ISO/IEC JTC /SC 2 N 3925

DATE: 2007-04-17

L2/07-112

ISO/IECJTC 1/SC 2
Coded Character Sets

Secretariat: Japan (JI1 SC)

DOC. TYPE Working group document

TITLE A proposed method of preprocessing Hangul to be included as an Annex of
ISO/IEC 14651

SOURCE Republic of Korea

PROJECT JTC 1.02.14651.00.00.02

STATUS This document will be cqnsi dered at the OWG-SORT meeting to be held in
Frankfurt, Germany, April 2007.

ACTION ID FYl

DUE DATE

P, O and L Membersof ISO/IEC JTC 1/SC 2 ; ISO/IEC JTC 1 Secretariat;

DISTRIBUTION ISO/IEC [TTF

ACCESSLEVEL | Open

| SSUE NO. 269
;AZ '\é B 02n3926.pof
FILE |) 2687
PAGES 16

Secretariat ISO/IEC JTC 1/SC 2 - IPSYITSCJ (Information Processing Society of Japan/Information Technology
Standards Commission of Japan)* Room 308-3, Kikai-Shinko-Kaikan Bldg., 3-5-8, Shiba-Koen, Minato-ku, Tokyo
105-0011 Japan * Standard Organization Accredited by JISC

Telephone: +81-3-3431-2808; Facsimile: +81-3-3431-6493; E-mail: kimura @ itscj.ipsj.or.jp

rick@unicode.org
Text Box
L2/07-112

ISO/IEC JTC1/SC2/SC2 N 3xxX

(= Korea JTC1/SC2 K1562B)

Universal Multiple Octet Coded Character Set
International Organization for Standardization

Organisation internationale de normalisation

Doc Type: Working Group Document
Title: A proposed method of preprocessing Hangul

to be included as an annex of ISO/IEC 14651
Source: Republic of KOREA (KIM, Kyongsok)

Status: National Position
Action: For consideration by JTC1/SC2/OWG-SORT

2007-04-xx

A proposed method of preprocessing Hangul
to be included as an annex of ISO/IEC 14651

Purpose:

Currently ISO/IEC 14651 cannot collate Hangul data in ISO/IEC 10646
properly, especially data in 0ld Hangul.

Therefore, we propose a method of preprocessing Hangul data in ISO/IEC
10646 so that the output can be used as an input to ISO/IEC 14651
supporting program, which will then collate Hangul properly.

1. Introduction
1.1 BNF

We want to specify the rules of transforming Hangul data in UCS so that
Hangul can be easily collated by ISO/IEC 14651-supporting software.

Since we will specify the transforming rules in a widely used notation,
called a context-free grammar (or grammars, for short) or BNF (for
Backus-Naur Form or BacKus-Normal Form), we will briefly introduce BNF.

The following explanations come from [Compilers, Principles, Techniques,
and Tools. Aho, Sethi, and Ullman. Addison-Wesley Publishing Company.
1985]. Some parts are slightly edited so that we can better understand in
ISO/IEC 14651 context.

For example, an if-else statement in C has the form
if (expression) statement else statement
The if-else statement is the concatenation of the Keyword if, an opening
parenthesis, an expression, a closing parenthesis, a statement, the Keyword
else, and another statement. The structure can be expressed in BNF as
<stmt> -> if (<expr>) <stmt> else <stmt>
in which the arrow may be read as "can have the form”. Such a rule is
called a production. The Keyword if and the parentheses are called
“toKens”. <expr> and <stmt> represent sequence of toKens and are called

non-terminals.

A context-free grammar has four components:

1) A set of "toKens”, Known as “terminal symbols”.

2) A set of "non-terminals”.

3) A set of productions where each production consists of a non-terminal,
called the left side of the production, and arrow (“->"), and a sequence of
tokens and/or non-terminals, called the right side of the production.

4) A designation of one of the non-terminals as the start symbol.

We specify the transformation rules (or grammars) by listing their
productions, with the productions for the start symbol listed first.

In this paper, non-terminals are shown enclosed within a pair of
brackets, e.g., <si>, <sil>, <si2>, <s8i3>. Terminals are shown without
brackets, e.g., U1100, U1162, where U1100 is Hangul letter Giyeog and U1162
is Hangul letter Nieun).

Productions with the same non-terminal on the left can have their right
sides grouped, with the alternative right sides separated by the vertical
bar symbol “|”, which we read as “or”.

Example 1.1. Consider expressions consisting of two digits separated by
plus or minus signs, e. g., 9 + 2, and 3 - 1. The following grammar
describes the syntax of these expressions. The productions are:

{expr> —> <{term> + <{term> (production 1a)
{expr> -> <term> - <{term> (production 1b)
<term> -> 011121314516 718109 (production 1c¢)

The right sides of the two productions with non-terminal <expr> on the
left side can equivalently be grouped:

{expr> -»> <term> + <term> | <term> - <term>

<expr> and <term> are non-terminals with <expr> being the starting
non-terminal because its productions are given first. +, -, 0, 1, ..., and
9 are terminals (or tokens).

A grammar derives strings by beginning with the start symbol and
repeatedly replacing a non—-terminal by the right side of a production for
that non—-terminal. The strings that can be derived from the start symbol
form the language defined by the grammar.

Example 1.2. The language defined by the grammar of Example 1.1 consists
of two digits separated by a plus or minus sign.

The ten productions for the non-terminal <digit> allow it to stand for
any of the 0, 1, ..., 9. From production 1c, a single digit by itself is a
term. Productions la and 1lb express the fact that if we take any digit and

3

follow it by a plus or minus sign and then another digit we have an
expression.

a) 9 is a <term> by production lc
b) 9 - 5 is an <expr> by production 1b, since 9 is a <term> and 5 is also
a {term>

Example 1.3. An English alphabet consists of 26 letters. 5 of them are
vowels and the others are consonants., That can be expressed as follows:

<eng-alphabet> -> <vowel> | <consonant>

<vowel> -> a i e i1 o1

{consonant> >b icidi figihi
i i i P tovo

P k1
Pigq:ir . s I X i

J
W
1.2 Syntax-directed translation

A translation scheme is a context-free grammar in which program fragments
called “semantic actions” are embedded within the right sides of
productions. The position at which an action is to be executed is shown by
enclosing it between braces (“{ }”) and writing it within the right side of
a production, as in

{expr> -> <term> + <term> { print(’'+") }
{expr> -> <term> - <term> { print('-") }
<term> -> 0 {print ('0")}
<term> -> 1 {print ("1")}

<term> -> 9 {print ('9")}

A translation scheme generates an output for each sentence x generated by
the underlying grammar by executing the actions in the order they appear.

The above translation scheme translates a given expression into postfix
form. This scheme accepts expressions having only two numbers and a plus
or minus in between. For example, ‘9O + 5" or '9 - 5 is accepted, but "1 +
2-3 or '9-8-17 1is not.

Expressions such as 3 + 5 or 9 - 8 are called infix notation, since a
plus or minus sign, which is a binary operator, are written between two
numbers. With a postfix notation, the binary operator (a plus or minus
sing) is put after two numbers.

For example, the postfix notation for 3 + 5 is 3 5 + (plus sign is put
"after’ two numbers, ‘not between’ two numbers).

Let's see how 9 - 5 is translated into 9 5 -. We start with the
production “<expr> -> <term> + <term> {print(’'+’)}”. The first part of the
right side is <term>. Then the production “<term> -> 9" matches "9” and
‘0" is printed. Now '+° of the right side does not match with '-'.
Therefore we give up "<expr> -> <term> + <term> {print(’'+")}".

Now we try the next production “<expr> -> <term> - <term> {print('-")}".
The production “<term> -> 9” matches with ‘9’ and prints '9°. Then -’ in
the production matches with '+’ ; however nothing is printed at this point.
Now the production “<term> -> 5” matches with ‘5’ and prints ‘5.

The production "<expr> —> <term> - <term> {print(’'-")}" matches with the
given string ‘9 - 5°. At this point, -’ is printed. We are done.
Therefore, the final output is ‘9 5 -, which is a postfix notation for the
given expression ‘9 - 5’

2. A proposed method of preprocessing Hangul

In Section 1, we studied the basic concept of BNF and translation scheme,
With this background, let’'s see examples showing how to transform data in
Hangul.

2.1 Example O1A (a simple example using only a few Hangeul characters)
- For simplicity, we included only two syllable-initial characters, two
syllable-peak characters, two syllable-final characters, and two fill

characters.

- Some exerciges are shown below to show how input characters are
transformed according the to given rules.

Example O1A (abridged from Example 02A; this Example is for demo purpose)

/% constants */
SI-FILL == U115F /* syllable-initial FILL character */
SP-FILL == U1160 /% syllable—-peak FILL character */

/* Hangeul syllables */

/% LS. Left side =/

/% RS: Right side or pattern =/

/% we start from <root> */

/% FAIL cancels temporary QUTPUT =/

/% "finalize OUTPUT finalizes temporary OUTPUT */
/% action is shown within { }. ==/

/% Most actions are to output some characters. */

/% rule RO1B accepts four combinations of characters:
U1100 U11e1 | U1100 U1163 | U1102 U116l | U1102 U1163
GA GYA NA NYA %/

Rule# LS RS (or pattern)

ROOT <root> =-> <hg-syl> {finalize OUTPUT}
RO1B <hg-syl> -> <si> <sp> |
RO1F SI-FILL { print('SI-FILL') } <sf>

/% <gi> ! syllable-initial letters
<gil>: syllable-initial simple letters */

6

R11D <si> -> <sil>
R12A <sil> -> U1100 { print('U1100") } |
R12B U1102 { print(’'U1101") }
/% output without any transform */

/% <gp> '@ Syllable—-peak letters
<spl>: syllable-peak simple letters */
R21D <sp> -> <spl>
R22A <spl> -> U1161 { print('U1161") } |
R22B U1163 { print('U1163") }
/% output without any transform */

/% <sf> ' syllable-final letters
<sfl>: syllable—-final simple letters */
R31D <sf> -> <sfl>
R32A <sfl1> -> U11A8 { print('U11A8") } |
R32B U11AB { print(’'U11AB") }
/% output without any transform */

Exercise 1.1 input string -> U1100 Ul1161

- An input string represents Hangeul syllable "GA”.
- Unless “FAIL” is mentioned, the pattern match succeeds.
- When "finalize OUTPUT” is executed, a temporary output becomes final.

Using the above rules, we will process the input string.
We start with rule ROOT <root>. 1Its right side is <hg-syl>.

Then we go to rule RO1B <hg-syl>. Its right side is <si>.

Then we go to rule R11D <gi>. 1Its right side is <gil>.

Then we go to rule R12A <sil>. Its right side "U1100” matches input
character U1100. At this point, 'U1100° is printed by the action {
print('U1100") } in rule R12A.

Now we are done with rule R12A <sil)>.

Then we back up to R11D <sil>. We are done with rule R11D <sil>.
Then we back up to RO1B <si>. We are done with rule R11D <sil).

- Then we back up to rule RO1B <hg-syl>. We are done with <sp> of rule
RO1B and then we try <sp»> in rule RO1B.

Then we go to rule R21D <gp>. Its right side is <gpl>.

Then we go to rule R22A <spl>. Its right side "U1161" matches input
character U1161. At this point, 'U1161° is printed by the action {
print('U1161") } in rule R22A.

Now we are done with rule R22A <spl>.

7

Then we

back up to RZ21D <sgpl>.

Then we back up to RO1B <sp>.
At this point, we are done with rule RO1B <hg-syl>.

Then we
At this

back up to ROOT <root>.
point, temporary OUTPUT is finalized.

- In this exercise, we do not change anything.
rules against the input string and then print out without any

transformation.

pattern

ROOT <root>

RO1B <hg-syl>

R11D <si>
R12A <sil>

RO1B <sp>
R21D <spl>
R22

* final output -> U1100 Ullel

We are done with rule R21D <spl>.

We are done with rule ROOT <root>.

We just try to match the

MATCH/FAIL

OUTPUT by actions

R12A MATCH
R11D MATCH
RO1B MATCH

R22A MATCH
R21D MATCH
RO1B MATCH
ROOT MATCH

U1100

Ui1el

finalize output

Exercise 1.2 input -> U115F U11A8

- input file represents Hangul syllable-final letter "Giyeog”.

pattern

ROOT <hg-syl>

RO1B <si>
R11D <sil>
R12A
R12B

match/FAIL

R12A FAIL
R12B FAIL
R11D FAIL
RO1B FAIL

OUTPUT by actions

ROIF SI-FILL MATCH U115F

R31D <sf1>
R32A R32A MATCH U11A8
R31D MATCH
RO1F MATCH
ROOT ROOT finalize output

* final output = U115F U11A8

2.2 Exmaple 02ZA

- This example transforms one Hangeul syllable into 9 code positions: 3
code positions for each of syllable-initial, syllable-peak, and
syllable-final character, respectively.

— Some EMPTY characters are intentionally inserted so that we can collate
0ld Hangeul correctly.

Example 02A (modified from Example O1A; this Example is for demo purpose)

/% constants */
SI-FILL == U115F
SP-FILL == U1160

/% Hangeul syllables */
LS RS (or pattern)

ROOT <root> -> <hg-syl> { print(’'finalize OUTPUT') }
RO1B <hg-syl> -> <si> <sp> { print(’U0000 UOO0O U0000") }
/*FAIL cancels relevant temp outputx/
RO1F SI-FILL { print(’SI-FILL U0000 UO000 UOO0O UOO00O UO000") }
<sf>

/% gyllable-initial letters: <sil> a syllable-initial simple letter */
R11D <si> => <gil> { print(’U0000 UO000") }

R12A <sil> -> U1100 { print('U1100") } |

R12B U1102 { print('U1102") } /* output without any transform */

/% Syllable-peak letters: <gpl> a syllable-peak simple letter; =/

R21D <sp> -> <spl> { print(’U0000 UO000") }

R22A <spl> -> U1161 { print('U1161") } |

R22B U1163 { print(’'U1163") } /% output without any transform */

9

/% gyllable-final letters: <sfl> a simple letter; */
R31D <sf> -> <sf1> { print(’'U0000 UOO00") }
R32A <sfl1> -> U11A8 { print('U11A8") } |

Exercise 2,1 input = U1100 U116l

- input file represents Hangeul syllable "GA”.

pattern

ROOT <hg-syl>
RO1B <si>
R11D <sil>
R12A

RO1B <sp>
R21D <spl>
R22A

U11AB { print('U11AB’) } /* output without any transform */

match/FAIL QUTPUT by actions
R12A MATCH U1100
R11D MATCH U0000 U0000

RO1B <si> MATCH

R22A MATCH U1161

R21D MATCH U0000 U0000

RO1B MATCH U0000 UO000 UO000
ROOT MATCH finalize output

* final output = U1100 UOO00 UO000 U1161 UOOOO UOOOO

Exercise 2.2 input = U115F U11A8

U0000 U0000 U0000

- input file represents Hangul syllable-final letter “Giyeog”.

pattern

ROOT <hg-syl>
RO1B <si>
R11D <sil>
R12A

match/FAIL OUTPUT by actions

R12A FAIL
R12B FAIL

10

R11D FAIL

RO1B FAIL
ROIF SI-FILL SI-FILL U115F UOO00 UOO0O UO000 UOOOO UO00O
RO1F <sf>
R31D <sfl>
R32A U11A8 R32A U11A8 U11A8
R31D <sfl1> U0000 U0000
RO1F <sf>

ROOT <hg-syl> finalize output = (shown below)

final output = U115F UO000 UOOOO UOOOO UOOOO UOOOO U11A8 UOOOO UOOOO

2.3 Example 11A
— This is more or less a real example.

— This example can preprocess 11,172 Modern Hangeul syllables and other
incomplete syllables.

Example 11A:

/% constant %/
SI-FILL == U115F
SP-FILL == U1160

/% Hangeul syllable */
ROOT <root> -> <hg-syl> {finalize OUTPUT}
RO1A <hg-syl> -> <si> <sp> <sf> |

RO1B <si> <sp> { print("UO000 UOO0OO UOOOO") } |
RO1C <gi> SP-FILL
{print(’'SP-FILL UOO00 UOOOO UOO0O UOOOO UOOOO) ¥ |
RO1D SI-FILL { print(’SI-FILL UO0O0O0 U0O000") } <sp> <sf> |
RO1E SI-FILL { print(’SI-FILL UO0O0O0 UOO00") } <sp>
{ print('U0000 UOOOO UOOOO") } |
RO1F SI-FILL { print(’SI-FILL UO0O00 UO000 UOO0OO UOOOO UO000") }
<sf>

/% syllable-initial letters:

11

<{8il> a syllable-initial simple letter

{8i2> a syllable-initial 2-complex letter (composed of 2 simple letters)

<{si3> a syllable-initial 3-complex letter (composed of 2 simple letters)
*/

R11A <si> -> <sild> <sil> <sil> |

R11B <8il> <sil> { print('U0000") } !
R11C <sil> <si2> |

R11D <8il1> { print(’UO000 UOO0O") } !
R11E <si2> <sild> |

R11F <si2> { print('U0000") } |

R11G <si3>

R12A <sil> -> U1100 { print('U1100") } |

R12B U1102 { print(’U1102") }

R12C U1103 { print('U1103") }

R12D U1105 { print(’U1105") }

R12E U1106 { print('U1106") }

R12F U1107 { print(’U1107") }

R12G U1109 { print('U1109") }

R12H U110B { print(’U110B’) } |

R121I U110C { print(’U110C") }

R12J U110E { print(’U110E’) }

R12K U110F { print('U110F") } |

R12L U1110 { print(’U1110") }

R12M U1101 { print('U1101") } |

R12N U1102 { print('U1102") }

/% output without any transform */

R13A <si2> -> U1101 { print(’'U1100 U1100") } |
R13B U1104 { print('U1103 U1103") }
R13C U1108 { print('U1107 U1107") }
R13D U110A { print('U1109 U1109") }
R13E U110D { print(’U110C U110C") }

/% R14 <si3> -> no si3 for modern Hangeul */

/% Syllable-peak letters:
<spl> a syllable-peak simple letter
<sp2> a syllable-peakK 2—-complex letter (composed of 2 simple letters)
{sp3> a syllable-peak 3-complex letter (composed of 3 simple letters) */

R21A <sp> -> <spl> <spl> <spl> |
R21B <spl> <spl> { print('U0000") }

12

R21C <spl> <sp2> |

R21D <spl1> { print("U0000 UOO00") }
R21E <sp2> <spl> |

R21F <sp2> { print('U0000") } !
R21G <sp3>

R22A <spl> -> U1161 { print('U1161") } |
R22B U1163 { print(’'U1163") }

R22C U1165 { print('U1165") }

R22D U1161 { print(’'U1161") }

R22E U1169 { print('U1169") }

R22F U116D { print(’'U116D") }

R22G U116E { print('U116E") }

R22H U1172 { print(’'U1172") } |
R221 U1173 { print('U1173") }

R22J U1175 { print('U1175") }

R23A <sp2> -> U1162 { print('U1161 U1175") } |
R23B U1164 { orint(’'U1163 U1175") }
R23C U1166 { print('U1165 U1175") }
R23D U1168 { print('U1167 U1175") }
R23E U116A { print('U1169 U1161") }
R23F U116C { print('U1169 U1175") }
R23G U116F { print('Ul16E U1165") }
R23H U1171 { print('U116E U1175") } |
R231I U1174 { print('U1173 U1175") }

R24A <sp3> -> U116B { print(’'U1169 U1161 U1175") }
R24B U1170 { print('U116E U1165 U1175") }

~

/% syllable-final letters:
<sfl> a syllable—-final simple letter
<sf2> a syllable-final 2-complex letter (composed of 2 simple letters)
<{sf3> a syllable-final 3-complex letter (composed of 3 simple letters) */

R31A <sf> -> <sfld> <sfl> <sfl> |

R31B <sfl> <sfl1> { print('U0000") } |
R31C <sfl> <sf2> |

R31D <sf1> { print("UO000 UO000") } |
R31E <sf2> <sfl> |

R31F <sf2> { print('U0000") }

R31G <sf3>

R32A <sf1> -> U11A8 { print('U11A8") } |

13

R32B
R32C
R32D
R32E
R32F
R32G
R32H
R32I
R32J
R32K
R32L
R32M
R32N

R33A <sf2> ->
R33B
R33C
R33D
R33E
R33F
R33G
R33H
R33I
R33J
R33K
R33L
R33M

/% R34 <sf3>

3. Conclusions

U11AB
U11AE
U11AF
U11B7
U11B8
U11BA
U11BC
U11BD
U11BE
U11BF
U11Co
U11C1
U11C2

U11A9
U11AA
U11AC
U11AD
U11BO
U11B1
U11B2
U11B3
U11B4
U11B5
U11B6
U11B9
U11BB

-2

print("U11AB’
print(’UL11AE’
print(’UL11AF’
print(’U11B7’
print(’U11B8’
print(’U11BA’
print(’U11BC’
print(’U11BD’
print(’U11BE’
print(’U11BF’
print(’U11C0’
print(’U11C1’
print(’U11C2’

e T e T T e T T T e T e T T I e T e S

)}
)}
)}
)}
)}
)}
)}
)}
)}
)}
)}
)}
)}

/% output without any transform */

print(’U11A8 U11A8’
print(’U11A8 U11BA’
print(’U11AB U11BD’
print(’U11AB U11C2’
print(’U11AF U11A8’
print(’U11AF U11B7’
print(’U11AF U11B8’
print(’U11AF U11BA’
print(’U11AF U11CO’
print(’U11AF U11C1’
print(’U11AF U11C2’
print(’U11B8 U11BA’
print(’U11BA U11BA’

e T e T e T e T e R e B T e T e T e S e T T Y
e i
DT e T S N e ")

no sf3 for modern Hangeul */

Currently ISO/IEC 14651 cannot collate Hangul data in ISO/IEC 10646,
especially in 01d Hangul, properly.

Therefore, we proposed a method of preprocessing Hangul data in ISO/IEC
10646 so that the output can be used as an input to ISO/IEC 14651
supporting program, which will then collate Hangul properly.

Rules in Section 2.3 transform one modern Hangul syllable (including
incomplete syllables) is into 9 code positions. When Hangul data is
transformed this way, it can be collated properly by ISO/IEC 14651

14

supporting program.
Once a collating rule for 01d Hangul is established, rules in Section 2.3
can be easily extended so that 0ld Hangul data can be preprocessed. .

15

