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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

ISO/IEC 14651 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, 
Subcommittee SC 2, Coded character sets. 

This second edition cancels and replaces the first. edition (ISO/IEC 14651:2001), which has been technically 
revised. 
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Introduction 

This International Standard provides a method, applicable around the world, for ordering text data, and provides 
a Common Template Table which, when tailored, can meet a given language’s ordering requirements while 
retaining reasonable ordering for other scripts.  

The Common Template Table requires some tailoring in different local environments. Conformance to this 
International Standard requires that all deviations from the Template, called "deltas", be declared to document 
resultant discrepancies.  

This International Standard describes a method to order text data independently of context. 

The Technical Report ISO/IEC TR 14652 has specifications for ordering that informatively complements the 
specifications in this International Standard, and where additional information may be sought on ordering 
keywords defined in this International Standard. 
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Information technology — International string ordering and 
comparison –  Method for comparing character strings and 
description of the common template tailorable ordering 

1 Scope 

This International Standard defines: 

• A reference comparison method. This method is applicable to two character strings to determine 
their collating order in a sorted list. The method can be applied to strings containing characters 
from the full repertoire of ISO/IEC 10646. This method is also applicable to subsets of that 
repertoire, such as those of the different ISO/IEC 8-bit standard character sets, or any other 
character set, standardised or not, to produce ordering results valid (after tailoring) for a given set 
of languages for each script. This method uses collation tables derived either from the Common 
Template Table defined in this International Standard or from one of its tailorings. This method 
provides a reference format. The format is described using the Backus-Naur Form (BNF). This 
format is used to describe the Common Template Table. The format is used normatively within this 
International Standard. 

• A Common Template Table. A given tailoring of the Common Template Table is used by the 
reference comparison method. The Common Template Table describes an order for all characters 
encoded in ISO/IEC 10646:2003 up to Amendment 2, plus characters DEVANAGARI LETTER 
GGA, DEVANAGARI LETTER JJA, DEVANAGARI LETTER DDDA and DEVANAGARI LETTER 
BBA (respectively, characters U097B, U097C, U097E and U097F). 

It allows for a specification of a fully deterministic ordering. This table enables the specification of a string 
ordering adapted to local ordering rules, without requiring an implementer to have knowledge of all the 
different scripts already encoded in the UCS. 
NOTE 1 This Common Template Table is to be modified to suit the needs of a local environment. The main benefit, 
worldwide, is that for other scripts, often no modification may be required and that the order will remain as consistent as 
possible and predictable from an international point of view. 

NOTE 2 The character repertoire used in this International Standard is equivalent to that of the Unicode Standard 
version 5.0. 

• A reference name. The reference name refers to this particular version of the Common Template 
Table, for use as a reference when tailoring. In particular, this name implies that the table is linked 
to a particular stage of development of the ISO/IEC 10646 Universal multiple-octet coded 
character set. 

• Requirements for a declaration of the differences (delta) between the collation table and the 
Common Template Table. 

This International Standard does not mandate: 

• A specific comparison method; any equivalent method giving the same results is acceptable. 

• A specific format for describing or tailoring tables in a given implementation. 

• Specific symbols to be used by implementations except for the name of the Common Template 
Table. 
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• Any specific user interface for choosing options. 

• Any specific internal format for intermediate keys used when comparing, nor for the table used. 
The use of numeric keys is not mandated either. 

• A context-dependent ordering. 

• Any particular preparation of character strings prior to comparison. 

NOTE 1 It is normally necessary to do preparation of character strings prior to comparison even if it is not prescribed 
by this International standard (see informative Annex C). 

NOTE 2 Although no user interface is required to choose options or to specify tailoring of the Common Template Table, 
conformance requires always declaring the applicable delta, a declaration of differences with this table. It is recommended 
that processes present available tailoring options to users. 

2 Conformance 

A process is conformant to this International Standard if it produces results identical to those that result from  the 
application of the specifications described in subclauses 6.2 to 6.5. 

A declaration of conformity to this International Standard shall be accompanied by a statement, either directly or 
by reference, of the following: 

• The number of levels that the process supports; this number shall be at least three. 

• Whether the process supports the forward,position processing parameter. 

• Whether the process supports the backward processing parameter and at which level. 

• The tailoring delta described in clause 6.4 and how many levels are defined in the delta. 

• If a preparation process is used, the method used shall be declared. 

It is the responsibility of implementers to show how their delta declaration is related to the table syntax described 
in 6.3, and how the comparison method they use, if different from the one mentioned in clause 6, can be 
considered as giving the same results as those prescribed by the method specified in clause 6. The use of a 
preparation process is optional and its details are not specified in this International Standard. 

3 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies.  

• ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set 
(UCS) 

• ISO/IEC 10646:2003/Amd.1:2005, Information technology – Universal Multiple-Octet Coded 
Character Set (UCS) – Amendment 1: Glagolitic, Coptic, Georgian and other characters 

• ISO/IEC 10646:2003/Amd.2:2006, Information technology – Universal Multiple-Octet Coded 
Character Set (UCS) – Amendment 2: N'Ko, Phoenician and other characters 

4 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 
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4.1 
character string 
a sequence of characters considered as a single object 
 
4.2 
collation 
equivalent to the term “ordering” 
 
4.3 
collating symbol 
a symbol used to specify weights assigned to a collating element 
 
4.4 
collation (weighting) table 
a mapping from collating elements to weighting elements 
 
4.5  
collating element 
a sequence of one or more characters that are considered a single entity for ordering 
 
4.6  
delta 
list of the differences between a given collation table and another one. The given collation table, together with a 
given delta, forms a new collation table. Unless otherwise specified in this International Standard, the term 
"delta" always refers to differences from the Common Template Table as defined in this International Standard  
 
4.7  
(collation) level 
the sequence number for a subkey in the series of subkeys forming a key 
 
4.8  
ordering 
a process by which, given  two strings, is determined whether the first one is less than, equal to, or greater 
than the second one 
 
4.9  
ordering key 
a sequence of subkeys used to determine an order 
 
4.10  
(collation) preparation 
a process in which given character strings are mapped to (other) character strings before the calculation of the 
ordering key for each of the strings 
 
4.11  
reference comparison method 
the method for establishing an order between two ordering keys (see clause 6) 
 
4.12  
subkey 
a sequence of weights computed for a character string. 
 
4.13  
symbol 
collating element 
 
4.14  
(collation) weight 
a positive integer value, used in subkeys, reflecting the relative order of collating elements 
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4.15  
weighting element 
a list of a given number of weights sequentially ordered by level 

5 Symbols and abbreviations 

Following ISO/IEC 10646, characters are referenced as UX where X stands for a series of one to eight 
hexadecimal digits (where all the letters in the hexadecimal string are in upper case) and refers to the value of 
that character in ISO/IEC 10646. This convention is used throughout this International Standard. 

In the Common Template Table arbitrary symbols representing weights are used according to the BNF notation 
description in clause 6.3.1. 

6 String comparison 

6.1 Preparation of character strings prior to comparison  

It may be necessary to transform character strings before the reference comparison method is applied to them 
(see annex C for an example of such preparation). Although not part of the scope of this International Standard, 
preparation may be an important part of the ordering process. See Annex C for some examples of preparation. 

Where applicable, it can be an important part of the preparation phase to map characters from a non-UCS 
encoding scheme to the UCS for input to the comparison method. This task can amongst other things 
encompass the correct handling of escape sequences in the originating encoding scheme, the mapping of 
characters without an allocated UCS codepoint to an application-defined codepoint in the private zone area and 
change the sequence of characters in strings that are not stored in logical order. For example, for visual order 
Arabic code sets, input strings must be put into logical order; and for some bibliographic code sets, strings with 
combining accents stored before their respective base character require that the combining accents be put after 
their base character. The resulting string sequence may then have to be remapped into its original encoding 
scheme. 

NOTE 1 The Common Template Table is designed so that combining sequences and corresponding single characters 
(precomposed) will have precisely the same ordering. To avoid inadvertently breaking this invariant (and in the process 
breaking Unicode conformance), tailoring should reorder combining sequences when corresponding precomposed 
characters are reordered. For example, if Ä is reordered after Z, then the sequence <A>+<combining diaeresis> should 
also be reordered. To avoid exposing encoding differences that may be invisible to the end-user, it is recommended that 
strings be normalized according to Unicode normalization form NFD to achieve this equivalence – see Bibliography, 
Unicode Technical Report no. 15. 

NOTE 2 Escape sequences and control characters constitute very sensitive data to interpret, and it is highly 
recommended that preparation should filter out or transform these sequences.  

NOTE 3 Since the reference method is a logical statement for the mechanism for string comparison, it does not 
preclude an implementation from using a non-UCS character encoding only, as long as it produces results as if it were 
using the reference comparison method. 

6.2 Key building and comparison 

6.2.1 Preliminary considerations 

6.2.1.1 Assumptions 

The collation table is a mapping from collating elements to weighting elements. In each weighting element, four 
levels are described in the Common Template Table. This number of levels can be extended or reduced, but can 
not be less than 3, in tailoring. 
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NOTE In the Common Template Table, levels generally have the following characteristics, although this purpose is 
not absolute: 

 Level 1: This level generally corresponds to the set of common letters of the alphabets for that script, if the 
script is alphabetic, and to the set of common characters of the script if the script is ideographic or syllabic. 

 Level 2: This level generally corresponds to diacritical marks affecting each basic character of the script. For 
some languages, letters with diacritics are always considered an integral part of the basic letters of the 
alphabet, and are not considered at this second level, but rather at the first. For example, in Spanish, N 
TILDE is considered a basic letter of the Latin script. Therefore, tailoring for Spanish will change the definition 
of N TILDE from "the weight of an N in the first level and the weight of a TILDE in the second level" to "the 
weight of an N TILDE (placed after N and before O) in the first level, and indication of the absence of a 
diacritic in the second level". For some characters, variant letter shapes are also dealt with on level 2. An 
example of this is ß, the LATIN SMALL LETTER SHARP S, which is treated as equivalent to ss on level 1, 
but traditionally distinguished from it on level 2. 

 Level 3: This level generally corresponds to case distinctions (upper and lower case) or to distinctions based 
on variant letter shapes (like the distinction between Hiragana and Katakana). 

 Level 4: This level generally corresponds to weighting differences that are less significant than those at the 
other levels. Often the last level (level 4 in the Common Template Table) is intended to specify additional 
weighting for "special" characters, i.e., characters normally not part of the spelling of words of a language 
(such as dingbats, punctuation, etc.), sometimes called "ignorable" characters in the context of computerized 
ordering. 

6.2.1.2 Processing properties 

A given tailored table has specific scanning and ordering properties. These properties may have been changed 
by the tailoring. 

A scanning direction (forward or backward) for each level is used to indicate how to process the string. The 
scanning direction is a global property of each level defined in the tailored table. 

If the last level is greater than three, there is an optional property of this level of comparison, called “position” 
option: when active, a comparison on the numeric position of each “ignorable” character in the two strings is 
effected, before comparing their weights. In other words, for two strings equivalent at all levels except the last 
one, the string having an ignorable character in the lowest position comes before the other one. In case 
corresponding ignorable characters are at the same position, then their weights are considered, until a difference 
is found. Support for this kind of processing is optional and is not necessary to claim conformance to this 
International Standard. 

NOTE The scanning direction (forward or backward) is not normally related to the natural writing direction of scripts. 
The scanning direction applies to the logical sequence of the coded character string. 

According to ISO/IEC 10646, for scripts written right to left, such as Arabic, the first characters in the logical sequence 
correspond to the rightmost characters in their natural presentation sequence. Conversely, for the Latin script, written left 
to right, the first characters in the logical sequence correspond to the leftmost characters in their natural presentation 
sequence. 

Scanning forward starts with the lowest position in the logical sequence, while scanning backward starts from the highest 
position, independently of the presentation sequence. The scanning direction for ordering purposes is a global property of 
each level described in the table. 

In ISO/IEC 10646, the Arabic script is artificially separated into two pseudo-scripts: 1) the logical, intrinsic Arabic, coded 
independently of contextual shapes, and 2) the Arabic presentation forms. Both allow the complete coding of Arabic, but 
intrinsic Arabic is normally preferred for better processing, while presentation-form Arabic is preferred by some 
presentation-oriented applications. ISO/IEC 10646 does not prescribe that the presentation forms be stored in any specific 
order, and in some implementations, the storage order for the latter is the reverse of the storage order used for intrinsic 
Arabic. It is therefore advisable that the preparation phase be used to make sure that Arabic presentation forms and other 
Arabic characters be fed to the comparison method in logical order. 
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A tailored sort table may be separated into sections for ease of tailoring. Each section is then assigned a name 
consistent with the specification in subclause 6.3.1. One of the tailoring possibilities is to assign a given order to 
each section and to change the relative order of an entire section relative to other sections. 

6.2.2 Reference ordering key formation 

When two strings are to be compared to determine their relative order, the two strings are first parsed into a 
sequence of collating elements taking into account the multi-character “collating-element” statements 
declared and used in a tailored table (if the syntax of clause 6.3.1 is used). For the syntax used for expressing 
the Common Template Table, the name of a collating element consisting of a single character, is formed by the 
UCS value of the character, expressed as a hexadecimal string, prefixed with “U”. For multi-character collating 
elements, the name and association to characters can be found via the collating elements declarations.  

Then a sequence of m intermediary subkeys is formed out of a character string, where m is the number of levels 
described in a tailored collation weighting table. 

Each ordering key is a sequence of subkeys. Each subkey is a list of numeric weights. A subkey is formed by 
successively appending the list of the weights assigned, at the level of the subkey, to each collating element of 
the string. The keyword “IGNORE” in the Common Template Table at the place of a sequence of collating 
symbols at a level, indicates that the sequence of weights at that level for that collating element is an empty 
sequence of weights. 

There are three ways of forming subkeys: subkeys formed using the “forward” processing parameter; subkeys 
formed using the “backward” processing parameter; and subkeys formed using the “forward,position” 
processing parameter. Subkeys that use the “position” option can only occur at the last level, and only if that 
level is greater than three. Support of the “position” option is not required for conformance. If the processing 
parameter “forward,position” is not supported,  “forward,position” shall be interpreted as if the 
processing parameter had been “forward”. 

If there is no entry in the tailored table for a character of the input string, then the character’s weights are 
undefined. Characters with undefined weights should be ordered, with respect to characters that have defined 
weights, as if the undefined ones were given the weight named “UNDEFINED” at the first level. If there is no 
weight assignment to the symbol “UNDEFINED” before the symbol <SFFFF>’s weight assignment in a given 
tailored table, then the table shall be interpreted as if “UNDEFINED” was weighted just before <SFFFF>. The 
ordering of characters with undefined weights with respect to other characters with undefined weights is not 
specified in this International Standard. 

NOTE 1 A possible way to order characters with undefined weights is as if there were tailoring lines like this one added 
to the table, in UCS code point order (call the maximal level 4 weight <PLAIN> here): 

 <UXXXX> "<UNDEFINED><UXXXX>";<BASE>;<MIN>;<PLAIN> 

NOTE 2 <SFFFF> is the maximal level 1 weight in the Common Template Table. 

6.2.2.1 Formation of a subkey with the “forward” level processing parameter 

Subkeys, at a particular level, formed with the “forward” level processing parameter, are built in the following 
way: 

During forward scanning of each collating element of the input character string, one or more weights are 
obtained. These weights are obtained by matching the collating element in the given tailored collation weighting 
table, obtaining the list of weights assigned to the collating element at the particular level. The obtained weight 
list is appended to the end of the subkey. 

6.2.2.2 Formation of a subkey with the “backward” level processing parameter 

Subkeys, at a particular level, formed with the “backward” level processing parameter are built by forming a 
subkey as with the “forward” parameter, then reversing that subkey weight by weight. 
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6.2.2.3 Formation of a subkey with the “forward,position” level processing parameter 

Subkeys, at the last level, formed with the “forward,position” level processing parameter are formed by 
forming a subkey as with the “forward” parameter, but for collating elements that are not ignored at all levels 
but the last one, their last level weighting (list of weights) is replaced by a single weight (call it <PLAIN> here) 
that is larger than all other weights at the last level in the given tailored table. Collating elements that are ignored 
at all levels but the last one, retain their weighting according to the given tailored table. Finally, any trailing 
sequence of the maximal weight (<PLAIN>) is removed from the subkey, effectively replacing each trailing 
maximal weight with a zero weight. 

NOTE For any level, implementations are allowed to apply an order-preserving reduction of all subkeys at that level. 
Such a reduction is useful for levels 2, 3, and 4. Level 2 often has long stretches of the weight named <BASE> in Annex A. 
Level 3 often has long stretches of the weight named <MIN> in Annex A. Level 4 often has long stretches of the weight 
named <PLAIN> here. One such ordering preserving subkey reduction technique effectively encodes, in the last level 
subkey, the (relative) position, as single number each, of each otherwise ignored character; hence the name of the 
“position” option. 

6.2.3 Reference comparison method for ordering character strings 

The reference comparison method for ordering two given character strings (after collation preparation, which is 
not part of the reference comparison method itself) is to compare ordering keys generated by the reference key 
formation method described in subclause 6.2.2 of this International Standard: 

• Begin by building an ordering key, using a given tailored collation weighting table, for each of the 
two given character strings being compared. 

• Then compare the resulting keys according to the key ordering definition below in this subclause. 
Keys can be compared either up to a given level, or up to the last level of the given tailored collation 
weighting table. 

NOTE 1 The comparison may be made while generating the ordering keys for two strings to be compared, stopping the 
key generation when the order of the strings can be determined. Such a technique is sometimes termed lazy evaluation, 
and some systems support it by default. This avoids generating the full ordering key, when an ordering difference may be 
found early in the keys. When a bigger set of strings are to be ordered, it may be advisable to generate the ordering keys, 
and store each key or an initial segment of each, before comparing the keys. 

Weights for different levels should not be compared, which implies that subkeys at different levels should not be 
compared. Nor should keys generated from different tailored tables be compared. 

NOTE 2 This allows implementations to assign weightings at each level independently of the other levels, and 
independently of other tailorings. 

m is the maximal level of a given tailored table. Recall that a key is a list, of length m, of subkeys; a subkey is a 
list of weights; and a weight is a positive integer. Other notations used below are: 

• Lz is the length of the subkey z, i.e., the number of weights in the subkey. 
• zwt(a), where 1 ≤ a ≤ Lz, is the weight at index position a (an integer > 0) of the subkey z. 
• usk(b), where 1 ≤ b ≤ m, is the subkey at level b (an integer > 0) of the key u. 

The orderings of weights, subkeys, and ordering keys (up to a given level, or up to the last level) are total order 
relations, defined for a given tailored collation table as follows: 

1. Weights are positive integers (in the reference method), and are compared as such for the purposes 
of collation. 

2. A subkey v is less than a subkey w (written v < w) if and only if there exists an integer i, where 
1 ≤ i ≤ Lv+1 and i ≤ Lw, such that 

—  i = 1 and vwt(i) < wwt(i), or 
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—  for all integers j, where 1 ≤ j < i, the equality vwt(j) = wwt(j) holds, and either 

—  i ≤ Lv and vwt(i) < wwt(i), or 

—  i = Lv+1 and 0 < wwt(i). 

A subkey v is greater than a subkey w (written v > w) if and only if w is less than v. A subkey v is 
equal to a subkey w (written v = w) if and only if neither v is less than w, nor w is less than v. 

3. An ordering key x is less than an ordering key y at level s (written x <s y) if and only if there exists 
an integer i, where 1 ≤ i ≤ s and i ≤ m, such that 

—  i = 1 and xsk(i) < ysk(i), or 

—  for all integers j, where 1 ≤ j < i, the equality xsk(j) = ysk(j) holds, and xsk(i) < ysk(i). 

An ordering key x is greater than an ordering key y at level s (written x >s y) if and only if y is less 
than x at level s. An ordering key x is equal to an ordering key y at level s (written x =s y) if and only 
if neither x is less than y at level s, nor y is less than x at level s. 

4. For ordering keys, <, >, and = are defined as <m, >m, and =m respectively. 

NOTE 3 For ordering keys, x <t y implies x <t+1 y, x >t y implies x >t+1 y, x =t y implies x =t−1 y, x <0 y is false, 
x >0 y is false, and x =0 y is true. Above level m, for a given tailored table, there are no further ordering distinctions. Note 
that this definition implies that if two ordering keys are in the ‘less than’ relationship at level 1, they will also be in the ‘less 
than’ relationship at levels 2, 3, 4, etc. In general, whenever two ordering keys are less than at a given level, they will also 
automatically be less than at all subsequent, higher levels. Conversely, if two ordering keys are equal at a given level, they 
will also automatically be equal at all preceding, lower levels. 

6.3 Common Template Table: formation and interpretation 

This clause specifies: 

• The syntax used to form the Common Template Table in Annex A of this International Standard or 
a tailored table based upon the Common Template Table as expressed in Annex A. 

• Conditions of well-formedness of a table using this syntax. 

• Interpretation of tailoring statements in deltas for tables formed using this syntax. 

• Evaluation from symbols to weights of tailored tables formed using this syntax. 

• Conditions for considering two tables as equivalent. 

• Conditions for considering comparison results as equivalent. 

6.3.1 BNF syntax rules for the Common Template Table in Annex A 

Definitions between <angle brackets> make use of terms not defined in this BNF syntax, and assume general 
English usage. 

Other conventions: 
 * indicates 0 or more repetitions of a token or a group of tokens; 
 + indicates 1 or more repetitions of a token or a group of tokens; 
 ? indicates optional occurrence of a token or a group of tokens (0 or 1 occurrences); 
 parentheses are used to group tokens; 
 production rules are terminated by a semicolon; 

Define collation tables as sequences of lines: 
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weight_table = common_template_table | tailored_table ; 

common_template_table = 
simple_line+ ; 

tailored_table = table_line+ ; 

Define the line types: 

simple_line = (symbol_definition | collating_element | 
 weight_assignment | order_end)? line_completion ; 

table_line = simple_line | tailoring_line ; 

tailoring_line = (reorder_after | order_start | reorder_end | 
 section_definition | reorder_section_after) 
line_completion ; 

Define the basic syntax for collation weighting: 

symbol_definition = 
’collating-symbol’ space+ symbol_element ; 

symbol_element = symbol | symbol_range ; 

symbol_range = symbol ’..’ symbol ; 

symbol = simple_symbol | ucs_symbol ; 

ucs_symbol = (’<U’  one_to_eight_digit_hex_string  ’>’) | 
(’<U-’ one_to_eight_digit_hex_string ’>’) ; 

simple_symbol = ’<’ identifier ’>’ ; 

collating_element = 
’collating-element’ space+ symbol space+ 
’from’ space+ quoted_symbol_sequence ; 

quoted_symbol_sequence = 
’"’ simple_weight+ ’"’ ; 

weight_assignment = 
simple_weight | symbol_weight ; 

simple_weight = symbol_element | ’UNDEFINED’ ; 

symbol_weight = symbol_element space+ weight_list ; 

weight_list = level_token (semicolon level_token)* ; 

level_token = symbol_group | ’IGNORE’ ; 

symbol_group = symbol_element | quoted_symbol_sequence ; 

order_end = ’order_end’ ; 

Define the tailoring syntax: 

reorder_after = ’reorder-after’ space+ target_symbol ; 

target_symbol = symbol ; 

order_start = ’order_start’ space+ multiple_level_direction ; 
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multiple_level_direction = 
(direction semicolon)* direction (’,position’)? ; 

direction = ’forward’ | ’backward’ ; 

reorder_end = ’reorder-end’ ; 

section_definition = 
section_definition_simple | 
section_definition_list ; 

section_definition_simple = 
’section’ space+ section_identifier ; 

section_identifier = 
identifier ; 

section_definition_list = 
’section’ space+ section_identifier space+ symbol_list ; 

symbol_list = symbol_element (semicolon symbol_element)* ; 

reorder_section_after = 
’reorder-section-after’ space+ section_identifier space+ 
target_symbol ; 

Define low-level tokens used by the rest of the syntax: 

identifier = (letter | digit) id_part* ; 

id_part = letter | digit | ’-’ | ’_’ ; 

line_completion = 
space* comment? EOL ; 

comment = comment_char character* ; 

one_to_eight_digit_hex_string = 
  hex_upper |  hex_upper hex_upper | 
  hex_upper hex_upper hex_upper | 
 hex_upper hex_upper hex_upper hex_upper | 

 hex_upper hex_upper hex_upper hex_upper hex_upper |
 hex_upper hex_upper hex_upper 

 hex_upper hex_upper hex_upper | 
 hex_upper hex_upper hex_upper 
 hex_upper hex_upper hex_upper hex_upper |hex_upper 

hex_upper hex_upper hex_upper 
hex_upper hex_upper hex_upper hex_upper ; 

hex_numeric_string = 
hex_upper+ ; 

space = ’ ’ | <TAB> ; 

semicolon = ’;’ ; 

comment_char = ’%’ ; 

digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ |  
’5’ | ’6’ | ’7’ | ’8’ | ’9’ ; 

hex_upper = digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ ; 
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letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | 
’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | 
’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | 
’v’ | ’w’ | ’x’ | ’y’ | ’z’ | 
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | 
’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | 
’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | 
’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ ; 

EOL = <end-of-line in the text conventions in use> ; 

character = <any member of the repertoire of the encoded 
 character set in use, not including any 
 characters used to delimit the end of lines> ; 

6.3.1.1 Keyword usage 

The usage of the following locale syntax keywords is as follows: 

 

collating-symbol Defines a collating symbol representing a weight. 

collating-element Defines a collating element symbol representing a multi-character collating element.  

order_start Defines collation rules. This statement is (after reordering is done) followed by one or 
more collation order statements, assigning multi-level collation weightings to collating 
elements. A collating element is either a character or a defined substring. 

order_end Specifies the end of the collating order statements. 

reorder-after Redefines collating rules. Specifies after which collating symbol weighting the lines 
between the “reorder-after” and the next (or “reorder-end”) are to be moved. This 
statement is followed by one or more collation table lines. The result is to reassign 
collating symbol’s values or collating element’s weightings. 

reorder-end Specifies the end of the "reorder-after" collating order statements. 

section Defines a section of the table. A section can be moved as a whole by “reorder-
section-after”. 

reorder-section-after Redefines the order of sections. This statement is followed by a section symbol and a 
target symbol. The result is to reassign collating symbol’s values or collating 
element’s weightings. 

6.3.2 Well-formedness conditions 

WF 1. Any simple_symbol occurring in a weight_list shall also occur in the initial symbol_element of a 
symbol_weight, or symbol_definition  that occurs no later in the sequence of lines that constitute a 
weight_table. 

NOTE All simple_symbols must be “defined” before they are “used”. 

WF 2. No symbol that occurs in a symbol_definition in a weight_table that contains no tailoring_lines may 
occur in another symbol_definition in the same weight_table. 

NOTE Duplication of collation weighting symbols is prohibited. This is true for the Common Template Table itself. It 
must remain true for a tailored_table after all reordering of lines has been applied. 
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WF 3. All weight_lists in a tailored_table shall contain the same number of level_tokens. An empty 
level_token shall be interpreted as the collating_element itself. 

NOTE A tailorable table must be consistent in its use of levels throughout. 

WF 4. A tailored_table shall contain one order_start statement. This statement shall appear after the 
symbol_definition entries and before the symbol_weight entries after all reordering of lines has been 
applied. 

WF 5. A multiple_level_direction in a tailored_table shall contain the same number of directions as the 
number of level_tokens of any weight_list in that tailored_table. 

NOTE Any order_start must have the same number of levels as is generally used in the table. 

WF 6. If a level_token in a weight_list consists of a symbol_group, all successive level_tokens in that 
weight_list shall also consist of a symbol_group.  

NOTE IGNORE must not be used at a level after an explicit symbol for a weighting. 

WF 7. Any section_identifier occurring in a reorder_section_after shall occur in a section_definition that 
occurs earlier in the sequence of table_lines that constitutes a tailored_table. 

NOTE All section_identifiers must be “defined” before they are “used”. 

WF 8. No two section_definitions in a tailored_table shall contain the same values in their 
section_identifiers. 

NOTE Multiple definitions of sections are prohibited; section_identifiers must be unique. 

WF 9. Each reorder_after in a tailored_table shall be followed at a later point in that tailored table by a 
reorder_end or another reorder_after. 

WF 10. A tailored_table shall contain one order_start and one order_end. 

WF 11. If the section_identifier of a statement reorder_section_after corresponds to the section_identifier of 
a section_definition_list, then the target_symbol of that statement reorder_section_after shall not 
have the same value as any of the symbol’s of the section_definition_list. 

NOTE A section must not be reordered after a line which the section itself contains; recursive relocation of lines is 
prohibited. 

WF 12. Any symbol_range shall contain two symbols which meet the following conditions: 1) Each of the 
two symbols shall contain a common prefix. 2) The portions of identifier of each of the two symbols 
following the common prefix shall be a hex_numeric_string containing the same number of 
hexadecimal digits. 3) When interpreted as numeric values, the hex_numeric_string of the first 
symbol shall be less than the hex_numeric_string of the second symbol. One plus the positive 
integral difference between the hex_numeric_string of the second symbol, interpreted as a numeric 
value, and the hex_numeric_string of the first symbol, interpreted as a numeric value, constitutes 
the number of values of the symbol_range. 

NOTE A well-formed symbol_range is of a form such as <S4E00>..<S9FA5>, where the common prefix is “S”, and 
the rest of the identifier portion of each symbol is a hex_numeric_string. 

WF 13. Any symbol_weight that contains more than one symbol_range shall contain only symbol_ranges 
that meet the following requirement: Each symbol_range following the first symbol_range shall have 
the same number of values in its range as that of the first symbol_range. 
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NOTE This condition guarantees that all expanded ranges will be well-formed, since for any one symbol_weight, all 
of the range expansions will have the same number of values. 

6.3.3 Interpretation of tailored tables 

I 1. A section consists either 1) of the list of simple_lines which contain a symbol_definition whose value 
is equal to any symbol contained in the symbol_list in a section_definition_list, or 2) of the list of 
simple_lines following a section_definition_simple in a tailored_table.  

NOTE A section is defined 1) by a specific symbol_list, or 2) by taking all the lines following the section_definition 
until another tailoring line such as an order_start, a reorder_section_after, another section_definition, or the end of the 
table is encountered. 

I 2. A simple_line consisting of a symbol_definition containing a symbol_range is equivalent to a 
sequence of simple_lines, where each of those lines contain a symbol in place of the symbol_range. 
The symbol for each successive simple_line is generated by concatenating a hex_numeric_string to 
the common prefix of the symbol_range, in numeric order, starting with the hex value associated 
with the hex_numeric_string of the first symbol the range, and ending with the hex value associated 
with the hex_numeric_string of the second symbol. The hex_numeric_string concatenated to the 
common prefixes must contain the same number of digits as the hex_numeric_string of the first 
symbol. The number of simple_lines thus generated is equal to the number of symbols in the 
symbol_range. 

NOTE A symbol_definition of the form “collating-symbol <S0301>..<S0303>” is equivalent to the three lines: 

collating-symbol <S0301> 
collating-symbol <S0302> 
collating-symbol <S0303> 

I 3. A simple_line consisting of a symbol_weight containing one or more symbol_ranges is equivalent to 
a sequence of simple_lines, where each symbol_range has been expanded into a sequence of 
symbols, as described in I 2 for symbol_definition 

NOTE A symbol_weight of the form “<U2000>..<U2002> <S0301>..<S0303>;<BASE>;<MIN>; <U2000>..<U2002>” 
is equivalent to the three lines 

<U2000> <S0301>;<BASE>;<MIN>;<U2000> 
<U2001> <S0302>;<BASE >;<MIN>;<U2001> 
<U2002> <S0303>;<BASE >;<MIN>;<U2002> 

I 4a. A tailored_table containing a reorder_after is equivalent to the tailored_table where: 

1. all table_lines that were ahead of the reorder_after and that contained weight_assignments whose 
initial symbol matches the initial symbol of any weight_assignment in the table_lines between the 
reorder_after and reorder_end have been removed,  

2. the table_lines between that reorder_after and the first subsequent reorder_end to immediately 
follow the first table_line in the tailored_table containing a weight_assignment whose initial 
symbol is the same as the target_symbol in the reorder_after have beenreordered, and 

3. that reorder_after and that reorder_end have been removed. 

NOTE Move the block of lines between the reorder_after and the reorder_end to follow the target_symbol, delete any 
prior lines that duplicate the symbol_definitions of the reordered lines, and remove the reorder_after and reorder_end 
themselves. 

I 4b. When a tailored_table contains multiple groups of lines to be reordered, the table is interpreted by 
processing each reorder_after sequentially, starting from the first line of the table.  

NOTE Subsequent line reorderings may impact lines that themselves were reordered by prior reorderings. 
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I 5. A tailored_table containing a reorder_section_after is equivalent to the tailored_table with the 
section associated with that reorder_section_after reordered (in the same relative order as the 
table_lines have in that section) to immediately follow the last table_line in the tailored_table 
containing a symbol_definition whose symbol is the same as the target_symbol in the 
reorder_section_after, and with that reorder_section_after removed. 

I 6. A weight_table is said to be in normal form when it contains no reorder_afters nor 
reorder_section_afters.  

NOTE A tailored_table can be put into normal form by the operations implied by I 4 and I 5. 

6.3.4  Evaluation of weight tables 

E 1. A weight_table in normal form is said to be evaluated when each weight_assignment in the 
weight_table is mapped to a positive integer value (a weight) such that those values increase 
monotonically by the order in which the weight_assignments occur in the weight_table.  

NOTE 1 The table_lines of the weight_table can first be mapped to the set of positive integers, by sequential order in 
the table. This mapping defines an ordered set of line numbers. The weight_assignments are then mapped to a set of 
positive integers (weights) that varies monotonically with the set of line numbers. 

NOTE 2 This does not restrict the starting number for the weight of the first weight_assignment (other than it must be 
positive) nor does it require that the numbers for these weights be immediately consecutive. 

E 2. An evaluated weight_table is said to be collating-element-weighted when each simple_symbol 
occurring in each weight_list in that evaluated weight_table has been mapped to the weight that 
corresponds to the weight_assignment that contains the same simple_symbol.  

NOTE 3 Each weight_list can be interpreted as containing either symbol’s mapped to integral weight values or as 
instances of the string ‘IGNORE’, which denotes the empty sequence of weights. At this point, the mathematical injection 
of strings can be defined using the weight_table.  

NOTE 4 In a tailored table the value of any hex_numeric_string associated with a symbol generally does not reflect the 
numeric weighting of the symbol. 

6.3.5 Conditions for considering specific table equivalences 

A weight_table TBL1 and a weight_table TBL2 are said to be equivalent at a particular level if any comparison of 
strings using those tables up to that level results in the same ordering.  

NOTE If two tables were claimed to be equivalent, one should always get the same results in forming keys for two 
strings based on TBL1 and comparing them than by forming keys based on TBL2 and comparing them. 

6.3.6 Conditions for results to be considered equivalent 

An implementation of international string ordering is conformant with this International Standard if, for any set of 
strings S defined on a repertoire R, the implementation can duplicate the same comparisons as those resulting 
from comparison of the numbers from an injection constructed according to the rules of clause 6.2.3 of this 
International Standard. 

6.4 Declaration of a delta 

Tailoring shall be based upon the Common Template Table described in annex A. Tailoring may be 
accomplished using any syntax that is equivalent to the one described in this International Standard. 

NOTE 1 For example, ISO/IEC TR 14652, uses a compatible extension of the syntax used in this International 
Standard for tailoring. A tailoring delta can also be expressed using the syntax of the Unicode collation algorithm (see 
Bibliography - Unicode Technical Report no. 10). It has also been demonstrated that a tailoring delta can also be 
expressed using an XML-conformant mark-up scheme. 
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Any declaration of conformance to this International Standard shall be accompanied with a declaration of the 
differences between the collation weighting table and the Common Template Table. A delta shall contain the 
equivalent of: 

1. At least one valid order_start entry described in clause 6.3.1; an unlimited number of sections 
containing an order_start entry and an order_end entry may be declared.  

2. The number of levels used for comparison. 

3. The list of symbol_definition weights (as defined in 6.3.1) added and the position of the 
symbol_definition entry after which each insertion is made. 

4. The list of simple_line entries (as defined in 6.3.1) deleted or inserted, referencing the position of 
the simple_line entry in the Common Template Table after which the insertions are made 

NOTE 2 It is recommended that a delta should not be bigger than necessary. 

In cases where a process allows the end-user to tailor the table himself or herself, a statement of conformance 
shall indicate which of the 4 elements of the previous list are tailorable and which of those 4 elements are not 
tailorable. For those which are not tailorable, the delta between fixed elements and the Common Template Table 
shall be declared. 

NOTE 3 The declaration may use a different syntax from the one specified in 6.3 provided that the relationship with this 
syntax can be reasonably established. For example, the following declarations are valid: 

   "Collate U00E5 after U00FE at the primary level. 
   Collate U00E4 after U00E5 at the primary level. " 

  or 

   "The primary alphabet order is modified so that in all cases z < þ < å < ä".  

Note that the letters å and ä are sorted after Icelandic letter thorn (þ), itself already coming after all the variants of the letter 
z, i.e. å and ä have a weight value higher at level 1 than the one for þ, which itself comes after the ones for all variants of z. 

The above two informal expressions can reasonably be considered to be equivalent to the following more precise 
expression (which also gives weights at levels 2 and 3 and explicitly takes care of accented å's, accented ä's and the 
Ångström sign): 

reorder-after <S00FE> % Weight for THORN (after z; and unlike z, þ has no variants). 
 
% Declare new collation symbols (weight names): 
collating-symbol <S00E5> % for å 
collating-symbol <S00E4> % for ä 
 
% Declare new collating elements for the decompositions (substring names): 
collating-element <U0061_030A> from "<U0061><U030A>" % decomposition of å 
collating-element <U0041_030A> from "<U0041><U030A>" % decomposition of Å 
collating-element <U0061_0308> from "<U0061><U0308>" % decomposition of ä 
collating-element <U0041_0308> from "<U0041><U0308>" % decomposition of Ä 
 
% Assign weights to the new collation symbols (after THORN): 
<S00E5> % for å 
<S00E4> % for ä 
reorder-end 
 
reorder-after <SFFFF> % The only place where we can put the order_start line. 
order_start forward;forward;forward;forward 
 
% Use the new weighted collation symbols and collating elements to tailor  the collation rules: 
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% The letter Å: 

<U00E5> <S00E5>;<BASE>;<MIN>;<U00E5> % LATIN SMALL LETTER A WITH RING ABOVE 
<U0061_030A> <S00E5>;<BASE>;<MIN>;"<U0061_030A>" % decomposition of å 
<U00C5> <S00E5>;<BASE>;<CAP>;<U00C5> % LATIN CAPITAL LETTER A WITH RING ABOVE 
<U0041_030A> <S00E5>;<BASE>;<CAP>;"<U0041_030A>" % decomposition of Å 
<U212B> <S00E5>;<BASE>;<CAP>;<U212B> % ANGSTROM SIGN (the letter Å really) 
 
<U01FB> <S00E5>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FB> % LATIN SMALL LETTER A  
 WITH RING ABOVE AND ACUTE 
<U01FA> <S00E5>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FA> % LATIN CAPITAL LETTER A  
 WITH RING ABOVE AND ACUTE 
 

% The letter Ä: 

<U00E4> <S00E4>;<BASE>;<MIN>;<U00E5> % LATIN SMALL LETTER A WITH DIAERESIS 
<U0061_0308> <S00E4>;<BASE>;<MIN>;"<U0061_0308>" % decomposition of ä 
<U00C4> <S00E4>;<BASE>;<CAP>;<U00C4> % LATIN CAPITAL LETTER A WITH DIAERESIS 
<U0041_0308> <S00E4>;<BASE>;<CAP>;"<U0041_0308>" % decomposition of Ä 
 
<U01DF> <S00E4>;"<BASE><MACRO>";"<MIN><MIN>";<U01DF> % LATIN SMALL LETTER A  
 WITH DIAERESIS AND MACRON 
<U01DE> <S00E4>;"<BASE><MACRO>";"<CAP><MIN>";<U01DE> % LATIN CAPITAL LETTER A 
 WITH DIAERESIS AND MACRON 
reorder-end 

6.5 Name of the Common Template Table and name declaration 

The name ISO14651_2006_TABLE1 shall be used whenever the Common Template Table is referred to 
externally as a base point in a given context, whether in a process, contract, or procurement requirement-. If 
another name is used due to practical constraints, a declaration of conformance shall indicate the 
correspondence between this other name and the name ISO14651_2006_TABLE1. 

The use of a defined name is necessary to manage the different stages of development of this table. This follows 
from the nature of the reference character repertoire, for which development will be ongoing for a number of 
years or even decades. 

 



ISO/IEC FDIS 14651:2007(E) 

© ISO/IEC 2007 – All rights reserved 17 
 

Annex A 
(normative) 

 
Common Template Table 

In order to minimize formatting problems and the risk of errors in reproduction, the common template table is 
provided separately in a machine-readable file as a normative component of this International Standard. The file 
name for this language version is different from the normative reference name specified in clause 6.5 of this 
International Standard due to the existence of file versions commented in other natural languages. The file for 
this language version can also be retrieved on the ITTF web site at the following URL: 

ISO14651_2006_TABLE1_en.txt [final URL to be provided by ITTF at publication stage] 

There is an official French version of the file which only differs in its comments (its technical content is identical), 
and its name is: ISO14651_2006_TABLE1_fr.txt 

NOTE 1 This International standard deprecates, but does not preclude specific reference to, the previous tables, which 
contained and still contain ordering information applicable to the repertoires of previous versions of ISO/IEC 10646 and 
their amendments. The previous tables can be found at the following URLs: 

[ordering information on the repertoire of characters as defined in ISO/IEC 10646-1:1993 including Amendments 
1-9] http://www.iso.org/ittf/ISO14651_2000_TABLE1.htm 

[ordering information on the combined repertoire of characters of ISO/IEC 10646-1:2000 and ISO/IEC 10646-
2:2001] http://www.iso.org/ittf/ISO14651_2002_TABLE1_en.txt 

[ordering information on the repertoire of characters as defined in ISO/IEC 10646:2003] 
http://www.iso.org/ittf/ISO14651_2003_TABLE1_en.txt 

The current Common Template Table reflects the repertoire of characters as defined in ISO/IEC 10646:2003 up to its 
amendment 2, plus four devanagari characters, as indicated in the scope.   

NOTE 2 The repertoire targeted by this International standard is equivalent to the repertoire of The Unicode Standard 
Version 5.0, published by The Unicode Consortium. 

When ordering data applicable to other amendments of ISO/IEC 10646:2003 becomes available, this International 
Standard and specifically its Common Template Table will be amended accordingly to cover the ordering of the additional 
characters and scripts.  To meet cultural requirements of specific communities, delta declarations will have to be applied to 
the amended table as defined in this International Standard. 

ISO_14651_2006_TABLE1 is the name that is used for referring to this table in this version of this International 
Standard. 
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Annex B 
(informative) 

 
Example tailoring deltas 

B.1  Example 1 – Minimal tailoring 

The following is a minimal tailoring of the Common Template Table: 

reorder_after <SFFFF> 
order_start forward;forward;forward;forward 

reorder-end 

B.2 Example 2 – Reversing the order of lowercase and uppercase letters  

The following is a simple tailoring example to show how to reverse the order of uppercase versus lowercase 
from the order specified in the Common Template Table. 

% Make uppercase letters sort before lowercase 
% and scanning of accents done forward at level 2. 
 
% The entire range of tertiary weight symbols 
% <MIN>..<CIRCLE> are moved after <CIRCLECAP>, so that they order after 
% <CAP> <WIDECAP> <COMPATCAP <FONTCAP> <CIRCLECAP> in the same 
% relative order with respect to themselves. This has the effect of 
% also making all the compatibility uppercase letters sort before 
% their respective compatibility lowercase letters. (For example, 
% U24B6 CIRCLED LATIN CAPITAL LETTER A will sort before 
% U24D0 CIRCLED LATIN SMALL LETTER A. 
 
% To do this correctly, an order_start is  
% inserted to make the delta conformant. 
 
reorder-after <CIRCLECAP> 
<MIN> 
<WIDE> 
<COMPAT> 
<FONT> 
<CIRCLE> 
 
reorder_after <SFFFF> 
order_start forward;forward;forward;forward,position 
reorder-end 
 
% End of the uppercase/lowercase tailoring 

B.3 Example 3 – Canadian delta and benchmark 

This annex describes benchmark 1, based on Canadian standard CAN/CSA Z243.4.1-1998 (and 1992). The 
delta that precedes the benchmark has been simplified for illustration here; a larger delta is required, mainly for 
special characters, for full conformance to this Canadian standard, and is given here as an example only, limited 
to what is required for the benchmark. For complete information, the Canadian standard CAN/CSA Z243.4.1 
should be consulted. The example tailoring is to be applied to the Common Template Table of annex A, with the 
following delta: 

1. Level processing properties: 

  forward; backward; forward; forward,position 
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2. Number of levels: 4 (unchanged). 

3. No symbol changes. 

4. The following ordering changes are done: 

• æ sorted as if it were separate letters "ae" at level 1. The letters "ae" are distinguished at level 2 
from the character "æ" and is ordered before it. 

• ð sorted as if it were the letter "d" at level 1. The letter "ð" is distinguished at level 2 from the letter 
"d" and is ordered after it. 

• þ sorted as if it were separate letters "th" at level 1. The letters "th" is distinguished at level 2 from 
the letter "þ" and is ordered before it. 

A Canadian tailoring expressed in the tailoring syntax for this International Standard (normative only for Annex A) 
can be: 
% copy ISO14651_2002_TABLE1 
 
reorder-after <SFFFF> 
order_start forward;backward;forward;forward,position 
 
<U00E6> "<S0061><S0065>";"<BASE><VRNT1><BASE>";"<MIN><COMPAT><MIN>";<U00E6>    % æ 
<U00C6> "<S0061><S0065>";"<BASE><VRNT1><BASE>";"<CAP><COMPAT><CAP>";<U00C6>    % Æ 
 
<U01E3> "<S0061><S0065>";"<BASE><VRNT1><BASE><MACRO>";"<MIN><COMPAT><MIN><MIN>";<U01E3> 

% æ WITH MACRON 
<U01E2> "<S0061><S0065>";"<BASE><VRNT1><BASE><MACRO>";"<CAP><COMPAT><CAP><MIN>";<U01E2> 

% Æ WITH MACRON 
 
<U01FD> "<S0061><S0065>";"<BASE><VRNT1><BASE><AIGUT>";"<MIN><COMPAT><MIN><MIN>";<U01FD> % ǽ 
<U01FC> "<S0061><S0065>";"<BASE><VRNT1><BASE><AIGUT>";"<CAP><COMPAT><CAP><MIN>";<U01FC> % Ǽ 
 
 
<U00F0> <S0064>;<VRNT1>;<MIN>;<U00F0>    % ð  
<U00D0> <S0064>;<VRNT1>;<CAP>;<U00D0>    % Ð 
 
<U00FE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<MIN><COMPAT><MIN>";<U00FE>    % þ  
<U00DE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<CAP><COMPAT><CAP>";<U00DE>    % Þ 
 
reorder-end 
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Unordered list (required test case as per Canadian standard CAN/CSA Z243.4.1-
1998, plus additions) 
ou 
lésé 
péché 
vice-président 
9999 
OÙ 
haïe 
coop 
caennais 
lèse 
dû 
air@@@ 
côlon 
bohème 
gêné 
meðal 
lamé 
pêche 
LÈS 
vice versa 
C.A.F. 
Þorsmörk 
cæsium 
resumé 
Bohémien 
co-op 

pêcher 
les 
CÔTÉ 
résumé 
Ålborg 
cañon 
du 
haie 
pécher 
Mc Arthur 
cote 
colon 
l'âme 
resume 
élève 
Þorvarður 
Canon 
lame 
Bohême 
0000 
relève 
gène 
casanier 
élevé 
COTÉ 
relevé 

Grossist 
vice-presidents' offices 
Copenhagen 
côte 
McArthur 
Mc Mahon 
Aalborg 
Größe 
vice-president's offices 
cølibat 
PÉCHÉ 
COOP 
@@@air 
VICE-VERSA 
gêne 
CO-OP 
révélé 
révèle 
çà et là 
MacArthur 
Noël 
île 
aïeul 
Île d'Orléans 
nôtre 
notres 

août 
NOËL 
@@@@@ 
L'Haÿ-les-Roses 
CÔTE 
COTE 
côté 
coté 
aide 
air 
vice-president 
modelé 
Thorvardur 
MODÈLE 
maçon 
MÂCON 
pèche 
pêché 
medal 
ovoïde 
pechère 
ode 
péchère 
œil 

 

 

List with required results as per Canadian standard CAN/CSA Z243.4.1-1998 
@@@@@ 
0000 
9999 
Aalborg 
aide 
aïeul 
air 
@@@air 
air@@@ 
Ålborg 
août 
bohème 
Bohême 
Bohémien 
caennais 
cæsium 
çà et là 
C.A.F. 
Canon 
cañon 
casanier 
cølibat 
colon 
côlon 
coop 
co-op 

COOP 
CO-OP 
Copenhagen 
cote 
COTE 
côte 
CÔTE 
coté 
COTÉ 
côté 
CÔTÉ 
du 
dû 
élève 
élevé 
gène 
gêne 
gêné 
Größe 
Grossist 
haie 
haïe 
île 
Île d'Orléans 
lame 
l'âme 

lamé 
les 
LÈS 
lèse 
lésé 
L'Haÿ-les-Roses 
MacArthur 
MÂCON 
maçon 
McArthur 
Mc Arthur  
Mc Mahon 
medal 
meðal 
MODÈLE 
Modelé 
Noël 
NOËL 
notre 
nôtre 
ode 
œil 
ou 
OÙ 
ovoïde 
pèche 

pêche 
péché 
PÉCHÉ 
pêché 
pécher 
pêcher 
pechère 
péchère 
relève 
relevé 
resume 
resumé 
résumé 
révèle 
révélé 
Þorsmörk 
Thorvardur 
Þorvarður 
vice-president 
vice-président 
vice-president's offices 
vice-presidents' offices 
vice versa 
VICE-VERSA 
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B.4 Example 4 – Danish delta and benchmark 

The following is a Danish example tailoring delta. This formal specification corresponds to Danish standard DS 
377 and to "Retskrivningsordbogen", the Danish orthography specification. 

% This tailoring is in accordance with Danish Standard DS 377 (1980) 
% and the Danish Orthography Dictionary (Retskrivningsordbogen  par 4, 1986). 
% It is also in accordance with Greenlandic orthography. 
 
collating-symbol <LIGHT> % Symbolic weight for lighter than <BASE> 
 
% Define collating elements for <AA> - LETTER A WITH RING ABOVE 
% and combinations with combining accents 
collating-symbol <A-A> % symbolic weight for <AA> 
collating-element <A-plus-combining-ring> from "<U0041><U030A>" 
collating-element <a-plus-combining-ring> from "<U0061><U030A>" 
 
% Define collating elements for sequences of a-plus-a 
collating-element <A-plus-A> from "<U0041><U0041>" 
collating-element <A-plus-a> from "<U0041><U0061>" 
collating-element <a-plus-A> from "<U0061><U0041>" 
collating-element <a-plus-a> from "<U0061><U0061>" 
 
% Define collating elements for combinations with combining accents 
collating-element <U-plus-combining-diaeresis> from "<U0055><U0308>" 
collating-element <u-plus-combining-diaeresis> from "<U0075><U0308>" 
collating-element <U-plus-combining-doubleacute> from "<U0055><U030B>" 
collating-element <u-plus-combining-doubleacute> from "<U0075><U030B>" 
collating-element <O-plus-combining-diaeresis> from "<U004F><U0308>" 
collating-element <o-plus-combining-diaeresis> from "<U006F><U0308>" 
collating-element <O-plus-combining-doubleacute> from "<U004F><U030B>" 
collating-element <o-plus-combining-doubleacute> from "<U006F><U030B>" 
 
% Add the obligatory order_start line. 
reorder-after <SFFFF> 
order_start forward;backward;forward;forward,position 
 
% copy ISO14651_2002_TABLE1 
 
% Make capital letters sort before lowercase. 
% Cf. example 2 for more explanation. 
reorder-after <CIRCLECAP> 
<CAP> 
<WIDECAP> 
<COMPATCAP> 
<FONTCAP> 
<CIRCLECAP> 
<MIN> 
<WIDE> 
<COMPAT> 
<FONT> 
<CIRCLE> 
 
% Introduce a weight that is lighter than <BASE> 
reorder-after <BASE> 
<LIGHT> 
<BASE> 
 
% A list of reweighting statements to deal with specific collation 
% behaviour for Danish. All of these define or redefine weight_list's, 
% and so the entire block could simply be reordered after the 
% order-start entry in the table. However, for clarity here and for 
% stability, each separate set of weightings is reordered locally in 
% the table around the first entry for that set of weightings. 
 
% Actually a number of other reweighting statements should be specified 
% with respect to the ISO/IEC 14651 table so that all accents be 
% ignored on the first level, while the 14651 table distiguish 
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% for example between different accented versions of <l> and a number 
% of other latin letters. This is considered less important 
% and too elaborate for this example. 
 
% Also this example delta does not include specifications for reordering 
% of special characters like the currency denominators DOLLAR SIGN, 
% CENT SIGN, and POUND SIGN, and unit denominators like the 
% ANGSTROM SIGN, which have first-level weights in the CTT, while 
% rules in DS 377 prescribe that special characters are ignored. 
 
% Reorder Danish letters at the end of the alphabet, after z 
reorder-after <S007A> % z 
<S00E6> % <AE> - LETTER AE 
<S00F8> % <O/> - LETTER O WITH STROKE 
<A-A>   % <AA> - LETTER A WITH RING ABOVE 
 
reorder-after <U007A> %  z - this *line* only given for stability 
% The letter ae is a separate letter in Danish 
<U00C6> <S00E6>;<BASE>;<CAP>;<U00C6> % AE 
<U00E6> <S00E6>;<BASE>;<MIN>;<U00E6> % ae 
<U01FC> <S00E6>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FC> % AE WITH ACUTE 
<U01FD> <S00E6>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FD> % ae WITH ACUTE 
 
% The letter <a:> is given the same primary 
% weight as <ae>, with unique variant weights at the secondary level. 
<U00D6> <S00E6>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D6> % A WITH DIAERESIS 
<U00F6> <S00E6>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F6> % a WITH DIAERESIS 
 
% And replicate the weighting for the collating-element's formed with  
combining accents 
<A-plus-combining-diaeresis> <S00E6>;"<BASE><VRNT1>";"<CAP><MIN>";"<U0041><U0308>" 
<a-plus-combining-diaeresis> <S00E6>;"<BASE><VRNT1>";"<MIN><MIN>";"<U0061><U0308>" 
 
% The letter <o/> - O WITH STROKE - is a separate letter in Danish 
<U00D8> <S00F8>;<BASE>;<CAP>;<U00D8> % <O/> 
<U00F8> <S00F8>;<BASE>;<MIN>;<U00F8> % <o/> 
<U01FE> <S00F8>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FE> % <O/> WITH ACUTE 
<U01FF> <S00F8>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FF> % <o/> WITH ACUTE 
 
% The letters <o:> and <o"> are given the same primary 
% weight as <o/>, with unique variant weights at the secondary level. 
<U00D6> <S00F8>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D6> % O WITH DIAERESIS 
<U00F6> <S00F8>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F6> % o WITH DIAERESIS 
<U0150> <S00F8>;"<BASE><VRNT2>";"<CAP><MIN>";<U0150> % O WITH DOUBLE ACUTE 
<U0151> <S00F8>;"<BASE><VRNT2>";"<MIN><MIN>";<U0151> % o WITH DOUBLE ACUTE 
 
% Replicate the weighting for the collating-element's formed with combining accents 
<O-plus-combining-diaeresis> <S00F8>;"<BASE><VRNT1>";"<CAP><MIN>";"<U004F><U0308>" 
<o-plus-combining-diaeresis> <S00F8>;"<BASE><VRNT1>";"<MIN><MIN>";"<U006F><U0308>" 
<O-plus-combining-doubleacute> <S00F8>;"<BASE><VRNT2>";"<CAP><MIN>";"<U004F><U030B>" 
<o-plus-combining-doubleacute> <S00F8>;"<BASE><VRNT2>";"<MIN><MIN>";"<U006F><U030B>" 
 
% The letter <aa> - A WITH RING ABOVE - is weighted following the letter <o/> (see above) 
<U00C5> <A-A>;<BASE>;<CAP>;<U00C5> % <AA> 
<U00E5> <A-A>;<BASE>;<MIN>;<U00E5> %  <aa> 
<U01FA> <A-A>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FA> % <AA> WITH ACUTE 
<U01FB> <A-A>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FB> % <aa> WITH ACUTE 
 
% And replicate the weighting for the collating-element's formed with combining accents 
<A-plus-combining-ring> <A-A>;<BASE>;<CAP>;<U00C5> 
<a-plus-combining-ring> <A-A>;<BASE>;<MIN>;<U00E5> 
 
% The sequences of letters a-plus-a are weighted as secondary variants of <AA> 
<A-plus-A> <A-A>;"<BASE><VRNT1>";"<CAP><CAP>";"<U0041><U0041>" % AA 
<A-plus-a> <A-A>;"<BASE><VRNT1>";"<CAP><MIN>";"<U0041><U0061>" % Aa 
<a-plus-A> <A-A>;"<BASE><VRNT1>";"<MIN><CAP>";"<U0061><U0041>" % aA 
<a-plus-a> <A-A>;"<BASE><VRNT1>";"<MIN><MIN>";"<U0061><U0061>" % aa 
 
% The letters u with diaresis and u with double-acute are given the same primary 
% weight as y, with unique variant weights at the secondary level. 
reorder-after <U00DC> % this *line* only given for stability 
<U00DC> <S0079>;"<BASE><VRNT1>";"<CAP><MIN>";<U00DC> % U WITH DIAERESIS 
<U00FC> <S0079>;"<BASE><VRNT1>";"<MIN><MIN>";<U00FC> % u WITH DIAERESIS 
<U0170> <S0079>;"<BASE><VRNT2>";"<CAP><MIN>";<U0170> % U WITH DOUBLE ACUTE 
<U0171> <S0079>;"<BASE><VRNT2>";"<MIN><MIN>";<U0171> % u WITH DOUBLE ACUTE 
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% And replicate the weighting for the collating-element's formed with combining accents 
<U-plus-combining-diaeresis> <S0079>;"<BASE><VRNT1>";"<CAP><MIN>";"<U0055><U0308>" 
<u-plus-combining-diaeresis> <S0079>;"<BASE><VRNT1>";"<MIN><MIN>";"<U0075><U0308>" 
<U-plus-combining-doubleacute> <S0079>;"<BASE><VRNT2>";"<CAP><MIN>";"<U0055><U030B>" 
<u-plus-combining-doubleacute> <S0079>;"<BASE><VRNT2>";"<MIN><MIN>";"<U0075><U030B>" 
 
% The letter eth is equated to d 
% with a secondary difference to distinguish it from d 
reorder-after <U0064> % this *line* only given for stability 
<U00D0> <S0064>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D0> % ETH 
<U00F0> <S0064>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F0> % eth 
 
% The letter thorn is treated as a sequence of t + h, with a variant weight 
% at the secondary level 
reorder-after <U00DE> % this *line* only given for stability 
<U00DE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<CAP><MIN><MIN>";<U00DE> % THORN 
<U00FE> "<S0074><S0068>";"<BASE><VRNT1><BASE>";"<MIN><MIN><MIN>";<U00FE> % thorn 
 
% The letter oe is treated as a sequence of o + e, with a special weight 
% at the secondary level 
reorder-after <U006F> % this *line* only given for stability 
<U01D2> "<S006F><S0065>";"<BASE><LIGHT>";"<CAP><MIN>";<U01D2> % OE 
<U01D3> "<S006F><S0065>";"<BASE><LIGHT>";"<MIN><MIN>";<U01D3> % oe 
 
% Space, hyphen-minus, hyphen, and solidus are given a primary weight 
% before any letter or digit, with hyphen-minus and solidus 
% given a secondary difference from the weight for space. 
 
reorder-after <U0020> % this *line* only given for stability 
<U0020> <S0020>;<BASE>;<MIN>;<U0020> % SPACE 
<U002D> <S0020>;"<BASE><VRNT1>";"<U002D><MIN>";<U002D> % HYPHEN-MINUS 
<U2010> <S0020>;"<BASE><VRNT1>";"<U0010><MIN>";<U2010> % HYPHEN 
<U002F> <S0020>;"<BASE><VRNT2>";"<U002F><MIN>";<U002F> % SOLIDUS 
 
% The letter kra (for Greenlandic) is equated to a lowercase q, 
% with a secondary difference to distinguish it from q itself. 
reorder-after <U0071> % q - this *line* only given for stability 
<U0138> <S0071>;"<BASE><VRNT1>";"<MIN><MIN>";<U0138> % kra 
 
% The letter sharp s is treated as a sequence of s + s 
% with a special weight at the secondary level to make it come 
% before s-plus-s - shorter precedes longer. 
reorder-after <U0073> % s - this *line* only given for stability 
<U00DF> "<S0073><S0073>;"<BASE><LIGHT>";"<MIN><MIN>";<U00DF> % SHARP S 
 
% To facilitate deterministic ordering, all controls have a unique 
% weight at the 4th level. 
reorder-after <U0000> 
<U0000>..<U001F> IGNORE;IGNORE;IGNORE;<U0000>..<U001F> 
<U007F>..<U009F> IGNORE;IGNORE;IGNORE;<U007F>..<U009F> 
 
reorder-end 
 
% End of the example tailoring for Danish 
 

Benchmark for Danish (sorted order) 
A/S 
ANDRE 
ANDRÉ 
ANDREAS 
AS 
CA 
ÇA 
CB 
ÇC 
DA 
ÐA 
DB 
ÐC 
DSB 

D.S.B. 
DSC 
EKSTRA-ARBEJDE 
EKSTRABUD 
EKSTRAARBEJDE 
HØST 
HAAG 
HÅNDBOG 
HAANDVÆRKSBANKEN 
Karl 
karl 
NIELS JØRGEN 
NIELS-JØRGEN 
NIELSEN 

RÉE, A 
REE, B 
RÉE, L 
REE, V 
SCHYTT, B 
SCHYTT, H 
SCHÜTT, H 
SCHYTT, L 
SCHÜTT, M 
ß 
SS 
SSA 
STORE VILDMOSE 
STOREKÆR 

STORM PETERSEN 
STORMLY 
THORVALD 
THORVARDUR 
ÞORVARÐUR 
THYGESEN 
VESTERGÅRD, A 
VESTERGAARD, A 
VESTERGÅRD, B 
ÆBLE 
ÄBLE 
ØBERG 
ÖBERG 
Århus 
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B.5 Example 5 – A tailoring for Khmer 

The Khmer script is mainly used in Cambodia. The tailoring given below is not included in the CTT (see annex 
A) itself in order to keep the CTT simple, especially for rare letterforms. E.g. the Khmer ROBAT for which the 
tailoring below may not be desirable for efficiency reasons, since this letter occurs very rarely, but the tailoring 
for handling it correctly may affect the efficiency of collation also for texts that do not contain any ROBAT.. 

reorder-after <MAX> 
 
% Khmer: 
collating-symbol <S1794_S17C9> % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN 
collating-symbol <S1794_S17CA> % KHMER LETTER BA, KHMER SIGN TRIISAP 
collating-symbol <S17BB_S17C6> % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT 
collating-symbol <S17B6_S17C6> % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT 
collating-symbol <C1780>..<C179C> 
 
  % Declaration of Khmer contractions 
collating-element <U1794_17C9> from "<U1794><U17C9>" % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN 
collating-element <U1794_17CA> from "<U1794><U17CA>" % KHMER LETTER BA, KHMER SIGN TRIISAP 
collating-element <SW_17CC_1780>..<SW_17CC_17A2> from "<U1780>..<U17A2><U17CC>"  
% KHMER LETTER KA, KHMER SIGN ROBAT..KHMER LETTER QA, KHMER SIGN ROBAT 
collating-element <SW_17CC_17A5>..<SW_17CC_17B3> from "<U17A5>..<U17B3><U17CC>"  
% KHMER INDEPENDENT VOWEL QI, KHMER SIGN ROBAT..KHMER INDEPENDENT VOWEL QAU�, KHMER SIGN ROBAT 
collating-element <U17C6_17BB> from "<U17BB><U17C6>" % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT  

(OM properly spelled) 
collating-element <U17BB_17C6> from "<U17C6><U17BB>" % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN U  

(OM with the wrong sequence of the characters) 
collating-element <U17C6_17B6> from "<U17B6><U17C6>" % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT  

(AM properly spelled) 
collating-element <U17B6_17C6> from "<U17C6><U17B6>" % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN AA  

(AM with the wrong sequence of the characters) 
collating-element <U17D2_1780>..<U17D2_179C> from "<U17D2><U1780>..<U179C>" 
% COENG, KHMER LETTER KA..COENG, KHMER LETTER QA 
collating-element <U17D2_17A5>..<U17D2_17B3> from "<U17D2><U17A5>..<U17B3>" 
% COENG, KHMER INDEPENDENT VOWEL QI..COENG, KHMER INDEPENDENT VOWEL QAU 
 
reorder-after <S1794> % KHMER LETTER BA 
<S1794_17C9> % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN 
<S1794_17CA> % KHMER LETTER BA, KHMER SIGN TRIISAP 
 
 
reorder-after <S17C5> KHMER VOWEL SIGN AU 
<S17BB_17C6> % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT 
 
reorder-after <S17C6> KHMER SIGN NIKAHIT 
<S17B6_17C6> % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT 
 
reorder-after <S17D2> 
<C1780>..<C1794> % COENG, KHMER LETTER KA..COENG, KHMER LETTER BA 
<C1795>..<C179A> % COENG, KHMER LETTER PHA..COENG, KHMER LETTER RO 
<C17AB> % COENG, KHMER INDEPENDENT VOWEL RY 
<C17AC> % COENG, KHMER INDEPENDENT VOWEL RYY 
<C179B> % COENG, KHMER LETTER LO 
<C17AD> % COENG, KHMER INDEPENDENT VOWEL LY 
<C17AE> % COENG, KHMER INDEPENDENT VOWEL LYY 
<C179C>..<C17A2> % COENG, KHMER LETTER VO..COENG, KHMER LETTER QA 
 
reorder-after <SFFFF> 
order_start forward;forward;forward;forward 
 
<U1794_17C9> <S1794_17C9>;<BASE>;<MIN>;<U1794_17C9> % KHMER LETTER BA, KHMER SIGN MUUSIKATOAN 
<U1794_17CA> <S1794_17CA>;<BASE>;<MIN>;<U1794_17CA> % KHMER LETTER BA, KHMER SIGN TRIISAP 
 
%% The ROBAT contractions should be used only in an "advanced" tailoring for 
%% Khmer, since ROBAT is rather rarely used, and these contractions 
%% may impact on the efficiency of the key computation even if ROBAT does not 
%% occur, since these contractions begin with commonly used letters. 
 
<SW_17CC_1780>..<SW_17CC_17A2> "<S179A><S17D2><S1780>..<S17A2>";  

"<BASE><VRNT1><BASE><BASE>";"<MIN><MIN><MIN><MIN>"; <SW_17CC_1780>..<SW_17CC_17A2> 
 
% KHMER LETTER KA, KHMER SIGN ROBAT..KHMER LETTER QA, KHMER SIGN ROBAT 
 
<SW_17CC_17A5>..<SW_17CC_17A6> "<S179A><S17D2><S17A2><S17B7>..<S17B8>";  
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  "<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";"<MIN><MIN><MIN><MIN><MIN><MIN>";  
<SW_17CC_17A5>..<SW_17CC_17A6> % KHMER INDEPENDENT VOWEL QI, KHMER SIGN ROBAT..KHMER 
INDEPENDENT VOWEL QII, KHMER SIGN ROBAT 

<SW_17CC_17A7> "<S179A><S17D2><S17A2><S17BB>";"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";  
  "<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17A7> 
 
% KHMER INDEPENDENT VOWEL QU, KHMER SIGN ROBAT 
 
<SW_17CC_17A8> "<S179A><S17D2><S17A2><S17BB>";"<BASE><VRNT1><BASE><BASE><VRNT2><BASE>";  
  "<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17A8> 
 
% KHMER INDEPENDENT VOWEL QUK;  KHMER SIGN ROBAT 
 
<SW_17CC_17A9> "<S179A><S17D2><S17A2><S17BC>";"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";  
  "<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17A9> 
 
% KHMER INDEPENDENT VOWEL QUU;  KHMER SIGN ROBAT 
 
<SW_17CC_17AA> "<S179A><S17D2><S17A2><S17BC>";"<BASE><VRNT1><BASE><BASE><VRNT2><BASE>";  
  "<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17AA> 
 
% KHMER INDEPENDENT VOWEL QUUV;  KHMER SIGN ROBAT 
 
<SW_17CC_17AF>..<SW_17CC_17B1> "<S179A><S17D2><S17A2><S17C2>..<S17C4>";  

"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";"<MIN><MIN><MIN><MIN><MIN><MIN>"; 
<SW_17CC_17AF>..<SW_17CC_17B1> % KHMER INDEPENDENT VOWEL QE, KHMER SIGN ROBAT..KHMER 
INDEPENDENT VOWEL QOO TYPE ONE, KHMER SIGN ROBAT 

<SW_17CC_17B2> "<S179A><S17D2><S17A2><S17C4>";"<BASE><VRNT1><BASE><BASE><VRNT2><BASE>";  
  "<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17B2> 
 
% KHMER INDEPENDENT VOWEL QOO TYPE TWO;  KHMER SIGN ROBAT 
 
<SW_17CC_17B3> "<S179A><S17D2><S17A2><S17C5>";"<BASE><VRNT1><BASE><BASE><VRNT1><BASE>";  
  "<MIN><MIN><MIN><MIN><MIN><MIN>";<SW_17CC_17B3> 
 
% KHMER INDEPENDENT VOWEL QAU;  KHMER SIGN ROBAT 
 
%%% Khmer OM and AAM (the NIKAHIT should be written after the vowel): 
<U17BB_17C6> <S17BB_17C6>;<BASE>;<MIN>;<U17BB_17C6> % KHMER VOWEL SIGN U, KHMER SIGN NIKAHIT 
<U17C6_17BB> <S17BB_17C6>;<BASE>;<MIN>;<U17C6_17BB> % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN U 
<U17B6_17C6> <S17B6_17C6>;<BASE>;<MIN>;<U17B6_17C6> % KHMER VOWEL SIGN AA, KHMER SIGN NIKAHIT 
<U17C6_17B6> <S17B6_17C6>;<BASE>;<MIN>;<U17C6_17B6> % KHMER SIGN NIKAHIT, KHMER VOWEL SIGN AA 
reorder-end 
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Annex C 
(informative) 

 
Preparation 

C.1 General considerations 

Preparation is necessary only for modification and/or duplication of original strings to render them context-
independent prior to the comparison phase. A non-duplicating preparation maps a given string to one string. A 
non-duplicating preparation can be composed with the key generation and comparison, as e.g. is needed for Lao 
and Thai (see Annex C.2), or proper ordering of numerals (see Annex C.3). A duplicating preparation can map a 
given string to several strings (to be sorted). 

Examples of non-duplicating preparations are: 

• Vowel-consonant rearrangement, as is needed for Thai (see C.2) and Lao. 

• Transformation of numbers so that the result will be ordered in numerical order, as opposed to 
positional order (see C.3). Numeric ordering is particularly delicate and requires special 
consideration in many cases. 

• Removal or rotation of characters that are a nuisance for special requirements of ordering; for 
example, removing articles (language dependent) in sorting book names as in: 

   Tale of two cities, A 

• Transformation of abbreviated data into a fuller form. For example: transformation of "McArthur" to 
give "MacArthur". 

Some examples of a duplicating preparation are: 

• Duplicating a string into several ’rotations’, like when producing a keyword-in-context index: 
  International string ordering 
 International string  ordering 
 International string ordering 

• Duplication of a string such as "41" for as it is spelled out in different languages (Irish Gaelic, 
German, English, and French): 

 daichead a haon 
 einundvierzig 
 forty-one 
 quarante-et-un 

C.2 Thai string ordering 

This annex explains some of the principles behind the tailoring of the CTT given in annex B.5 above, as well as 
the CTT ordering for Thai (and to some extent Lao). 

C.2.1 Thai ordering principles 

The widely accepted standard for Thai lexicographical ordering is defined in the Royal Institute Dictionary 2542 
B.E. Edition (1999 A.D.), the official standard Thai dictionary. The ordering principles, expanded to cover the full 
range of the Thai script and its computerisation, are: 

• Words are ordered alphabetically, not phonetically. Consonants order is: 
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ก ข ฃ ค ฅ ฆ ง จ ฉ ช ซ ฌ ญ ฎ ฏ ฐ ฑ ฒ ณ ด ต ถ ท 
 ธ น บ ป ผ ฝ พ ฟ ภ ม ย ร ฤ ล ฦ ว ศ ษ ส ห ฬ อ ฮ 

 
• Vowels, and nikhahit, are also ordered by written forms, not by sounds. Vowels and nikhahit order 

is: 

o - ํ   -ะ   -�  -า   -ๅ   -ำ   -�  -�  -�  -�  -�  -�  เ -  แ -  โ -  ใ -  ไ -  -� 

o อ  ว  ย  are always ordered as consonants, although they sometimes act as vowels. 

o ๅ is a long-legged variant of า, used with the long-legged consonants ฤ and ฦ: ฤๅ and ฦๅ. 

o ำ is logically an า followed by a   ํ. However, the Unicode compatibility decomposition of the 
precomposed character is to a   ํ followed by an า, so this misspelling must be handled as 
well. 

• No syllable structure or word boundary analysis is required, as Thai lexicons are ordered 
alphabetically, not phonetically. Note that Thai normally does not use any word separator, except, 
and exceptionally, zero width space. 

• String comparison is performed from left to right, but treating leading vowels (เ-  แ-  โ-  ใ-  ไ-, 
corresponding to characters U0E40-U0E44), as though they followed the consonant that 
immediately follows them. Therefore, rearrangement (in some way) is needed before comparison.  

• Tones and diacritics are ignored at level 1. At level 2 their order is: 

  - ๎   -    - ็   -    -    -    -  

• Since Thai, Lao, and Khmer are uncased, it may seem that the third level is not needed for Thai, 
Lao, and Khmer string ordering. However, the third level is used to differentiate LAKKHANGYAO 
(ๅ) as a variant of SARA AA (า), since similar variants in other scripts are differentiated in a like 
manner at level 3, as well as for other variation cases in Thai, Lao, and Khmer. 

• When Thai punctuation marks (๛ ๚ ฯ ๏ ๆ) are concerned, another level of weights is required for 
them. This corresponds to the fourth level in the Common Template Table. In string ordering, 
punctuation marks are less significant than any tone marks and diacritics, and must be ignored in 
all the first three levels. Note that PAIYANNOI (ฯ) and THAI CHARACTER MAIYAMOK (repeat 
mark ๆ) are regarded and ordered as punctuation marks, not letters, despite their Unicode general 
category as “Lo” and “Lm” respectively. For example, “ขางๆ, ขางกบ, ขางๆ คูๆ, ขางจัน” is a valid order in the 
Royal Institute Dictionary. In the first level, the considered weights correspond to ขาง, ขางกบ, ขางค ู, 
and ขางจัน respectively. 

The ten Thai decimal digits (๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙), each semantically equivalent to Arabic digit 0-9, 
respectively. Their weights are then equal to their corresponding Arabic digit in the first level, and are 
different in the second level, to distinguish script. 

C.2.2 Vowel/consonant rearrangement 

Regarding the handling of pre-vowels, either a collation preparation or collating-element grouping (as in the 
tailoring in annex B.5 above) is required. The collation preparation scans the string once and swaps every 
leading Thai vowel with its succeeding character (ideally only if the succeeding character is a Thai consonant). 
The prepared string is then passed to the normal weight calculation process. Another way to manage this is by 
means of collating-element formation – the approach taken both by the CTT of this International Standard and 
by the collation weighting table of the Unicode Collation Algorithm (UTS #10). Every possible pair of leading 
vowel and consonant is defined as a collating-element, whose weight is equal to that of the rearranged 
substring. In addition, since two เ in sequence look just like a แ, two เ in sequence should be handled just like a 

แ. 

Mise en forme : Puces et
numéros
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Note that the rearrangement of each leading vowel is simply performed with its immediate succeeding 
consonant. No consonant cluster analysis is needed. Indeed, doing so would result in ambiguities or yield a 
different order than that specified in the Royal Institute Dictionary. For example: 

1. Ambiguities: The problem with ambiguity is illustrated by the word “เพลา”.  It has two potential 
pronunciations: either as a two-syllable word, “phe-la” (meaning “time”), or as a one-syllable word, 
“phlao” (meaning “axle” or “abate”). A rearrangement algorithm which follows the distinct pronunciation of 
the potential cluster ‘พล’ in this string would result in distinct keys, “พเลา” and “พลเา”, and therefore 
different weights, which are equally legal. Both words need to have the same weight to be sortable, 
however. 

2. Non-conforming ordering: To illustrate the difference in ordering caused by the treatment of consonant 
clusters, consider these words, shown in conforming order: “เพล, เพลง, เพศ”.  The correct rearrangement 
ignores any clusters and results in the following: “พเล, พเลง, พเศ”, which sorts in the order shown. If, 
however, pairs of consonants that form legal clusters were grouped as single collation elements 
(regardless of actual pronunciation where the potential pronunciation is ambiguous), then the results of 
rearrangement would be “<พล>เ, <พล>เง, พเศ”, which would yield the (non-conforming) ordering “เพศ, 
เพล, เพลง”. Again, if actual clusters were grouped as single collation elements (with some disambiguation 
effort), then the results of rearrangement would be “พเล, <พล>เง, พเศ”, which would yield the (non-
conforming) ordering “เพล, เพศ, เพลง”. 
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C.2.3 Example ordered strings 

Here is an ordering example: Example for Thai (sorted order) 
กก 
กรรม 
กรรม 
-กระแยง 
กราบ 
กะเกณฑ 
กัก 
กาว 
กํา 
กิน 
กี่ 
กึ๋น 
กุน 
กูด 
เกง 
เกลา 
เกลียว 
เกา 
เกาะ 
เก่ียว 
เก๊ียะ 
เกือก 
แกง 
แกะ 

โกน 
โกรน 
ใกล 
ไก 
ไกล 
ขน 
ขนาบ 
ขาง 
ขางๆ 
ขางกระดาน 
ขางข้ึน 
ขางควาย 
ขางๆ คูๆ 
ขางเงิน 
ขางออก 
เข็ด 
เขน 
เข็น 
เขน 
แข็ง 
แขง 
แขง 
แขงขวา 
แข็งขัน 

แขงขัน 
แขน 
ครรภ- 
ครรภ 
จุมพล 

จุ ํพล 
ชาย 
เฒา 
เณร 
ตลาด 
ทูลเกลา 
ทูลเกลาฯ 
ทูลเกลาทูลกระหมอม 
นา 
นํ้า 
น้ี 
บุญหลง 
บุญ-หลง 
ปา 
ปา 
ปา 
ปา 
ปา 
ปาน 

ผัด 
ฯพณฯ 
พณิชย 
ยอง 
รอง 
ฤทธิ์ 
ฤษี 
ฤๅษี 
ลลิตา 
ฦๅชา 
วก 
ศาล 
หริภุญชัย 
หฤทัย 
หลง 
แหง 
แหง 
แหนม 
แหนหวง 
แหบ 
แหม 
อาน 
ฮา 
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C.3 Handling of numeral substrings in collation 

A numeral is a string representing a number. The examples here deal with numerals that represent values in R, 
the real numbers, or, really, subsets of R, as these have a predetermined order. Only decimal numerals are dealt 
with in the examples given here. 

The presentation below will first give positional system decimal numerals for natural numbers using the digits 0-
9.  It will progress to numerals for whole numbers, numerals with a fraction part, a fraction part and an exponent.  
There is also a brief discussion on numerals with digits from other scripts, scripts that sometimes uses another 
syntax with digits for numerals (such as Hàn numerals), and Roman numerals. There are circumstances where 
digits do not represent numerical values, such as in part numbers and telephone numbers. The preparations 
described below have undesirable consequences in cases where apparent numerals do not represent numerical 
values, such as when the ordering telephone numbers or part ‘numbers’, and should be avoided in those cases. 

C.3.1 Handling of ‘ordinary’ numerals for natural numbers 

The Common Template Table has no means of ordering strings with numbers in such a way that the resulting 
order reflects the number values represented by the numerals. For example, given the following randomly-
arranged strings: 

 Release 1 
 Release 20 
 Release 12 
 Release 2 
 Release 9 

the method described in the this International Standard yields the following order for these strings: 

 Release 1 
 Release 12 
 Release 2 
 Release 20 
 Release 9 

(It is sufficient simply to look positionally at just the first digit in each numeral to see why this ordering results.)  A 
more acceptable ordering is: 

 Release 1 
 Release 2 
 Release 9 
 Release 12 
 Release 20 

The Common Template Table defined in this International Standard cannot be tailored to give this result. 
However, preparation can be done prior to the basic collation step to achieve the desired results when numeric 
value order is desired.  The prepared strings are normally not presented to the user; only the original strings are.  
The prepared strings are normally only used for the collation key construction.  A simple, but not very general, 
way of preparing numerals for natural ordering is to pad them with zeroes to a given number of digits.  If one 
pads the numerals in our original example strings up to three digits, the following will result: 

 Release 001 
 Release 020 
 Release 012 
 Release 002 
 Release 009 

Using the Common Template Table defined in this International Standard one then obtains the strings in a better 
order (here showing the strings as they are after preparation, which are normally not shown in the result): 

 Release 001 
 Release 002 
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 Release 009 
 Release 012 
 Release 020 

However, there are two problems with this approach: 

• One must determine beforehand a (usually small) number of digits to pad up to. If the number of 
digits to pad up to is too large, the strings after preparation can become rather long, especially if 
there are several numerals in each string. If the number of digits to pad up to is too small, however, 
the risk is greater that there are actually occurring numerals with more digits than one has padded 
up to, which results in partially getting back to the original situation, where the numerals’ values are 
not taken entirely into account.  

• Determinacy is lost, if some of the original numerals were already partially zero-padded. For 
example, if the original strings were: 

 Release 01 
 Release 1 

 the strings after preparation are identical, and the end result (as the user would normally see it) could be 
either 

 Release 01 
 Release 1 

 or 

 Release 1 
 Release 01 

 and the relative order may come out differently for different occurrences of numerals, or different runs of 
the collation process applying the same rules. This kind of indeterminacy is undesirable. 

There are many ways to deal with these problems. The following is one such way. 

To each maximal digit subsequence prepend a fixed-number-of-digits numeral which represents the original 
number of digits in the numeral.  For most cases a two-digit count would suffice (allowing up to 99 digits in the 
original integer numerals).  For example, given the original strings: 

 Release 1 
 Release 01 
 Release 20 
 Release 12 
 Release 2 
 Release 09 
 Release 9 

one obtains after this preparation the following strings: 

 Release 011 
 Release 0201 
 Release 0220 
 Release 0212 
 Release 012 
 Release 0209 
 Release 019 

which would be ordered by the basic mechanism of this International Standard to: 

 Release 011 
 Release 012 
 Release 019 
 Release 0201 
 Release 0209 
 Release 0212 
 Release 0220 
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and are normally presented to the user as: 

 Release 1 
 Release 2 
 Release 9 
 Release 01 
 Release 09 
 Release 12 
 Release 20 

This particular method puts numerals with a like original number of digits close to each other, even if the actual 
value represented is smaller due to the original zero-padding. If the represented values should be kept close 
together, one should instead duplicate the numeral: first a count of digits for the leading-zero-stripped numeral, 
the leading-zero-stripped numeral itself, followed by the original numeral.  The duplication is needed to get 
determinacy relative to the original strings. For example, using the same original strings as above: 

 Release 011 1 
 Release 011 01 
 Release 0220 20 
 Release 0212 12 
 Release 012 2 
 Release 019 09 
 Release 019 9 

which would be ordered by the basic mechanism of this International Standard to: 

 Release 011 01 
 Release 011 1 
 Release 012 2 
 Release 019 09 
 Release 019 9 
 Release 0212 12 
 Release 0220 20 

and normally be presented to the user as: 

 Release 01 
 Release 1 
 Release 2 
 Release 09 
 Release 9 
 Release 12 
 Release 20 

The originally zero-padded numerals consistently come before the numeral without (or with less) original zero-
padding. The preparation processing could move the original numerals (in order of occurrence) to the very end of 
each string, if one wants to give the original zero-padding lesser significance than the text following the numerals. 

The presence of several natural numerals in each string causes no additional problem. 

Taking care of the natural number numerals is in most cases sufficient, and it is recommended that it be included 
as part of the usual preparation of strings to be collated.  However, such preparation is not required by this 
International Standard. 

C.3.2 Handling of positional numerals in other scripts 

ISO/IEC 10646 encodes decimal digits for a number of scripts. In most cases these are used in a positional 
system, just like 0-9 usually are. However, one should not regard a sequence of numerals mixed from different 
scripts as a single numeral; rather, one should consider each maximal substring of digits of the same script to be 
a numeral. 
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C.3.3 Handling of other non-pure positional system numerals or non-positional system 
numerals (e.g. Roman numerals) 

Chinese and some other languages can use decimal digits (in the Hàn script, for instance) interspersed with 
ideographs for “one thousand”, “ten”, etc. If such numerals are to be collated according to the value they 
represent, one can proceed as above, adding a step just after the initial duplication: convert the copy to the 
corresponding positional system numeral in the syntax used here for whole numerals. 

Roman numerals, if handled, can be handled in a similar fashion to that described above.  Duplicate, and replace 
the first copy with the same natural number expressed in the decimal positional system. E.g. “Louis V”, where the 
V is determined to be a Roman numeral, can be modified to “Louis 5 V”. 

Caveat: In this case human interactive intervention or an expert system may be required, as in the following 
example involving the French language: CHAPITRE DIX might mean CHAPTER 10 or CHAPTER 509 ("dix" is 
the French word for 10, it is also the Roman numeral for 509).  

C.3.4 Handling of numerals for whole numbers 

If numerals for negative whole numbers are also to be ordered according to their value, there are a number of 
issues to be considered. Most frequently, negative whole values are given numerals that begin with a negation 
sign.  The negation sign may be HYPHEN-MINUS U002D (but this character may often represent a true hyphen, 
rather than a negation), or MINUS SIGN U2212. However, there are other conventions also, like using a 
SOLIDUS U002F or a PERCENT SIGN U0025 to indicate negativeness; or the negation indicator can come after 
the digits rather than before; or negativeness can be indicated by putting the digits between parenthesis, and/or 
putting the digits in a contrasting colour (often red). In the examples here, only the case that negativeness is 
indicated by an immediately prepended MINUS SIGN is dealt with. Positiveness is indicated by either the 
absence of a MINUS SIGN, or the presence of a PLUS SIGN U002B. 

Example strings: 

 Temperature: –9 °C 
 Temperature: 0 °C 
 Temperature: –14 °C 
 Temperature: 05 °C 
 Temperature: +5 °C 
 Temperature: –0 °C 
 Temperature: –09 °C 
 Temperature: 105 °C 
 Temperature: +05 °C 
 Temperature: 5 °C 

One preparation to get an acceptable and determinate order for numerals (in this syntax) for whole numbers is as 
follows (actual implementations should do something equivalent, but more efficient): 

1. Duplicate the numerals in the string (including sign indications), putting the ‘original’ ones (not to be 
touched by the following steps) in order of original occurrence at the end or the string, leaving the 
copies to be modified at the original positions. This step ensures determinacy. 

2. Ensure that all of the copies have an explicit initial sign indicator. 

3. Remove leading zeroes in the copies of the numerals (systematically either leaving one zero digit 
for zero or representing 0 by the empty string of digits); alternatively, let all numeral copies have 
exactly one leading zero. 

4. Between the sign indicator and the digits in the copies of the numerals, insert a (two-digit) count of 
how many digits there were (after removing the leading zeroes). 
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5. Do 9’s complement on each digit in each copy of a negated numeral.  9’s complement of a digit that 
individually represents the value x, is 9–x. That is, 9’s complement of 0 is 9, of 9 is 0, of 5 is 4, etc. 

For the basic collation step, use a tailoring of the template given in this International Standard, namely, a tailoring 
where the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and where the 
MINUS SIGN has less weight than the PLUS SIGN. (In the example below, it is assumed that the weight of PLUS 
SIGN is less than the weight of 0, but this is not a prerequisite for getting an acceptable ordering.) 

Our example strings after this preparation: 

 Temperature: –980 °C –9 
 Temperature: +00 °C 0 
 Temperature: –9785 °C –14 
 Temperature: +015 °C 05 
 Temperature: +015 °C +5 
 Temperature: –99 °C –0 
 Temperature: –980 °C –09 
 Temperature: +03105 °C 105 
 Temperature: +015 °C +05 
 Temperature: +015 °C 5 

The ordering for these, using the basic mechanism of this International Standard, is: 

 Temperature: –9785 °C –14 
 Temperature: –980 °C –09 
 Temperature: –980 °C –9 
 Temperature: –99 °C –0 
 Temperature: +00 °C 0 
 Temperature: +015 °C +05 
 Temperature: +015 °C +5 
 Temperature: +015 °C 05 
 Temperature: +015 °C 5 
 Temperature: +03105 °C 105 

and normally presented to the user as: 

 Temperature: –14 °C 
 Temperature: –09 °C 
 Temperature: –9 °C 
 Temperature: –0 °C 
 Temperature: 0 °C 
 Temperature: +05 °C 
 Temperature: +5 °C 
 Temperature: 05 °C 
 Temperature: 5 °C 
 Temperature: 105 °C 

This preparation results in a determinate ordering of strings that have zero or more numerals for whole numbers 
in them, such that the numerals are ordered according to the integer value they represent. 

The process for other syntaxes for whole numbers can be similar. Just add a step to convert the copies to the 
syntax used here for whole numbers. 

This technique for handling negative numerals can be used also for numerals with a fractional part, and so on 
(see below). 

C.3.5 Handling of positive positional numerals with fractional parts 

The method presented above can easily be adapted to the case where fraction parts may occur and are to be 
taken into account. A problem is, however, that the characters often used to delimit the integer part from the 
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fraction part are also used for other purposes.  The separator character is generally either FULL STOP U002E, or 
COMMA U002C. These characters also have other uses, also in conjunction with digits. 

For the examples here, assume that FULL STOP is used (only) as a fraction part delimiter. 

Do as above, but count only the digits in the integer part of the numeral for the count of digits to be prepended. 
The fraction part delimiter character (here: FULL STOP) can be removed. 

For example: 

 –12.34 
 12.34 
 3.1415 
 3.14 

After preparation: 

 –978765 –12.34 
 +021234 12.34 
 +013.1415 3.1415 
 +01314 3.14 

Ordered: 

 –978765 –12.34 
 +01314 3.14 
 +0131415 3.1415 
 +021234 12.34 

As presented to the user: 

 –12.34 
 3.14 
 3.1415 
 12.34 

C.3.6 Handling of positive positional numerals with fraction parts and exponent parts 

For very large, or very small, values, one often uses formats like 2.5*107 (to illustrate just one possible way of 
writing these for the purposes of the examples here). Here there is already an exponent, which must be 
combined with the “number of integer part digits” (here: digits before the decimal point), by adding those two 
numbers to get a resulting fixed-number-of-digits exponent to prepend just before the first digit.  For this example, 
with a three-digit exponent: we get +00825. One problem here is that the resulting exponent may be negative.  
To handle this, use an exponent bias. For a three-digit exponent a bias of 500 may be suitable, which gives us for 
this example numeral: +50825, and for the numeral 2.5*10–7 we get +49425.  Negative values are handled as 
before, with 9’s complement.  –2.5*107 gives –49174, and –2.5*10–7 gives –50574. This method should be 
familiar to anyone with knowledge about (radix 10) floating point arithmetic. 

Thus: 

 2.5*10–7 
 –2.5*107 
 2.5*107 
 –2.5*10–7 

After preparation (including a duplicate of the original, for determinacy): 

 +49425 2.5*10–7 
 –49174 –2.5*107 
 +50825 2.5*107 
 –50574 –2.5*10–7 
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Ordered: 

 –49174 –2.5*107 
 –50574 –2.5*10–7 
 +49425 2.5*10–7 
 +50825 2.5*107 

As presented to the user: 

 –2.5*107 
 –2.5*10–7 
 2.5*10–7 
 2.5*107 

C.3.7 Handling of date and time of day indications 

Going a bit beyond plain numerals, date and time-of-day indications often employ numerals (as well as names for 
months, weekdays, etc.) for the parts of the date and time-of-day indication. It is not uncommon to want to order 
this kind of information also when it occurs within strings. 

The preparation needed to obtain date and time-of-day indications, of some predetermined syntaxes, ordered 
according to point in time is similar to what has been described above. 

1. Duplicate all date and time-of-day indications to maintain determinacy of collation when the original 
strings differ, but point in time identical. Leave the originals at the end of the strings, untouched by 
the following steps. 

2. Convert the copies of the date and time indications to the same calendar system, if there are 
several calendar (sub)systems used and handled. The calendar (sub)system converted to, must be 
suitable for being able to get proper time order. We will here use the Gregorian calendar system 
and the subsystem of year, month, day-of-month.  

3. Put the date and time-of-day elements in order of decreasing significance (to the resolution taken 
into account): Full year, month, day-of-month, hour, minute, second, fraction of second. 

4. Use a 24-hour/day clock for the time-of-day indications. Remove A.M. or P.M. indications, if present 
and handled, in the date-time indication copies. 

5. Use the UTC (Co-ordinated Universal Time) time zone for the date and time-of-day indications. 
Remove time zone indications, if present, in the date-time indication copies. 

6. Use month numbers, rather than month names. Use two digits each for month, day-of-month, hour, 
minute, second. 

7. Use full year number representation, as many digits as needed. Take abbreviations into account so 
that the full year number is used. E.g. ‘98’ might denote year 98 or year 1998, or 1898, etc.  No 
indeterminacy regarding year due to abbreviations like these may be present after the preparation 
step. 

8. For years AD, use an initial PLUS SIGN. For years BC, use an initial MINUS SIGN. Remove the 
original AD or BC indication from the copies. (To nitpick, year n BC should be represented by year 
(1–n), which is less or equal to zero if n is positive.) 

9. For the year indications, insert between the sign indication and the first digit for the year indication a 
digit telling how many digits there are in the full year indication. One digit for this should suffice. 

10. For negative years, replace the each digit in the year indication (including the digit telling the 
number of digits in the original full year indication) with its 9’s complement digit. 
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11. Make sure the textual format for all of the date indication copies is the same (paying attention to 
hyphens, spaces, etc.). (This is most easily accomplished by printing them in the same format from 
an internal, non-string, representation.) 

12. Alternatively, use a number indicating the point of time on a linear time scale (for example, hours, 
milliseconds, or days from a predetermined point in time), to the resolution desired, and handle this 
as an ordinary numeral (see above). 

For the basic collation step, use a tailoring of the template given in this International Standard. Use a tailoring 
where the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and where the 
MINUS SIGN has less weight than the PLUS SIGN. 

For example: 

 Dated: July 19, 1955, at 1 p.m. GMT 
 Dated: January, 20 BC 
 Dated: Sept. 20, 1995, at 1 p.m. PST 
 Dated: 11-june/345 AD 

After preparation: 

 Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT 
 Dated: –780-01  January, 20 BC 
 Dated: +1995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST 
 Dated: +3345-06-11 11-june/345 AD 

Ordered: 

 Dated: –780-01 January, 20 BC 
 Dated: +3345-06-11 11-june/345 AD 
 Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT 
 Dated: +41995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST 

As presented to the user: 

 Dated: January, 20 BC 
 Dated: 11-june/345 AD 
 Dated: July 19, 1955, at 1 p.m. GMT 
 Dated: Sept. 20, 1995, at 1 p.m. PST 

C.3.8 Making numbers less significant than letters 

In many cases, numerals preceding letters should be considered as less significant than the following alphabetic 
part. However, the Common Template Table specifies digits to be level 1 significant. To make numerals less 
significant than letters, either tailor the weight table so that numerals are ignored at level 1 (but significant at level 
2 or 3), or alternatively leave them significant at level 1, but prepare the strings so that numerals are moved to 
the end of the string or moved to a less significant field. When doing such a move, one must pay attention not to 
map different strings to identical strings (or identical string fields), so that determinacy is maintained (see C.3.9). 

Some examples where it is appropriate to consider numerals as less significant than letters: Street or block 
names with one or more numbers to indicate where in the street/block, if that/those number(s) precede the street 
or block name (common for example in the US and in Japan); chemical compound names which have 
prepended numerals, e.g., 1,2-diclorobenzol. 

C.3.9 Maintaining determinacy 

As noted above in several cases, part of the string has been duplicated to maintain determinacy in collation, 
when the original strings are different, but when preparation may otherwise turn different strings into identical 
strings. 
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This method of concatenating a copy of a substring in order to maintain determinacy can be used more 
generally, so if there are several preparations affecting different parts of the strings, one may simply duplicate 
the original strings to begin with, and only perform the preparation (without additional copying) on the given 
string, then concatenating on the initial copy. 

One disadvantage with just concatenating the two copies is that the base letters of the second half of the 
“doubled” string count as more significant than the accents and case of the resulting first half of the “doubled” 
string. This International Standard has no mechanism for handling this in a better way, where the “original” (the 
second half of the “doubled” string) would count as less significant than the entire first half of the “doubled” string. 
This may be handled better by having the original and copy in different ‘fields’, and construct the collation key by 
combining the full keys for each ‘field’. Such processing is beyond the scope of this International Standard, 
however. 

Maintenance of determinacy when some of the original strings to be collated are identical, is out of the scope of 
this International Standard. A sorting processor should document if it is ‘stable’ (maintaining initial relative order 
of identical strings) or not. This is useful to know when sorting on one field of multi-field data. 
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Annex D 
(informative) 

 
Tutorial on solutions brought by this International Standard to problems 

of lexical ordering 

Why does not existing standard character codes, with character-by-character comparisons, give appropriate 
resulting ordering of strings? What must be done in order to get appropriate resulting orderings? In this 
discussion will illustrate this with examples the Latin script. 

D.1 Problems 

1. Sorting, in any language using the Latin script, including English, using, e.g., ISO/IEC 646 coding, 
does not follow traditional dictionary sequence, which is the minimum the average user needs. 

 For example: Ordering the list "august", "August", "container", "coop”, “co-op", "Vice-president", 
"Vice versa" gives the following order, if ISO/IEC 646 coding is used and a simple sort following 
binary order is performed: 

   August 
   Vice versa 
   Vice-president 
   august 
   co-op 
   container 
   coop 

 This ordering is obviously incorrect. 

2. Transforming uppercase to lowercase and removing special characters yields a sorted list 
acceptable to users, but also yields unpredictable results. 

 For example: Sorting the list "August", "august", "coop", "co-op" gives the following order: 
   August 
   august 
   coop 
   co-op 

 Sorting the same list with a different initial order, say, "august", "co-op", "August",  "coop" may give 
a different order with this method: 

   august 
   August 
   co-op 
   coop 

3. If accented characters are introduced using for example any ISO/IEC 8-bit character set, the same 
problems as encountered above are amplified but they share the same causes. 

4. If character code point tables were reorganized to make all related characters contiguous, one 
might think that a simplified single-character sort would result, but this does not work either. Take 
upper- and lowercase unaccented letters as an example.  If code position 01 is assigned to "a", 
code position 02 assigned to "A", code position 03 to "b", code position 04 to "B" and so on, a list 
sorted directly according to these rearranged values will yield the following: 
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   Sorted Internal 
   List  Values 
 
   aaaa  01010101 
   abbb  01030303 
   Aaaa  02010101 
   Abbb  02030303 

This is also predictable, but remains obviously incorrect for any country with regard to cultural expectations. 

D.2 Solution 

The only solution to the above problems is to consider the initial data in multiple levels in a way that will respect 
traditional lexical order, and at the same time ensure absolute predictability. For the Latin script, this can be 
achieved by comparing in four (or more) levels: 

1. The first level renders the texts to be sorted case-insensitive and insensitive to diacritical marks, 
and to all special characters (which have no pre-established traditional order). 

 An example for English: 

  "résumé" (’curriculum vitae’) becomes "resume" (‘begin again’), without any accent. 

 An example for French: 

  "Vice-légation" becomes "vicelegation", with no accent, no uppercase and no hyphen. 

 An example for German: 

  "groß" becomes "gross", with the sharp-s being converted to double-s for the ordering. 

 In some languages, including Spanish and the Nordic languages, some extra letters are added to 
the 26 letters of the English, French, and German alphabets. The additional letters are not ordered 
according to the expectations in other languages. This demonstrates the need for adaptability. 

2. The second level breaks ties on quasi-homographs, that is, strings that differ only because they 
have different diacritical marks. 

 In English, "resumé" and "résumé" are quasi-homographs. Traditional English lexical order requires 
that "resume" always comes before "résumé" (which sorting using only the first level would not 
guarantee). In this case, the tradition does not explicitly specify whether "resumé" should come 
before "résumé", though this would seem logical: most English and German dictionaries only state 
that unaccented words precede the accented words. However, German dictionaries generally 
employ the German standard DIN 5007, which states rules that are more precise. 

 Here another characteristic is introduced. In French, because of the large number of multiple 
quasi-homograph groups formed of more than 2 instances, the most important dictionaries follow 
the following rule: Accents are generally not taken into account for sorting, but in case of 
homographic ties, the last difference in the word determines the correct order between two given 
words. A priority order is assigned to each type of accent. According to this, "coté" should be sorted 
after "côte" but before "côté". This is easy to implement with “backwards” tailoring: A number is 
assigned to each character of the data to be sorted, representing either a letter with an accent or a 
letter with no accent at all, but these numbers are prepended instead of being appended to the 
result being constructed. In other words, the resulting string is made starting from the last character 
of the original data and processing in a backwards direction. 

 For example: To obtain an order respecting this rule: "cote, "côte", "coté", "côté", numbers could be 
assigned indicating respectively "****", "**C*", "A***", "A*C*", where "*" means no accent, "A" 
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means acute accent, "C" circumflex accent. This scheme is sufficient to break the tie correctly at 
this second level. 

3. The third level breaks ties for quasi-homographs that differ only because uppercase and lowercase 
characters are used. 

 This time, the tradition is well established in German dictionaries, where lowercase always 
precedes uppercase in homographs, while the tradition is not well established in French 
dictionaries, which generally use only accented capital letters for common word entries. In known 
French dictionaries where upper- and lowercase letters are mixed, the capitals generally come first, 
though this is not an established and stated rule, because there are numerous exceptions. English 
has no monolithic practice for this, a bit like French. Therefore, for a Common Template it is 
advisable to use the well-established German tradition, if one wants to group the largest possible 
number of languages together without affecting others. Note that in Denmark, uppercase is 
specified to precede lowercase, a different but well-established rule. This is a second fact that 
demonstrates the need for adaptability in the model used in this International Standard. 

 For example: to have the following order: "august", "August", numbers could be assigned indicating 
respectively "LLLLLL", "ULLLLL", where "L" means lowercase and "U" uppercase. 

4. The fourth level breaks the final tie that, in general, does not correspond to any strong tradition, 
namely, the tie between quasi-homographs differing only because they contain special characters. 

 Breaking this tie is essential to ensure the predictability of ordering as well as enabling the ordering 
of strings composed only of special characters. Since the traces of special characters were 
removed from the original data to form the three first levels, simply putting them sequentially in the 
fourth order of decomposition would mean that their position would be lost. These positions are 
needed to resolve remaining ties, so the original positions of these special characters must be 
retained somehow. E.g., two quasi-homographs could each contain a common special character in 
different positions and thus be strictly different (example: "ab*cd" is different from "a*bcd" despite 
they share one and only one common special character). 

 For example: To obtain the following order: "coop", "co-op", "coop-", numbers could be assigned 
respectively according to the following pattern: "", "3-", and "5-"; where "3-" means a hyphen in 
(relative) position 3 of the original string. "5-" means a hyphen in (relative) position 5, and so on. 
Note that "coop.", "co-op.", "coop-." (adding a period at the end of each string) get the numbers 
assigned as "5.", "3-3.", and "5-1.", and are thus ordered: "co-op.", "coop.", "coop-.". 

These four levels can be composed to a four-level key, concatenating the subkeys from the most significant to 
the least significant, putting the lowest value possible as a delimiter between each subkey. The ordering result 
can then be obtained through the numeric order of the keys. 

If the assignment of weight numbers is done properly, one can eliminate some of the delimiter weights. To 
eliminate the level delimiter between the first and second level subkeys, choose the numbers for the second 
level weights be less than numbers for the first level weights. To eliminate the level delimiter between the second 
and third level subkeys, choose the numbers for the third level weights be less than numbers for the second 
level weights. 

Subkey reduction techniques have been designed to considerably shorten space requirements. As no 
implementation is required to use specific numbers for weights and reduction is not required, this issue is outside 
the scope of this International Standard. Nevertheless, it is interesting to note that implementation can be 
optimised. This has been improved over time and is easy to accomplish, some methods being more efficient 
than others. This method for string collation was described with tables in Règles du classement alphabétique en 
langue française et procédure informatisée pour le tri, Alain LaBonté, Ministère des Communications du 
Québec, 1988-08-19, ISBN 2-550-19046-7. A public-domain subkey reduction technique is described (with 
several examples) in Technique de réduction - Tris informatiques à quatre clés, Alain LaBonté, Ministère des 
Communications du Québec, 1989-06, ISBN 2-550-19965-0.  See also the paper by Rolf Gavare, Alphabetic 
ordering in a lexicological perspective, Studies in Computer-Aided Lexicology, 1988, pp. 63–102, which also 
describes a multi-level string collation technique, with subkey compression. 
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D.3 Tailoring 

For a number of languages, the Common Template Table presented in this International Standard will need to 
be adapted. Adaptation may be needed both in the table values for the four levels of subkeys, which can require 
redefining weightings for characters or introducing multi-character collating elements into the table; as well as 
changes in the potential context analysis processing necessary to achieve culturally correct results for users of 
these languages. 

To illustrate this, without discussing context analysis which is not necessary in what follows, examples of 
dictionary sequences are given here for two languages whose expected ordering rules are not covered the 
Common Template Table: 

 For traditional Spanish, where "ch" is greater than "cu" and "ña" is greater than "no": 

  cuneo < cúneo < chapeo < nodo < ñaco 

 Comparative French/English/German sort of the same strings: 

  chapeo < cuneo < cúneo < ñaco< nodo 

 

 For Danish, where "a" is less than "c", "cz" is less than "cæ" and "cø", and "aa" is equivalent to "å", 
which is greater than "z", even in cases where it is pronounced differently: 

  Alzheimer < czar < cæsium < cølibat < Aachen < Aalborg < Århus 

 Comparative French/English/German sort of the same strings: 

  Aachen < Aalborg < Alzheimer < Århus < cæsium < cølibat < czar 

Similarly, Japanese will need tailoring in order to handle the length mark properly. For many other orthographies, 
some degree of tailoring will be necessary.  
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