphabet No. 4.

• ISO/IEC 8859-5, Information technology – 8-bit single-byte coded graphic character sets –
Part 5: Latin/Cyrillic alphabet

• ISO/IEC 8859-6, Information technology – 8-bit single-byte coded graphic character sets –
Part 6: Latin/Arabic alphabet.

• ISO/IEC 8859-7, Information technology – 8-bit single-byte coded graphic character sets –
Part 7: Latin/Greek alphabet.

• ISO/IEC 8859-8, Information technology – 8-bit single-byte coded graphic character sets –
Part 8: Latin/Hebrew alphabet.

• ISO/IEC 8859-9, Information technology – 8-bit single-byte coded graphic character sets –
Part 9: Latin alphabet No. 5.

• ISO/IEC 8859-10, Information technology – 8-bit single-byte coded graphic character sets –
Part 10: Latin alphabet No. 6.

• ISO/IEC 8859-13, Information technology – 8-bit single-byte coded graphic character sets –
Part 13: Part 13: Latin alphabet No. 7.

 43

ISO/IEC FCD 14651:2006 (E) ©ISO/IEC

• ISO/IEC 8859-14, Information technology – 8-bit single-byte coded graphic character sets –
Part 14: Latin alphabet No. 8 (Celtic).

• ISO/IEC 8859-15, Information technology – 8-bit single-byte coded graphic character sets –
Part 15: Latin alphabet No. 9.

• ISO/IEC 9945-2, Information technology – Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities.

• ISO/IEC TR 14652, Information technology – Specification method for cultural conventions.

• LaBonté, Alain, Règles du classement alphabétique en langue française et procédure
informatisée pour le tri, Ministère des Services gouvernementaux du Québec,
URL: http://www.services.gouv.qc.ca/archivage/alphabet_classement.pdf.

• LaBonté, Alain, Technique de réduction – Tris informatiques à quatre clés, Ministère des
Services gouvernementaux du Québec,
URL : http://www.services.gouv.qc.ca/archivage/technique_reduction.pdf.

• Retskrivningsordbogen – 2nd edition 1996, Dansk Sprognævn & Aschehoug Dansk Forlag
A/S.

• Teknisk norm nr. 34, Swedish Alphanumeric Sorting, Statskontoret, 1992. (Includes
Gavare’s paper as an annex.)

• The Unicode Standard, Version 5.0, The Unicode Consortium, Addison-Wesley, 2007.
ISBN 0-321-48091-0.

• Unicode Technical Report no. 10, Unicode Collation Algorithm, The Unicode Consortium,
URL: http://www.unicode.org/unicode/reports/tr10/.

 44

http://www.services.gouv.qc.ca/archivage/alphabet_classement.pdf
http://www.services.gouv.qc.ca/archivage/technique_reduction.pdf
http://www.unicode.org/unicode/reports/tr10/

	Foreword
	Introduction
	1. Scope
	2. Conformance
	3. Normative references
	4. Definitions
	5. Symbols and abbreviations
	6. String comparison
	6.1. Preparation of character strings prior to comparison
	6.2. Key building and comparison
	6.2.1. Preliminary considerations
	6.2.1.1. Assumptions
	6.2.1.2. Processing properties

	6.2.2. Reference ordering key formation
	6.2.2.1. Formation of a subkey with the “forward” level processing parameter
	6.2.2.2. Formation of a subkey with the “backward” level processing parameter
	6.2.2.3. Formation of a subkey with the “forward,position” level processing parameter

	6.2.3. Reference comparison method for ordering character strings

	6.3. Common Template Table: formation and interpretation
	6.3.1. BNF syntax rules for the Common Template Table in Annex A
	6.3.1.1 Keyword usage

	6.3.2. Well-formedness conditions
	6.3.3. Interpretation of tailored tables
	6.3.4. Evaluation of weight tables
	6.3.5. Conditions for considering specific table equivalences
	6.3.6. Conditions for results to be considered equivalent

	6.4. Declaration of a delta
	6.5. Name of the Common Template Table and name declaration

	Annex A – Common Template Table (normative)
	Annex B – Example tailoring deltas (informative)
	B.1. Example 1 – Minimal tailoring
	B.2. Example 2 – Reversing the order of lowercase and uppercase letters
	B.3. Example 3 – Canadian delta and benchmark
	B.4. Example 4 – Danish delta and benchmark
	B.5. Example 5 – A tailoring for Khmer

	Annex C – Preparation (informative)
	C.1. General considerations
	C.2. Thai string ordering
	C.2.1. Thai ordering principles
	C.2.2. Vowel/consonant rearrangement
	C.2.3. Example ordered strings

	 C.3. Handling of numeral substrings in collation
	C.3.1. Handling of ‘ordinary’ numerals for natural numbers
	C.3.2. Handling of positional numerals in other scripts
	C.3.3. Handling of other non-pure positional system numerals or non-positional system numerals (e.g. Roman numerals)
	C.3.4. Handling of numerals for whole numbers
	C.3.5. Handling of positive positional numerals with fractional parts
	C.3.6. Handling of positive positional numerals with fraction parts and exponent parts
	C.3.7. Handling of date and time of day indications
	C.3.8. Making numbers less significant than letters
	C.3.9. Maintaining determinacy

	Annex D – Tutorial on solutions brought by this standard to problems of lexical ordering (informative)
	D.1. Problems
	D.2. Solution
	D.3. Tailoring

	Annex E – Bibliography (informative)

