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1. Introduction

The Unicode Standard  [Unicode] defines the universal character set. Its primary goal is to provide an
unambiguous encoding of the content of plain text, ultimately covering all languages in the world, but
also major text-based notational systems for science, technology, music, and scholarship.

 Currently in its fifth major version, Unicode contains a large number of characters covering most of the
currently used scripts in the world. It also contains additional characters for interoperability with older
character encodings, and characters with control-like functions included primarily for reasons of
providing unambiguous interpretation of plain text. Unicode provides specifications for use of all of
these characters.

For document and data interchange, the Internet and the World Wide Web make extensive use of 
marked-up text such as HTML and XML. In many instances, markup provides the same, or essentially
similar features to those provided by format characters in the Unicode Standard for use in plain text.
Another special character category provided by Unicode are compatibility characters. While there may
be valid reasons to support these characters and their specifications in plain text, their use in
marked-up text can conflict with the rules of the markup language. Formatting characters are
discussed in Sections 2 and 3, compatibility characters in Section 4, Format Characters Suitable for 
Use With Markup.

Issues resulting from canonical equivalences and Normalization [Normalization] as well as the
interaction of character encoding and methods of escaping characters in markup are discussed in the
Character Model for the World Wide Web [Charmod] and [Charmodnorm].

The issues of using Unicode characters with marked-up text depend to some degree on the rules of
the markup language in question and the set of elements it contains. In a narrow sense, this document
concerns itself only with XML, and to some extent HTML. However, much of the general information
presented here should be useful in a broader context, including some page layout languages.



Note: Many of the recommendations of this report depend on the availability of particular
markup or styling. Where possible, appropriate DTDs or Schemas should be used or
designed to make such markup or styling available, or the DTDs or Schemas used should
be appropriately extended. The current version of this document makes no specific
recommendations for the design of DTDs or Schemas, or for the use of particular DTDs or
Schemas, but the information presented here may be useful to designers of DTDs and
Schemas, and to people selecting DTDs or Schemas for their applications. The
recommendations of this report do not apply in the case of XML used for blind data
transport and similar cases.

1.1 Notation

This report uses XML [XML] as a prominent and general example of markup. The XML namespace
notation [Namespace] is used to indicate that a certain element is taken from a specific markup
language. As an example, the prefix 'xhtml:' indicates that this element is taken from [XHTML]. This 
means that the examples containing the namespace prefix 'xhtml:' are assumed to include a
namespace declaration of xmlns:xhtml="..." 

Characters are denoted using the notation used in the Unicode Standard, that is, an optional U+
followed by their hexadecimal number, using at least 4 digits, such as "U+1234" or "U+10FFFD". In
XML or HTML this could be expressed as "&#x1234;" or "&#x10FFFD;".

2. General Considerations

There are several general points to consider when looking at the interaction between character
encoding and markup. 

Linearity of text vs. hierarchy of markup structure
Overlap of control codes and markup semantics
Markup vs. Styling
Coincidence of semantic markup and functions 
Extensibility of markup

2.1 Linearity versus Structure

Encoding text as a sequence of characters without further information leads to a linear sequence,
commonly called plain text. Character follows character, without any particular structure. Markup, on
the other hand, defines a hierarchical structure for the text or data. In the case of XML and most other,
similar markup languages, the markup defines a tree structure. While this tree structure is linearized for
transmission in the XML document, once the document has been parsed, the tree is available directly.

Operations that are easy to perform on trees are often difficult to perform on linear sequences and vice
versa. By separating functionality between character encoding and markup appropriately, the
architecture becomes simpler, more powerful and longer-lasting.

In particular, operations on hierarchical structures can easily make sure that information is kept in
context. Attributes assigned to parts of a document are moved together with the associated part of the
document. Assigning an attribute to a part of a document limits the scope of the attribute to that part of
the document. Performing the same operations on linear sequences of characters using control codes
to set attributes and to delimit their scope requires much more work and is error prone. Locating the
start or end of a span of text of the same attribute requires scanning backwards and forwards for the
embedded delimiter or control code. Moving or editing text often results in mismatched control codes,
so that an attribute might suddenly apply to text it was not intended for.



2.2 Overlap of Control Code and Markup Semantics

When markup is not available, plain text may require control characters. This is usually the case where
plain text must contain some scoping or attribute information in order to be legible, i.e. to be able to
transmit the same content between originator and receiver. Many of these control characters have
direct equivalents in particular markup languages, since markup handles these concerns efficiently. If
both characters and their markup equivalents may be present in the same text, the question of priority
is raised. Therefore it is important to identify and resolve these ambiguities at the time markup is first
applied.

2.3 Markup and Styling

Besides the basic character encoding and text markup there is a third contributor to text functionality,
namely styling. Markup is concerned with the logical structure of the text or data, e.g. to indicate
sections, subsections, and headers in a document, or to indicate the various fields of an address
record. Styling is used to present the information in various ways, e.g. in different fonts, different type 
styles (italic, bold), different colors, etc. Some character codes do not encode a generic character, but
a styled character. Where these characters are used, styling information is frozen, i.e. it is no longer 
possible to alter the appearance of the text by applying style information. However, there are many
examples where a historically free stylistic variation has over time become a semantic distinction that is
properly encoded as plain text. Sometimes, what is a free variation in some contexts, implies strict
semantic differentiation in others. In all such instances, altering the appearance of the text by styling
information would irreparably alter the content of the text. This is of particular concern with
mathematical notation or systems for phonetic and phonemic transcription which make extensive
semantic use of styles on a character by character basis.

2.4 Coincidence of Markup and Functions

Dealing with various functionalities on the markup level has the additional advantage that in most
cases, text portions that need some particular attribute (or styling) are actually those text portions
identified by markup. A paragraph may be in French, a citation may need a bidi embedding, a keyword
may be in italics, a list number may be circled, and so on. This makes it very efficient to associate
those attributes with markup.

However, where local or point-like functionality is needed, markup is not very efficient and its main 
benefit, easy manipulation of scope, is not required. On the contrary, the intrusion of markup in the
middle of words can make search or sort operations more difficult. For these cases expressing the
information as character codes is not only a viable, but often the preferred alternative, which needs to
be considered in the design of markup languages.

2.5 Extensibility of Markup

Character encoding works with a range of integers used as character codes. This is extremely efficient,
but has some limitations. Markup, on the other hand, is much more extensible. Using technologies
such as XML Namespaces [Namespace] and their application in schema languages like [XML
Schema], various vocabularies can be mixed.

2.6 Suitability of Characters in Markup

The suitability of a particular character for markup depends on its status in the Unicode Standard, the
nature of its behavior in text and the availability of equivalent markup. Many format characters that are
needed for advanced plain text are not suitable for use with markup. Section 3 gives a list and detailed
descriptions. However, not all format characters are unsuitable for use with markup. Section 4 provides



a list of format characters that are suitable for use with markup and gives some discussion about their
use. In addition to format characters, the Unicode Standard also has compatibility characters, some of
which may be replaceable by suitable markup. These characters are discussed in Section 5.

3. Characters not Suitable for use With Markup

There are characters which are unsuitable in the context of markup in XML/HTML and whose use is
discouraged, because one or more of the following conditions apply:

They are deprecated in the Unicode Standard.
They are unsupportable without additional data.
They are difficult to handle because they are stateful.
They are better handled by markup.
They are undesirable because of conflict with equivalent markup.

Section 3.1 provides a list of such characters. Sections 3.2 through 3.10 discuss in more detail the
following points for the discouraged characters.

Short description of semantics
Reason for inclusion in Unicode
Specific problems when used with markup
Other areas where problems may occur (e.g. plain text)
What kind of markup to use instead
What to do if detected in a particular context

3.1 Table of Characters not Suitable for use With Markup

The following table contains the characters currently considered not suitable for use with markup in
XML or HTML. (See however the note in the Introduction.) They may also be unsuitable for other
markup or page layout languages. For determining possible conflict this report uses the markup
available in HTML.

Table 3.1 Characters not suitable for use with markup

Codepoints Names/Description Short Comment

U+0340..U+0341 Clones of grave and accent Deprecated in Unicode
U+17A3, U+17D3 Obsolete characters for Khmer Deprecated in Unicode

U+2028..U+2029 Line and paragraph separator use <xhtml:br />, 
<xhtml:p></xhtml:p>, or equivalent

U+202A..U+202E BIDI embedding controls 
(LRE, RLE, LRO, RLO, PDF) Strongly discouraged in [HTML 4.0]

U+206A..U+206B Activate/Inhibit Symmetric 
swapping Deprecated  in Unicode

U+206C..U+206D Activate/Inhibit Arabic form 
shaping Deprecated in Unicode

U+206E..U+206F Activate/Inhibit National digit 
shapes Deprecated in Unicode

U+FFF9..U+FFFB Interlinear annotation 
characters Use ruby markup [Ruby]



U+FEFF Byte order mark / ZWNBSP
Use only as byte order mark. Use 
U+2060 Word Joiner instead of using
U+FEFF as ZWNBSP

U+FFFC Object replacement character Use markup, e.g. HTML <object> or 
HTML <img>

U+1D173..U+1D17A Scoping for Musical Notation Use an appropriate markup language
U+E0000..U+E007F Language Tag codepoints Use xhtml:lang or xml:lang

Except for Line and Paragraph Separator, or the Byte Order Mark, it is acceptable for browsers and
similar user agents to ignore the presence of discouraged characters in HTML or XML. It is up to
authoring tools to ensure proper conversion between these characters and equivalent markup where it
exists.

3.2 Line and Paragraph Separator, U+2028..U+2029

Short description: The line and paragraph separator provide unambiguous means to denote hard line
breaks and paragraph delimiters in plain text.

Reason for inclusion: These characters were introduced into the Unicode Standard to overcome the
ambiguous and widely divergent use of control codes for this purpose. See Unicode Technical Report
#13, Unicode Newline Guidelines [UAX13].

Problems when used in markup: Including these characters in markup text does not work where it
would duplicate the existing markup commands for delimiting paragraphs and lines.

Problems with other uses: The separator characters can also problematic when used in plain text,
because legacy data is usually converted code point for code point into Unicode and all receivers of
Unicode plain text have to effectively be able to interpret the existing use of control codes for this
purpose. As a result, fewer Unicode implementations support these characters, than would be the case
otherwise.

Replacement markup: In HTML, use <xhtml:br /> instead of U+2028 and surround paragraphs by
<xhtml:p> and </xhtml:p> instead of separating them with U+2029.

What to do if detected: In a browser context, treat as whitespace. When received in an editing context,
replace the character by the corresponding markup. 

3.3 Bidi Embedding Controls (LRE, RLE, LRO, RLO, PDF), U+202A..U+202E

Short description: The bidi embedding controls are required to supplement the Unicode Bidirectional
Algorithm in plain text

Reason for inclusion: The Unicode Bidirectional algorithm unambiguously resolves the display direction
for bidirectional text. It does so by assigning all characters directional categories and then resolving
these in context. In a small number of circumstances this implicit  method does not produce
satisfactory results and embedding controls are needed to ensure that sender and receiver agree on
the display direction for a given text. See Unicode Technical Report #9, The Bidirectional Algorithm
[UAX 9].

Problems when used in markup: These characters duplicate available markup, which is better suited to
handle the stateful nature of their effect. 

Problems with other uses: The embedding controls introduce a state into the plain text, which must be
maintained when editing or displaying the text. Processes that are modifying the text without being



aware of this state may inadvertently affect the rendering of large portions of the text, for example by
removing a PDF.

Replacement markup: The following table gives the replacement markup:

Unicode Equivalent markup Comment

RLO <xhtml:bdo dir = "rtl">  

LRO <xhtml:bdo dir = "ltr">  

PDF </xhtml:bdo> when used to terminate RLO or LRO only, 
otherwise ignore

RLE dir = "rtl" attribute on block or inline element
LRE dir = "ltr" attribute on block or inline element

For details on bidi markup, please see Section 8.2 of HTML [HMTL 4.0-8.2]. The text of HTML 4.0 
gives this recommendation: 

Using HTML directionality markup with Unicode characters. Authors and designers of
authoring software should be aware that conflicts can arise if the dir attribute is used on
inline elements (including BDO) concurrently with the corresponding [UNICODE] formatting 
characters. Preferably one or the other should be used exclusively. The markup method
offers a better guarantee of document structural integrity and alleviates some problems
when editing bidirectional HTML text with a simple text editor, but some software may be
more apt at using the [UNICODE] characters. If both methods are used, great care should
be exercised to insure proper nesting of markup and directional embedding or override,
otherwise, rendering results are undefined.

This document goes beyond HTML and recommends that only the markup should be used.

Note: The interpretation of how to handle directionality markup for block level elements
differs in different versions of [CSS].

What to do if detected: In a browser context, ignore. When received in an editing context, replace the
characters by the appropriate markup. 

3.4 Deprecated Formatting Characters, U+206A..U+206F

Short description: These characters are deprecated. They were originally intended to allow explicit
activation of contextual shaping, numeric digit rendering and symmetric swapping.

Reason for inclusion: These characters were retained from draft versions of ISO 10646.

Problems when used in markup: The processing model for these characters is not supported in
markup.

Problems with other uses: The Unicode Standard requires that symmetric swapping, contextual
shaping, and alternate digit shapes are enabled by default and no longer supports inhibiting any of
them by use of these character codes. The most likely effect of their occurrence in generated text
would be that of a 'garbage' character.

Conversion for use with markup: Apply the appropriate conversion to bring the data stream in line with
the Unicode text model for bidirectional text and cursively-connected scripts.



What to do if detected: When received by a browser as part of marked up text, they may be ignored.
When received in an editing context, they may be removed, possibly with a warning. Alternatively, an
appropriate conversion from the legacy text model may be provided. This will most likely be limited to
applications directly interfacing with and knowledgeable of the particular legacy implementation that
inspired these characters.

3.5 Byte Order Mark, ZWNBSP, U+FEFF

Short description: U+FEFF has two functions. It is formally known as ZERO WIDTH NO-BREAK SPACE
(ZWNBSP), and can act as a word joiner, but its primary use is as byte order mark (BOM), to indicate
in a file signature that a file is in a Unicode encoding form and of a particular byte order. Using U+FEFF
as a word joiner in new data is deprecated  as of [Unicode3.2] in favor of U+2060 WORD JOINER (WJ). 
The use as byte order mark remains unaffected.

Reason for inclusion: Originally included in Unicode for the sole purpose of indicating byte order or use
in file signatures, the character acquired the ZWNBSP semantics as part of the merger between
ISO/IEC 10646 and Unicode. When used as a byte order mark the character is placed at the beginning
of a file. If a recipient views it as FEFF then the byte order between sender and receiver match. If the
recipient views it as FFFE (a non-character code point) then the sender used opposite byte order from
the recipient, and the recipient needs to invert the byte order or refuse to read the file. When used as a
ZWNBSP the character is intended to prevent breaks between adjacent characters. This function is
now provided by U+2060 WORD JOINER (WJ) making it unnecessary to insert U+FEFF in the middle of a
file. For more information see Chapter 15 of [Unicode].

Problems when used in markup: Using U+FEFF as ZWNBSP makes it impossible to distinguish it from
the case where a byte order mark was left in the middle of a file inadvertently due to incorrect splicing.

Problems with other uses: The use of byte order mark as ZWNBSP is also problematic when used in
plain text, and has been deprecated for that purpose in favor of U+2060 WORD JOINER. The use of
U+FEFF in file signatures to indicate byte order is the only recommended use of this character.

Replacement markup: None. In locations other than the beginning of a text file, U+FEFF can be
removed or replaced by U+2060 in an editing environment.

What to do if detected:  When received by a browser as part of marked-up text, treat depending on
location. At the start of an external entity, treat as byte order mark (i.e. as part of the character
encoding, not as part of the parsed character stream, see e.g. Section 4.3.3 of [XML 1.0]). Otherwise, 
assume it is older data using it as ZWNBSP. When receiving plain text in an editing environment,
editors may take one or more of several actions: replace ZWNBSP in the middle of a file with WJ or
issue a warning to the user.

3.6 Interlinear Annotation Characters, U+FFF9-U+FFFB

Short description: The interlinear annotation characters are used to delimit interlinear annotations in
certain circumstances. They are intended to provide text anchors and delimiters for interlinear
annotation for in-process use and are not intended for interchange.

Reason for inclusion: The interlinear annotation characters were included in Unicode only in order to
reserve code points for very frequent application-internal use. The interlinear annotation characters are
used to delimit interlinear annotations in contexts where other delimiters are not available, and where
non-textual means exist to carry formatting information. Many text-processing applications store the
text and the associated markup (or in some cases styling information) of a document in separate
structures. The actual text is kept in a single linear structure; additional information is kept separately
with pointers to the appropriate text positions. This is called out-of-band information. The overall
implementation makes sure that these two structures are kept in sync. If the text contains interlinear



annotations, it is extremely helpful for implementations to have delimiters in the text itself; even though
delimiters are not otherwise used for style markup. With this method, and unlike the case of the object
replacement character, all textual information can remain in the standard text stream, but any
additional formatting information is kept separately. In addition, the Interlinear Annotation Anchor
serves as a placeholder for formatting information for the whole annotation object, the same way a
paragraph mark can be a placeholder to attach paragraph formatting information.

Problems when used in markup: Including interlinear annotation characters in marked-up text does not
work because the additional formatting information (how to position the annotation,...) is not available.

Problems with other uses: The interlinear annotation characters are also problematic when used in
plain text, and are not intended for that purpose. In particular, on older display systems that simply
ignore or replace the Interlinear Annotation Characters, the meaning of the text may be changed.

Replacement markup: The markup to be used in place of the Interlinear Annotation Characters
depends on the formatting and nature of the interlinear annotation in question. For ruby, please see
[Ruby].

What to do if detected:  When received by a browser as part of marked-up text, they may be ignored.
When receiving plain text in an editing environment, editors may take one or more of several actions:
remove U+FFF9 together with removing all characters between U+FFFA and following U+FFFB; 
ignore U+FFF9 and turn U+FFFA and U+FFFB  into "[" and "]" respectively, or into similar characters;
issue a warning to the user; or tentatively convert into appropriate ruby markup for further editing and
formatting by the user.

3.7 Object Replacement Character, U+FFFC

Short description: The object replacement character is used to stand in place of an object (e.g. an
image) included in a text.

Reason for inclusion: The object replacement character was included in Unicode only in order to
reserve a codepoint for a very frequent application-internal use. Many text-processing applications
store the text and the associated markup (or in some cases styling information) of a document in
separate structures. The actual text is kept in a single linear structure; additional information is kept
separately with pointers to the appropriate text positions. The overall implementation makes sure that
these two structures are kept in sync. If the text contains objects such as images, it is extremely helpful
for implementations to have a sentinel in the text itself; any additional information is kept separately.

Problems when used in markup: Including an object replacement character in markup text does not
work because the additional information (what object to include,...) is not available.

Problems with other uses: The object replacement character is also problematic when used in plain
text, because there is no way in plain text to provide the actual object information or a reference to it.

Replacement markup: The markup to be used in place of the Object Replacement Character depends
on the object in question and the markup context it is used in. Typical cases are <xhtml:img src='...' />,
<xhtml:object ...>, or <html:applet ...>. These constructs allow providing all additional information
needed to identify and use the object in question.

What to do if detected: Browsers may ignore this character. When received in an editing context, if the
actual object is accessible, editors may either replace the character by the appropriate markup for that
object, or otherwise remove it, ideally providing a warning.

3.8 Musical Controls, U+1D173..U+1D17A

Short description: A series of characters for controlling scope in musical notation.



Reason for inclusion: These characters designate the start and end of common musical constructs.
Full musical layout depends on additional information, for example pitch, that cannot be encoded using
Unicode. However, many musical symbols may be depicted in isolation (and without assigning pitch)
as part of a textual discussion of music. Plain text use of Unicode characters is primarily intended for
this latter purpose. The scoping operators can be used to support limited renderings of beams, slurs,
phrases, etc. in this context. However, in the context of markup languages, musical scoring calls for a
dedicated markup language (analogous to MathML) which would be expected to contain markup for
these constructs.

Problems when used in markup: These characters duplicate information that can in principle be
expressed in markup.

Problems with other uses: Their special code range allows them to be easily filtered, but applications
that do not expect them will treat them as garbage characters.

Replacement markup: Replace with equivalent markup if available.

What to do if detected: Browsers may ignore these characters. When received in an editing context,
editors may remove or replace them by equivalent markup.

3.9 Language Tag Characters, U+E0000..U+E007F

Short description: A series of characters for expressing language tags, based on existing standards for
language tags using the rules in Chapter 15 of [Unicode].

Reason for inclusion: These characters allow in-band language tagging in situations where full markup
is not available, while allowing easy filtering by applications that do not support them. They were solely
included for the benefit of those Internet protocols, such as ACAP, which require a standard
mechanism for marking language in UTF-8 strings, and at the same time to avoid the use of other
tagging schemes that relied on specific details of the encoding form used.

Problems when used in markup: These characters duplicate information that can be expressed in
markup.

Problems with other uses: Their special code range allows them to be easily filtered, but applications
that do not expect them will treat them as garbage characters.

Replacement markup: Replace with equivalent language markup. XML and XHTML have the xml:lang
attribute. HTML has the lang attribute. These attributes follow different scoping rules than the tag
characters, therefore this replacement will generally not be a simple 1:1 substitution.

What to do if detected: Browsers may ignore these characters. When received in an editing context,
editors may remove or replace them by equivalent markup.

3.10 Other Characters Deprecated in Unicode [new]

Short description: The Unicode Character Database [UnicodeData] lists all characters that have been
deprecated in [Unicode]. This list may grow (slowly) over time. Deprecated characters remain valid
characters forever, but their use is strongly discouraged. Deprecation of characters is applied only in
exceptional circumstances. It is never the result of historical changes of a writing system: characters no
longer in current, modern use are retained in Unicode, as they are needed for the representation of
historical documents.

Reason for inclusion: Usually, characters that are deprecated were never needed but inadvertently
added to the Unicode Standard, perhaps based on incomplete information available at the time of



encoding.

Problems when used in markup: Except where noted elsewhere in this document, their presence in
markup presents the same problems as in plain text, usually that of an unnecessary duplicate
encoding.

Problems with other uses: Depends on the character and the reason for its deprecation. For more
information see [Unicode].

Conversion for use with markup: For deprecated characters not discussed elsewhere in this document,
see the relevant descriptions in Chapter 6 and following of [Unicode] for information on the
recommended alternatives.

What to do if detected:  Unless a specific recommendation is given elsewhere, deprecated characters
are not ignored; where possible, in an editing environment, a preferred alternate encoding may be
substituted.

4. Format Characters Suitable for Use with Markup

The following table contains format characters that do not exhibit the problems discussed at the start of
Section 3. Despite their apparent relation to or similarity with characters in table 3.1, they are
considered suitable for use with markup. It is not acceptable for user agents to ignore the characters in
table 4.1. For a description of these characters see [Unicode].

Table 4.1: Some characters that affect text format but are suitable for use with markup

Code points Names/Description Short Comment

U+00A0 No-break space Line Break, in Latin-1
U+00AD Soft Hyphen Line Break, in Latin-1
U+034F Combining Grapheme Joiner Used in sorting
U+0600 Arabic Number Sign Subtending mark
U+0601 Arabic Sign Sanah Subtending mark
U+0602 Arabic Footnote Marker Subtending mark
U+0603 Arabic Sign Safha Subtending mark
U+06DD Arabic End of Ayah Enclosing mark
U+070F Syriac Abbreviation Mark (SAM) Supertending mark
U+0F0C Tibetan Mark Delimiter Tsheg Bstar Non-breaking form of 0F0B
U+115F..U+1160 Hangul Jamo Fillers Filler

U+180B..U+180E
Mongolian Variation 
Selectors(FVS1..FVS3), Mongolian
Vowel Separator

Required for Mongolian

U+200B ZERO_WIDTH SPACE Line Break control

U+200C..U+200D Zero-width Joiners (ZWJ and ZWNJ) Required for a.o. Persian and
many Indic scripts

U+200E..U+200F Implicit directional marks (LRM and 
RLM) LRM and RLM are allowed

U+2011 Non-breaking Hyphen Line Break



U+202F Narrow No-break Space Line Break/Mongolian
U+2044 Fraction Slash Or use markup (MathML)

U+2060 Word Joiner Use for that purpose instead 
of U+FEFF ZWNBSP

U+2061 Function Application Mathematical use
U+2062 Invisible Times Mathematical use
U+2063 Invisible Comma Mathematical use

U+2FF0..U+2FFB Ideographic character description Graphic characters (not 
controls)

U+303E Ideographic variation indicator Graphic character (not a 
control)

U+FF80 Halfwidth Hangul Filler Filler

U+FEFF Byte Order Mark (aka ZWNBSP)
Suitable only as first character 
in a file when needed as byte
order mark

FE00..FE0F Variation Selectors Not graphic characters
E0100..E01DF Variation Selectors Not graphic characters

The following subsections briefly discuss some of the characters from the above list, particularly those
that affect more than their immediately adjacent neighbors. Please see the Unicode Standard
[Unicode] for full details.

4.1 Subtending Marks

Subtending marks are needed to represent a common feature in the Arabic and Syriac scripts where a
mark can be placed below a range of characters, for example below a sequence of digits, to indicate a
year. The Syriac abbreviation mark is placed above a series of characters, making it technically a
supertending mark, and the ARABIC END OF AYAH is an enclosing mark. In the character stream, a 
subtending mark precedes the affected characters. The end of affected range of characters is defined
implicitly, usually by the first non-alphanumeric character. 

Unlike subtending marks, the scope of combining enclosing marks, such as COMBINING ENCLOSING
CIRCLE, is limited to the preceding default grapheme cluster. For details on grapheme clusters see
[UAX 29] Text Boundaries.

There is currently no existing markup that can represent the scoping and layout functions defined by
these characters, so they cannot be substituted. It is unresolved to what degree intervening markup
affects the scope of these marks.

4.2 Fraction Slash

The fraction slash is used between sequences of decimal digits to form fractions. Whether the resulting
fraction has a horizontal or diagonal fraction line is unspecified. The fallback is to leave the digits
unchanged and display a regular slash. In order to separate a digit from a following fraction, as in 1 ¾,
the use of U+2009 THIN SPACE is recommended.

For better control of fractions the use of [MathML] is suggested where appropriate.

4.3 Variation Selectors



A variation selector is intended to cause a specific variant form (or range of variant forms) when
applied to a base character. For a variation selector to have an effect it must immediately follow its
base character. Only pre-determined combinations of selected base characters and specific variation
selectors have a defined effect. All other combinations are ill-formed and are to be ignored. The list of
standardized combinations is documented in the Unicode Character Database, see [Variants]. In 
addition to the 256 generic variation selectors, there are 3 Mongolian free variation selectors. They 
function in all other ways like variation selectors, except they only apply to base characters from the
Mongolian script. Since Mongolian, like Arabic, has positional character shapes, the variations are
limited to particular shaping contexts.

4.4 Ideographic Description Characters

Ideographic Description Characters are included in the Unicode Standard as a means to indicate the
composition of ideographs from a combination of pieces (terms), where each piece or term is either a
Unicode character or composed. Ordinarily the result would be a human readable description of a
character, perhaps one for which a font is not available. However, at least some vendors are interested
in automatic conversion of these sequences into single ideographs.

4.5 Invisible Mathematical Operators [new]

These characters are needed to convey the intended meaning of a mathematical expression to an
automated parser whenever two elements are simply written next to each other. See Unicode
Technical Report #25: "Unicode Support for Mathematics" [UTR25] for more details.

4.6 Line Break Controls [new]

Most of these characters prevent line breaks adjacent to them, but ZWSP and SHY provide invisible
line break opportunities. The detailed function of these characters is described in Unicode Standard
Annex #14: "Line Breaking Properties" [UAX14]. Note that [HTML40] uses U+00A0 NO-BREAK
SPACE also as a "hard space", something that is not part of its character semantics in [Unicode].

4.7 Hangul Fillers [new]

These should not be needed except for texts that need to have a fixed number of jamos per Korean
syllable block. See the description of Korean Syllable Blocks in [Unicode].

5. Characters with Compatibility Mappings

The Unicode Standard provides compatibility mappings for a number of characters. Compatibility
mappings indicate a relationship to another character, but the exact nature of the relationship varies. In
some cases the relationship means "is based on" in some other cases it denotes a property. When
plain text is marked up, it may make sense to map some of these characters to a combination of their
compatibility equivalents and suitable markup. It is important to understand the nature of the
distinctions between characters and their compatibility equivalents and the context in which these
distinctions matter. It is never advisable to apply compatibility mappings indiscriminately. This section
provides guidance on when and how to apply compatibility mappings in the case of importing text from
non-XML (non-marked-up) sources. The section is organized by the "compatibility tag" associated with
each compatibility mapping.

5.1 Overview

The following table gives an overview of the various compatibility characters, organized by



"compatibility tag". The first column, Tag value, contains the value of the "compatibility tag" from the
Unicode Character Database [UnicodeData]. Although these tags use "<" and ">", they do not appear
as such in markup and should not be confused with XML tags. Code range indicates a further break
down by code points. Action summarizes the recommended action to be taken whenever markup is
first applied to non-XML text. Each entry indicates whether the characters can be substituted using the
compatibility equivalent according to Normalization Form KC of [UAX 15], can be replaced by 
equivalent markup where available, or should be retained. For some cases, instead of or in addition to
markup, style information [CSS] is needed. Description and usage provides additional information.
Sections 5.3 through 5.6 provide additional information for some of these sets of compatibility
characters including detailed recommended actions.

Table 5.1 Characters with compatibility mappings

Tag value Code range Action Description and usage
<circled> all retain Circled letters and digits used for list item markers, and in

running text
<compat> 2002..200A retain Fixed width spaces

2100..2101 retain Variant letter forms that are used as symbols
2105..2106 retain Variant letter forms that are used as symbols
2121, 213B retain For use as single code point in vertical layout
2160..217F retain, or 

use list 
item 
marker 
style, or
normalize

For use as single code point in vertical layout, or as list
item marker

2474..249B retain, or 
use list 
item 
marker 
style, or
normalize

Parenthesized or dotted number used as list item marker

249C..24B5 retain, or 
use list 
item 
marker 
style, or
normalize

Parenthesized letters used as list item markers

3131..318E retain Compatibility Hangul Jamo. These do not conjoin
3200..3229 retian, or 

use list 
item 
marker 
style, or
normalize

Parenthesized characters used as list item markers

322A..3243 retain Parenthesized characters used as symbols in vertical
layout

32C0..32CB retain String used as single code point in vertical layout
all other retain Maintain, semantic distinctions apply

<final> all normalize Arabic Presentation forms



<font> all retain Variant letter forms that are used as symbols
<fraction> all normalize As long as fraction slash is supported!
<initial> all normalize Arabic Presentation forms
<isolated> all normalize Arabic Presentation forms
<medial> all normalize Arabic Presentation forms
<narrow> all retain Half-width characters
<noBreak> all retain The compatibility mapping merely indicates the equivalent

breaking character. The noBreak distinction must be
preserved

<small> all retain Precise usage unknown. Maintain, but do not generate
<square> 3300..3357 retain Single display cell cluster containing multiple lines of kana

for vertical layout
3358..337D retain For use as single code point in vertical layout
33E0..33FE retain For use as single code point in vertical layout
all other retain Variant letter form used as symbol in vertical layout

<sub> 2080..208E retain, or 
use 
markup

Subscript digits 0-9, as well as minus, plus, equal and
parens

all other retain Subscript characters, usually used as modifier letters in
phonetic notation

<super> 00B2..00B3 retain, or
use 
markup

Superscript digits 0-9, as well as minus, plus, equal and
parens00B9

2070
2074..207E
all other retain Superscript characters, usually used as modifier letters in

phonetic notation
<vertical> all normalize East Asian Presentation forms
<wide> all retain Full-width characters

Note: Some symbols used in vertical layout exist as single code points in legacy systems,
but can also be composed on the fly by more advanced display engines. There are
currently no style properties for text-combining property, that could be used to express 
squared Kana clusters (kumimoji) and writing-mode, that could be used to express
horizontal in vertical (tate-chu-yoko).

5.2 Generating New Text

Presentation forms and characters for which adequate representation exists as marked up text should
never be entered into new data. Many of the characters with <font> tag are however suitable for new
data, as long as they are used in the manner they are intended, that is as symbols, with definite
semantic differentiation between the different forms. The largest set of these characters exists to carry
essential semantic distinctions in mathematical notation, where the any loss of markup during text
export would compromise the meaning of the text. Most of the characters with <super> and <sub> tag
have been encoded for use in phonetic or phonemic transcriptions, where they act as ordinary letters
and the use of style markup is therefore deemed inappropriate. However, it is inappropriate to use any
of these classes of characters to create the appearance of styled text runs.

For example to write hello, one should use <i>hello</i> and not the sequence of Unicode characters



U+210E, U+212F, U+2113, U+2113, U+2134. Conversely, to indicate Planck's constant one should 
use U+210E and not <i>h</i>.

When style is applied across entire words, sentences or paragraphs, the use of markup is thus usually
indicated. When style is applied to individual letters, especially to letters inside a word, the use of
character codes is usually indicated. See also Section 5.6.

5.3 List Item Marker Characters

Short description: Characters with a <circled> tag or characters with <compat> tag and compatibility
mapping to a parenthesized string.

Reason for inclusion: They are most frequently used for marking enumerated list items, but the
characters with a <circled> tag often occur as dingbats or footnote markers in tables. The same
characters are used in regular text when citing an item from a corresponding ordered list.

Problems when used in markup: These characters do not cause undue interaction with markup

Problems with other uses: None

Replacement markup: (in text use) these characters are often used in running text; sometimes, but not
exclusively, in situations where the text is to be associated with an item from a nearby numbered list.
Replacement markup may not be available, and the support for such markup is much more limited
today than was anticipated when this document was first written.

(list item style) When generating marked up text these characters occur only internal to the user agent
when list item styles are rendered. When marking up plain text data they could be converted to suitable
list item styles, if such use can be properly inferred. The default recommendation is to retain the
original character.

(characters with compatibility mappings of the form "(n)" or "n." or roman numerals) Unlike circled
characters, these could be rendered by sequences of regular characters. Using a list item marker style
would in theory allow the support of longer lists (the Unicode characters are limited to the set  (1) to
(20) and "1." to "20."). Using regular character sequences would also allow the use of fonts that match
the text of the list.

What to do if detected: No action needs to be taken by browsers. When received in an editing context,
substitution of a list item marker style may be appropriate. However, the same characters are very
often used as dingbat-like symbols in tables, or may appear in general text, whether or not referring to
an item from a list. Therefore the user must have the choice of whether to replace the character.

5.4 Fractions

Short description: Single character fractions such as ½ or ¼.

Reason for inclusion: Subsets of these occur in practically all legacy character sets.

Problems when used in markup: The character repertoire is limited to a few common fractions. When
used with more general methods of generating fractions such as MathML [MathML] the usual problem 
of dual representation arises.

Problems with other uses: Other than normalization issues, these characters present no undue
problems in plain text. Where fraction slash is supported, these can be expressed by substituting their
compatibility mappings. 

Replacement markup: MathML can represent fractions unambiguously. When using fraction slash, care



must be taken such that values like 3½ do not turn into 31/2 (=15.5).

What to do if detected: No action needs to be taken by browsers or editors, except when converting
plain text to MathML.

5.5 Squared or Horizontal

Short description: Characters that are symbols composed of groups of typically kana or Latin letters,
digits plus slash for use in a single display cell in vertical display of text. 

Reason for inclusion: Many existing character sets contain these as precomposed characters since for
simple implementations this is the only way to support the common use of providing metric units and
other abbreviations in a single character cell for vertical text layout. 

Problems when used in markup: Proposed markup, including CSS styling, would be able express an
unbounded set of these abbreviations, obviating the need of cataloguing these in the character
encoding standard and making them more directly accessible to text based processing, for example
searching.

Problems with other uses: The repertoire of these legacy characters is limited; many more
combinations are in actual use than are accounted for in character sets. Pre-composed symbols do not
make their text content available to search engines. They also require re-encoding for text laid out
horizontally.

Replacement markup: None available.

What to do if detected: No action required. (Subject to change pending the outcome of current
proposals.)

5.6 Superscripts and Subscripts

Short description: Mainly super and subscript digits, but also signs, parentheses and a large number of
letters.

Reason for inclusion:  Super and subscripted letters and digits are quite common in some forms of
phonetic or phonemic transcriptions, where the use of styles is both awkward and prone to data
integrity issues when exported to plain text. For super or subscripted letters in phonetic transcription in
particular, a change from superscript of subscript to regular style would alter the meaning. Note that 
such use in transcription is not limited to letters: superscripted small digits are often used to indicate
tone. When used for these purposes, these characters should be retained and markup should not be
used. 

A few super and subscript characters, primarily the digits, also occur in many legacy character sets,
including Latin-1. Their use in pure plain text is common for databases, e.g. including metric units for
part descriptions  (viz. cm2) or for (usually simplified) formulae as occur in titles of scientific
publications. 

When used in mathematical context (MathML) it is recommended to consistently use style markup for
superscripts and subscripts. This is because mathematical layout allows not just individual symbols,
but entire expressions to be superscripted or subscripted in a regular, nested manner.

Problems when used in markup: Mixing direct use of these characters with the use of style markup
provides multiple representations of the same text, leading to potentially different treatment by search
and display engines.

However, when super and sub-scripts are to reflect semantic distinctions, it is easier to work with these



meanings encoded in text rather than markup, for example, in phonetic or phonemic transcription.
Otherwise, they would require markup in the middle of words, and  they may also be inadvertently
changed to normal style text, when exporting to plain text. This applies to the majority of super and
subscripted characters in Unicode.  On the other hand, some user agent may support certain
superscripted or subscripted characters only when used as marked up text for example, because of
lack of font support for them.

Problems with other uses: none

Replacement markup: Unless used as letters, <xhtml:sup> and <xhtml:sub> or <mathml:msup> and
<mathml:msub> may be used.

What to do if detected: Both representations (with or without style markup) should be equivalent for
search purposes. Input methods for mathematical texts might enforce the use of styles.  If superscript
characters are encountered during display of mathematical formulae, it is recommended that they be
displayed in a manner indistinguishable from that achieved by using regular characters with
corresponding style markup.. 

5.7 Other Characters Marked <compat>

Short description: The <compat> label was given to a set of compatibility characters whose further
classification was not settled at the time the standard was created. The largest components are list
item marker characters.

Reason for inclusion: These characters occur in many legacy character sets.

Problems when used in markup: none. There usually is no equivalent markup.

Problems with other uses: none

Replacement markup: none.

What to do if detected: No action required.

6.  Noncharacters

The Unicode Standard defines 66 non-character code points, or noncharacters. These are the last two
positions on each of the 17 planes, in other words, all characters whose code points end in ...FFFE or
...FFFF, as well as the 32 code points from U+FDD0 to U+FDEF. Applications are free to use any of
these code points internally but should never attempt to interchange them. In effect, noncharacters can
be thought of as application-internal private-use code points.

7. White Space [ROUGH DRAFT]

Note to reviewers: the material in this section is in a rough draft state. The most useful
review input therefore would focus on the scope and outline of this section, including what
level of recommendation this section should provide, rather than focus on wording. For
readability, the remainder of this section is not highlighted.

It is probably incorrect to attempt to actually describe the process of white space and line
feed handling in detail, therefore, after an exposition of the issues along the lines attempted
here, it would be best to refer the reader to specifications for *actual* processing for specific
markup languages. Suggested references?

This section presents common issues with white space characters in markup language, mostly based



on their difference in function as part of the structure of the markup source on one hand and as part of
the document content on the other hand.

The set of characters in the Unicode standard that have the property "white_space" is larger than the
set of white space characters defined by typical markup language specifications. The XML [XML1.0]
and [XML1.1] specifications defines white space as a combination of one or more of the following
characters: U+0020 SPACE, carriage return (U+000D), line feed (U+000A), or tab (U+0009). This is a
subset of the Unicode characters that are considered white space (see 'white space' in the [UCD]).

Note: [HTML401] also defines the form feed character (U+000C) as a white space
character, but that character is not part of any XHTML versions as they are all based on
XML.

XML processors replace some combinations of end-of-line characters by a single line feed character.
[XML1.0] normalizes any two character sequences of (U+000D U+000A) or any U+000D not followed
by U+000A to a single U+000A. [XML1.1] also normalizes NEL (U+0085) and U+2028 LINE
SEPARATOR.

Notably, the character U+2029 (PARAGRAPH SEPARATOR) is not part of that set. If the characters
U+2028 and U+2029 appears in text, they are treated as zero-width characters without semantic
meaning. (see xxxxx in this document).

Note: some XML languages like [XHTML1.0] may have their own white space processing
rules when parsing and validating documents with white space characters. Therefore, some
of the behaviors described below may be affected by these limitations and may be user
agent dependent in these contexts.

7.1 Converting Newline Functions to White Space 

Usually, the specific control codes that define a newline function (see Section 5.13 in [Unicode]) are not
considered part of the text, but rather part of the structure of the markup source. There are several
options for treating the characters that represent newline functions contained in the markup source file.
They can be preserved, removed, collapsed with adjacent control characters of the same type, treated
as space or treated as zero-width space. Which choice is appropriate, depends on the type of text. If
the markup represents preformatted plain text, such as program source code, newline functions must
be preserved. For texts that can be reflown, the appropriate choice of treating newline functions
depends on the script. Scripts that use spaces, line feeds should generally only occur at places where
spaces are required; treating them as spaces therefore preserves the intended separation between
words. For scripts, such as Ideographic scripts or Thai, which do not use spaces, line feeds should be
removed, or replaced by U+200B zero width space. The choice of treatment can depend on the script
value of the characters preceding and following the line feed character, assuming these characters
belong to the same run of text.

Note: The Unicode Standard [UNICODE] specifies that the zero width space is considered
a valid line-break point and that if two characters with a zero width space in between are
placed on the same line they are placed with no space between them; and that if they are
placed on two lines no additional glyph area is created at the line-break.

7.2 White space processing

White space characters, likewise, have a function both as part of the markup as well as of the marked
up text. They may be preserved or collapsed, with the specific choice of treatment depending on styles.

8. Versioning



This report will be updated by the Unicode Technical Committee in cooperation with the W3C
Internationalization WG whenever the tables of characters in this document need to be updated as a
result of the addition of characters to the Unicode Standard, as a result of a revised determination of
the suitability of a given character for use with markup, or when additional background information or
recommendations become available.

Each report carries a revision number, which may be used to refer to a specific version of the report.
Older versions of the report will remain available. Each version of this report specifies the underlying
version of the Unicode Standard.

For more information on the Unicode Standard and its versions, see:

Versions of the Unicode Standard [UnicodeVersions]
About the Unicode Character Database [UCD]
Unicode Character Database [UnicodeData]

9. Conformance

In the context of the Unicode Standard, the material in this technical report is informative. However, 
other documents, particularly markup language specifications, may specify conformance including
normative references to this document. Such references may have to be updated as a result of future
updates to this report as discussed in Section 8, Versioning.
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