UTS #18: Unicode Regular Expressions Page 1 of 32

L2/07-364

\ .
LIL Technical Reports

Proposed Update Unicode Technical Standard #18

UNICODE REGULAR EXPRESSIONS

Version 1 2

Authors Mark Davis (mark.davis@google.com)

Date 2007-09-24

This Version Ighttp://Www.unicode.org/reports/tr] 8/tr18-12.html
Previous Version ?http://www.unicode.org/reports/tr] 8/tr18-11.html
Latest Version http://www.unicode.org/reports/tr18/

Revision 12

Summary

This document describes guidelines for how to adapt regular expression engines to use Unicode.

Status

éTh/s /s a draft document which may be updated, replaced, or superseded by other documents at any time.
Publication does not imply endorsement by the Unicode Consortium. This is not a stable document; it is
inappropriate to cite this document as other than a work in progressé

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the Unicode
Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this document is found in [References]. For the latest version
of the Unicode Standard see [Unicode]. For a list of current Unicode Technical Reports see [Reports]. For
more information about versions of the Unicode Standard, see [Versions].

Contents

0 Introduction

0.1 Notation

0.2 Conformance
1 Basic Unicode Support: Level 1

1.1 Hex notation

1.2 Properties
1.3 Subtraction and Intersection
1.4 Simple Word Boundaries
1
1
1

.5 Simple Loose Matches

.6 Line Boundaries

.7 Code Points
2 Extended Unicode Support: Level 2
2.1 Canonical Equivalents
2.2 Default Grapheme Clusters
2.3 Default Word Boundaries
2.4 Default Loose Matches
2.5 Name Properties

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

rick@unicode.org
Text Box
L2/07-364

UTS #18: Unicode Regular Expressions Page 2 of 32

2.6 Wildcard Properties
3 Tailored Support: Level 3
3.1 Tailored Punctuation
3.2 Tailored Grapheme Clusters
3.3 Tailored Word Boundaries
3.4 Tailored Loose Matches
3.5 Tailored Ranges
3.6 Context Matching
3.7 Incremental Matches
3
3

.8 Unicode Set Sharing
.9 Possible Match Sets
3.10 Folded Matching
3.11 Submatchers
Annex A Character Blocks
Annex B Sample Collation Character Code
Annex C Compatibility Properties
References
Acknowledgments
Modifications

0 Introduction

The following describes general guidelines for extending regular expression engines (Regex) to handle
Unicode. The following issues are involved in such extensions.

o Unicode is a large character set—regular expression engines that are only adapted to handle small
character sets will not scale well.

« Unicode encompasses a wide variety of languages which can have very different characteristics than
English or other western European text.

There are three fundamental levels of Unicode support that can be offered by regular expression engines:

« Level 1: Basic Unicode Support. At this level, the regular expression engine provides support for
Unicode characters as basic logical units. (This is independent of the actual serialization of Unicode
as UTF-8, UTF-16BE, UTF-16LE, UTF-32BE, or UTF-32LE.) This is a minimal level for useful Unicode
support. It does not account for end-user expectations for character support, but does satisfy most
low-level programmer requirements. The results of regular expression matching at this level are
independent of country or language. At this level, the user of the regular expression engine would
need to write more complicated regular expressions to do full Unicode processing.

o Level 2: Extended Unicode Support. At this level, the regular expression engine also accounts for
default grapheme clusters (what the end-user generally thinks of as a character), better detection of
word boundaries, and canonical equivalence. This is still a default level—independent of country or
language—but provides much better support for end-user expectations than the raw level 1,
without the regular-expression writer needing to know about some of the complications of Unicode
encoding structure.

o Level 3: Tailored Support. At this level, the regular expression engine also provides for tailored
treatment of characters, including country- or language-specific behavior. For example, the
characters ch can behave as a single character in Slovak or traditional Spanish. The results of a
particular regular expression reflect the end-users' expectations of what constitutes a character in
their language, and the order of the characters. However, there is a performance impact to support
at this level.

One of the most important requirements for a regular expression engine is to document clearly what

Unicode features are and are not supported. Even if higher-level support is not currently offered,
provision should be made for the syntax to be extended in the future to encompass those features.

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 3 of 32

Note: Unicode is a constantly evolving standard. new characters will be added in the future. This
means that a regular expression that tests for currency symbols, for example, has different results
in Unicode 2.0 than in Unicode 2.1, where the Euro currency symbol was added.

At any level, efficiently handling properties or conditions based on a large character set can take a lot of
memory. A common mechanism for reducing the memory requirements — while still maintaining
performance — is the two-stage table, discussed in Chapter 5 of 7The Unicode Standard [Unicode]. For
example, the Unicode character properties required in RL1.2 Properties can be stored in memory in a two-
stage table with only 7 or 8 Kbytes. Accessing those properties only takes a small amount of bit-twiddling
and two array accesses.

Note: For ease of reference, the section ordering for this document is intended to be as stable as
possible over successive versions. That may lead, in some cases, to the ordering of the sections
being less than optimal.

0.1 Notation

In order to describe regular expression syntax, an extended BNF form is used:

% Y |the sequence consisting of x then vy

x* zero or more occurrences of x

x? zero or one occurrence of x

% | Yl|either x ory

¢ %)lfor grouping

"XY2"lterminal character(s)

The following syntax for character ranges will be used in successive examples.

Note: This is only a sample syntax for the purposes of examples in this document. (Regular
expression syntax varies widely: the issues discussed here would need to be adapted to the syntax
of the particular implementation. However, it is important to have a concrete syntax to correctly
illustrate the different issues. In general, the syntax here is similar to that of Perl Regular
Expressions [Perl].) In some cases, this gives multiple syntactic constructs that provide for the same
functionality.

LIST
ITEM

"[" NEGATION? ITEM (SEP? ITEM)* "]"
CODE_POINT2
CODE_POINT2 "-" CODE POINT2 // range

CODE_POINT2 :

ESCAPE CODE POINT

= CODE_POINT
NEGATION := "~"
SEP := "" // no separator = union
:= "|" // union
ESCAPE := "\"

Code_point refers to any Unicode code point from U+0000 to U+10FFFF, although typically the only ones
of interest will be those representing characters. Whitespace is allowed between any elements, but to
simplify the presentation the many occurrences of " "* are omitted.

Code points that are syntax characters or whitespace are typically escaped. For more information see
[Syntax]. In examples, the syntax \s to mean white space is sometimes used. See also Annex C.

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 4 of 32

Compatibility Properties.

Examples:

[a=z | A-Z | 0-9
[a-z A-Z 0-9]
[a-zA-Z0-9]
[*a-z A-Z 0-9]

Match ASCII alphanumerics

Match anything but ASCII alphanumerics

(NI A= V] Match the literal characters], -, <space>

Where string offsets are used in examples, they are from zero to n (the length of the string), and indicate
positions between characters. Thus in "abcde", the substring from 2 to 4 includes the two characters "cd".

The following notation is defined for use here and in other Unicode documents:

\n |As used within regular expressions, expands to the text matching the nth parenthesized group in
regular expression. (a la Perl). Note that most engines limit n to be [1-9]; thus \456 would be the
reference to the 4th group followed by the literal '56'.

Sn

As used within replacement strings for regular expressions, expands to the text matching the nth
parenthesized group in a corresponding regular expression. The value of $0 is the entire expression.
(ala Perl)

Sxyvz|As used within regular expressions or replacement strings, expands to an assigned variable value.
The 'xyz' is of the form of an identifier. For example, given

$greek_lower = [[:greek:]&[:lowercase:]], the regular expression pattern "ab$greek_lower" is
equivalent to "ab[[:greek:]&[:lowercase:]]".

Note: Because any character could occur as a literal in a regular expression, when regular expression
syntax is embedded within other syntax it can be difficult to determine where the end of the regex
expression is. Common practice is to allow the user to choose a delimiter like '/ in /ab(c)*/. The
user can then simply choose a delimiter that is not in the particular regular expression.

0.2 Conformance

The following describes the possible ways that an implementation can claim conformance to this technical
standard.

All syntax and API presented in this document is onl/y for the purpose of illustration; there is absolutely no
requirement to follow such syntax or API. Regular expression syntax varies widely: the features discussed
here would need to be adapted to the syntax of the particular implementation. In general, the syntax in
examples is similar to that of Perl Regular Expressions [Perl], but it may not be exactly the same. While the
APl examples generally follow Java style, it is again on/y for illustration.

CO. An implementation claiming conformance to this specification at any Level shall identify the version
of this specification and the version of the Unicode Standard.

Cl. An implementation claiming conformance to Level 1 of this specification shall meet the requirements
described in the following sections:

RL1.1T Hex Notation
RL1.2 Properties

RL1.2a Compatibility Properties

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions

RL1.3 Subtraction and Intersection
RL1.4 Simple Word Boundaries
RL1.5 Simple Loose Matches
RL1.6 Line Boundaries

RL1.7 Supplementary Code Points

Page 5 of 32

C2. An implementation claiming conformance to Level 2 of this specification shall satisfy Cl, and meet

the requirements described in the following sections.

RL2.1 Canonical Equivalents
RL2.2 Default Grapheme Clusters
RL2.3 Default Word Boundaries
RL2.4 Default Loose Matches
RL2.5 Name Properties

RL2.6 Wildcard Properties

C3. An implementation claiming conformance to Level 3 of this specification shall satisfy C1 and C2, and

meet the requirements described in the following sections.

RL3.1 Tailored Punctuation

RL3.2 Tailored Grapheme Clusters
RL3.3 Tailored Word Boundaries
RL3.4 Tailored Loose Matches
RL3.5 Tailored Ranges

RL3.6 Context Matching

RL3.7 Incremental Matches

RL3.9 Possible Match Sets

RL3.10 Folded Matching

RL3.11 Submatchers

C4. An implementation claiming partial conformance to this specification shall clearly indicate which
levels are completely supported (C1-C3), plus any additional supported features from higher levels.

For example, an implementation may claim conformance to Level 1, plus Context Matching, and
Incremental Matches. Another implementation may claim conformance to Level 1, except for

Subtraction and Intersection.

Notes:

o A regular expression engine may be operating in the context of a larger system. In that case some
of the requirements may be met by the overall system. For example, the requirements of Section 2.1
Canonical Equivalents might be best met by making normalization available as a part of the larger
system, and requiring users of the system to normalize strings where desired before supplying
them to the regular-expression engine. Such usage is conformant, as long as the situation is clearly

documented.

o A conformance claim may also include capabilities added by an optional add-on, such as an
optional library module, as long as this is clearly documented.

o For backwards compatibility, some of the functionality may only be available if some special setting
is turned on. None of the conformance requirements require the functionality to be available by

default.

http://www.unicode.org/reports/tr18/tr18-12.html

10/13/2007

UTS #18: Unicode Regular Expressions Page 6 of 32

1 Basic Unicode Support: Level 1

Regular expression syntax usually allows for an expression to denote a set of single characters, such as
la-z A-Z 0-9]. Because there are a very large number of characters in the Unicode standard, simple list
expressions do not suffice.

1.1 Hex notation

The character set used by the regular expression writer may not be Unicode, or may not have the ability to
input all Unicode code points from a keyboard.

RL1.1 Hex Notation
To meet this requirement, an implementation shall supply a mechanism for specifying any Unicode
code point (from U+0000 to U+ 10FFFF).

A sample notation for listing hex Unicode characters within strings is by prefixing four hex digits with "\u"
and prefixing eight hex digits with "\U". This would provide for the following addition:

<codepoint> := <character>
<codepoint> := ESCAPE U SHORT MARK
HEX CHAR HEX CHAR HEX CHAR HEX CHAR
<codepoint> := ESCAPE U LONG MARK
HEX CHAR HEX CHAR HEX CHAR HEX CHAR
HEX CHAR HEX CHAR HEX CHAR HEX CHAR
U SHORT MARK := "u"
U LONG MARK := "U"
Examples:
[\u3040-\u309F \u30FC]|Match Hiragana characters, plus prolonged sound sign
[\u00B2 \uz082] Match superscript and subscript 2
[a \U00010450] Match "a" or U+10450 SHAVIAN LETTER PEEP
o Note: instead of [...\u3040...], an alternate syntax is [...\x{3040}...], as in Perl 5.6 and later.

« Note: more advanced regular expression engines can also offer the ability to use the Unicode
character name for readability. See 2.5 Name Properties.

1.2 Properties

Because Unicode is a large character set, a regular expression engine needs to provide for the recognition
of whole categories of characters as well as simply ranges of characters; otherwise the listing of
characters becomes impractical and error-prone. This is done by providing syntax for sets of characters
based on the Unicode character properties, and allowing them to be mixed with lists and ranges of
individual code points.

There are a large number of Unicode Character Database properties. The official data mapping Unicode
characters (and code points) to properties is the Unicode Character Database [UCD]. See also Chapter 4 in
The Unicode Standard [Unicode].

The recommended names for UCD properties and property values are in PropertyAliases.txt [Prop] and
PropertyValueAliases.txt [PropValue]. There are both abbreviated names and longer, more descriptive

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 7 of 32

names. It is strongly recommended that both names be recognized, and that loose matching of property
names be used, whereby the case distinctions, whitespace, hyphens, and underbar are ignored.

Note: it may be a useful implementation technique to load the Unicode tables that support
properties and other features on demand, to avoid unnecessary memory overhead for simple regular
expressions that do not use those properties.

Where a regular expression is expressed as much as possible in terms of higher-level semantic constructs
such as Letter, it makes it practical to work with the different alphabets and languages in Unicode. Here is
an example of a syntax addition that permits properties.

Notice that following Perl Syntax, the pis lowercase to indicate a positive match, and uppercase to
indicate a negative match.

ITEM := POSITIVE SPEC | NEGATIVE SPEC

POSITIVE SPEC := ("\p{" PROP_SPEC "} ") ("[:" PROP_SPEC ":]")
NEGATIVE SPEC := ("\P{" PROP_SPEC "}") | ("[:”" PROP_SPEC ":]")
PROP_SPEC := <binary unicode property>

PROP_SPEC := <unicode property> (":" | "=") <unicode property value>
PROP_SPEC := <script or category property value>

Examples:

(\p{L} \p{Nd}] Match all letters and decimal digits

[\p{letter} \p{decimal

number}]

\P{L} Match anything that is not a letter

\P{letter}

\p{East Asian Width:Narrow} Match anything that has the East Asian width property value of
Narrow

\p{Whitespace} Match anything that has the binary property Whitespace

Some properties are binary: they are either true or false for a given code point. In that case, only the
property name is required. Others have multiple values, so for uniqueness both the property name and
the property value need to be included. For example, A/lphabeticis both a binary property and a value of
the Line_Break enumeration, so \p{Alphabetic} would mean the binary property, and \p{Line
Break:Alphabetic} or \p{Line_Break=Alphabetic} would mean the enumerated property. There are two
exceptions to this: the properties Script and General Category commonly have the property name omitted.
Thus \p{Not_Assigned} is equivalent to \p{General_Category = Not_Assigned}, and \p{Greek} is equivalent
to \p{Script:Greek}.

RL1.2 Properties
To meet this requirement, an implementation shall provide at least a minimal list of properties,
consisting of the following.

e General_Category

o Script

o Alphabetic
o Uppercase
e Lowercase

o White_Space
e Noncharacter_Code_Point

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 8 of 32

o Default_Ignorable_Code_Point
o ANY, ASCIl, ASSIGNED
RL]1.2a Compatibility Properties
To meet this requirement, an implementation shall provide the properties listed in Annex C.

Compatibility Properties, with the property values as listed there. Such an implementation shall
document whether it is using the Standard Recommendation or POSIX-compatible properties.

Of the properties in RL1.2, only General Category and Script have multiple values; the rest are binary. An
implementation that does not support non-binary enumerated properties can essentially "flatten" the
enumerated type. Thus, for example, instead of \p{script=Iatin} the syntax could be \p{script_latin}.

General Category Property

The most basic overall character property is the General Category, which is a basic categorization of
Unicode characters into: Letters, Punctuation, Symbols, Marks, Numbers, Separators, and Other. These
property values each have a single letter abbreviation, which is the uppercase first character except for
separators, which use Z. The official data mapping Unicode characters to the General Category value is in
UnicodeData.txt [UData].

Each of these categories has different subcategories. For example, the subcategories for Letter are
uppercase, lowercase, titlecase, modifier, and other (in this case, otherincludes uncased letters such as
Chinese). By convention, the subcategory is abbreviated by the category letter (in uppercase), followed by
the first character of the subcategory in lowercase. For example, Lu stands for Uppercase Letter.

Note: Because it is recommended that the property syntax be lenient as to spaces, casing, hyphens
and underbars, any of the following should be equivalent: \p{Lu}, \p{lu}, \p{uppercase letter}, \p
{uppercase letter}, \p{Uppercase_Letter}, and \p{uppercaseletter}

The General Category property values are listed below. For more information on the meaning of these
values, see UCD.html [UDataDoc].

Abb.|Long form Abb.|Long form Abb.|Long form

L Letter S Symbol Z Separator

Lu |Uppercase Letter Sm [Math Symbol Zs |Space Separator
LI |Lowercase Letter Sc [Currency Symbol Zl |Line Separator
Lt |[Titlecase Letter Sk |Modifier Symbol Zp [Paragraph Separator
Lm [Modifier Letter So |Other Symbol C |Other

Lo |Other Letter P Punctuation Cc |Control

M |Mark Pc [Connector Punctuation Cf |Format

Mn [Non-Spacing Mark Pd [Dash Punctuation Cs |Surrogate

Mc [Spacing Combining Mark| |Ps |Open Punctuation Co |Private Use

Me |Enclosing Mark Pe |Close Punctuation Cn |Not Assigned

N |Number Pi |Initial Punctuation - Any*

Nd |Decimal Digit Number Pf |Final Punctuation - Assigned*

NI |Letter Number Po |Other Punctuation - ASCII*

No |Other Number

* The last few properties are not part of the General Category.

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 9 of 32

o Any matches all code points. This could also be captured with [\u0000-\u10FFFF], but with
Tailored Ranges off. In some regular expression languages, \p{any} may be expressed by a
period, but that may exclude newline characters.

o Assignedis equivalent to \r{cn}, and matches all assigned characters (for the target version of
Unicode). It also includes all private use characters. It is useful for avoiding confusing double
negatives. Note that Crincludes noncharacters, so Assigned excludes them.

e ASClIl is equivalent to [\u0000-\u007F], but with Tailored Ranges off.

Script Property

A regular-expression mechanism may choose to offer the ability to identify characters on the basis of
other Unicode properties besides the General Category. In particular, Unicode characters are also divided
into scripts as described in UTR #24: Script Names [ScriptDoc] (for the data file, see Scripts.txt

[ScriptData]). Using a property such as \p{Greek} allows implementations to test whether letters are Greek
or not.

Note, however, that the usage model for the script property normally requires that people construct
somewhat more complex regular expressions, because a great many characters are shared between
scripts. Documentation should point users to the description in UTR #24.

Other Properties
Other useful properties are described in Section 2 of Unicode Normalization Forms [Norm], in Section 3.13

of The Unicode Standard, Version 4.0 [Case], and in the documentation for the Unicode Character
Database [UCD].

The binary properties include:
e Bidi_Control, Join_Control/
o ASCII_Hex_Digit, Hex_Digit
o /D_Start, ID_Continue, XID_Start, XID_Continue
o islowercase, isUppercase, isTitlecase, isCasefolded, isCased
o ISNFC, IsNFD, isNFKC, isNFKD

The enumerated non-binary properties include:

Decomposition_Type
o Numeric_Type
o Fast Asian_Width
e Line_Break
The numeric properties include:

e Numeric_Value

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 10 of 32

The string properties include:

e Name

o See also 2.5 Name Properties and 2.6 Wildcard Properties.

o tolowercase, toUppercase, toTitlecase, toCasefolded
o toNFC, toNFD, toNFKC, toNFKD

e Age
o Caution: The DerivedAge data file in the UCD provides the deltas between versions, for
compactness. However, when using the property all characters included in that version are
included. Thus \p{age=3.0} includes the letter a, which was included in Unicode 1.0. To get
characters that are new in a particular version, subtract off the previous version as described
in 1.3 Subtraction and Intersection. For example: [\p{age=3.1} - \p{age=3.0}]

A full list of the available UCD properties is on UCD Properties. Of those, the following are only useful in
very restricted cases, such as in the internal implementation of normalization or case conversions:

o Composition_Exclusion, Decomposition_Mapping, Expands_On_Nx, FC_NFKC_Closure,
Nx_Quick_Check, Special_Case_Condition, ISO_Comment, Other_x

Blocks

Unicode blocks can sometimes also be a useful enumerated property. However, there are some very
significant caveats to the use of Unicode blocks for the identification of characters: see Annex A.
Character Blocks. If blocks are used, some of the names can collide with Script names, so they should be
distinguished, with syntax such as \p{Greek Block} or \p{Block=Greek}.

1.3 Subtraction and Intersection

As discussed earlier, character properties are essential with a large character set. In addition, there needs
to be a way to "subtract” characters from what is already in the list. For example, one may want to include
all non-ASCIlI letters without having to list every character in \p{letter} that is not one of those 52.

RL1.3 Subtraction and Intersection
To meet this requirement, an implementation shall supply mechanisms for both intersection and
set-difference of Unicode sets.

ITEM := "[" ITEM "]" // for grouping
SEp := "" // no separator = union
= myn // union
= mgn // intersection
= n_n // removal = set difference

Implementations may also choose to offer other set operations, such as symmetric difference: [\p{letter}
\pf{ascii}]

Note: In the sample syntax used here:

1. The symbol "-" between two characters still means a range, not a set-difference. That is:

o [\pfascii} - aeiouy] is equivalent to [\p{ascii} - [aeiouy]]

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 11 of 32

o [aeiouy & \pfascii}] is equivalent to [[aeiouy] & \p{ascii}]
2. Union binds more closely than intersection, which binds more closely than removal. Otherwise items
bind from the left. (However, such binding or precedence may vary by regular expression engine.)

For example, where A..E stand for expressions, not characters:
o [A|B|C-DIJE] is the same as [[A|B|C] - [D|E]]
= That is, it means form the union of A, B, and C, and then subtract the union of D and E.
o [A-B-C-D&E]isthe same as [[[A -B] - C] - [D & E]]
= That is, take A, then remove all Bs, then all Cs, then remove the intersection of D and E.

Examples:

[(\p{L} - QW] Match all letters but Q and W

[\p{N} - [\p{Nd} - 0-9]] Match all non-decimal numbers, plus 0-9.
[\u0000-\u007F - \P{letter}] Match all letters in the ASCIl range, by subtracting non-

letters.
[\p{Greek } - \N{GREEK SMALL LETTER ALPHA}] Match Greek letters except alpha

[\E{isiig“e? N }:P}{Decmal Digit Number} - [Match all assigned characters except for hex digits
a-f A-F a- -

(using a broad definition).

1.4 Simple Word Boundaries

Most regular expression engines allow a test for word boundaries (such as by "\b" in Perl). They generally
use a very simple mechanism for determining word boundaries: one example of that would be having
word boundaries between any pair of characters where one is a <word_character> and the other is not, or
at the start and end of a string. This is not adequate for Unicode regular expressions.

RL1.4 Simple Word Boundaries
To meet this requirement, an implementation shall extend the word boundary mechanism so that:

1. The class of <word_character> /ncludes all the Alphabetic values from the Unicode character
database, from UnicodeData.txt [UDataj, plus the U+200C ZERO WIDTH NON-JOINER and
U+200D ZERO WIDTH JOINER. See also Annex C: Compatibility Properties.

2. Nonspacing marks are never divided from their base characters, and otherwise ignored in

locating boundaries.

Level 2 provides more general support for word boundaries between arbitrary Unicode characters which

may override this behavior.

1.5 Simple Loose Matches

Most regular expression engines offer caseless matching as the only loose matching. If the engine does
offers this, then it needs to account for the large range of cased Unicode characters outside of ASCII.

RL1.5 Simple Loose Matches
To meet this requirement, if an implementation provides for case-insensitive matching, then it

shall provide at least the simple, default Unicode case-insensitive matching.

To meet this requirement, if an implementation provides for case conversions, then it shall provide

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 12 of 32

at least the simple, default Unicode case conversion.

In addition, because of the vagaries of natural language, there are situations where two different Unicode
characters have the same uppercase or lowercase. To meet this requirement, implementations must
implement these in accordance with the Unicode Standard. For example, the Greek U+03C3 "o" smal/

sigma, U+03C2 "¢" small final sigma, and U+03A3 "X" capital sigma all match.

Some caseless matches may match one character against two: for example, U+00DF "R" matches the two
characters "SS". And case matching may vary by locale. However, because many implementations are not
set up to handle this, at Level 1 only simple case matches are necessary. To correctly implement a
caseless match, see Chapter 3 of the Unicode Standard [Unicode]. The data file supporting caseless
matching is CaseFolding.txt [CaseDatal.

To meet this requirement, where an implementation also offers case conversions, these must also follow
Chapter 3 Conformance of [Unicode]. The relevant data files are SpecialCasing.txt [SpecialCasing] and
UnicodeData.txt [UData].

1.6 Line Boundaries

Most regular expression engines also allow a test for line boundaries: end-of-line or start-of-line. This
presumes that lines of text are separated by line (or paragraph) separators.

RL1.6 Line Boundaries
To meet this requirement, if an implementation provides for line-boundary testing, it shall
recognize not only CRLF, LF, CR, but also NEL (U+0085), PS (U+2029) and LS (U+2028).

Formfeed (U+000C) also normally indicates an end-of-line. For more information, see Chapter 3 of
[Unicode].

These characters should be uniformly handled in determining logical line numbers, start-of-line, end-of-
line, and arbitrary-character implementations. Logical line number is useful for compiler error messages
and the like. Regular expressions often allow for SOL and EOL patterns, which match certain boundaries.
Often there is also a "non-line-separator” arbitrary character pattern that excludes line separator
characters.

The behavior of these characters may also differ depending on whether one is in a "multiline” mode or
not. For more information, see Anchors and Other "Zero-Width Assertions”in Chapter 3 of [Friedl].

A newline sequence is defined to be any of the following:

\u000A | \u000B | \u000C | \u000D | \u0085 | \u2028 | \u2029 | \uO00D\u000A

1. Logical line number
o The line number is increased by one for each occurrence of a newline sequence.
o Note that different implementations may call the first line either line zero or line one.
2. Logical beginning of line (often "A")
o SOL is at the start of a file or string, and also immediately following any occurrence of a
newline sequence.
o There is no empty line within the sequence \u000D\u000A.

o Note that there may be a separate pattern for "beginning of text" for a multiline mode, one
which matches only at the beginning of the first line, e.g., in Perl \A.

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

UTS #18: Unicode Regular Expressions Page 13 of 32

3. Logical end of line (often "$")

o EOL at the end of a file or string, and also immediately preceding a final occurrence of a
newline sequence.

o There is no empty line within the sequence \u000D\u000a.

o SOL and EOL are not symmetric because of multiline mode: EOL can be interpreted in at least
three different ways:

a. EOL matches at the end of the string
b. EOL matches before final newline
c. EOL matches before any newline

4. Arbitrary character pattern (often ".")

o If notin "multiline mode", must not match any of the newline sequences.§

o iIf in "multiline mode", must match all of the newline sequences, and \u000D\u000a (CRLF)
should match as if it were a single character. (The recommendation that CRLF match as a
single character is, however, not required for conformance to RL1 6)

o Note that A$ (an empty line pattern) should not match the empty string within the sequence
\u000D\u000a, but should match the empty string within the reversed sequence \u000A\u000D.

It is strongly recommended that there be a regular expression meta-character, such as "\R", for matching
all line ending characters and sequences listed above (e.g. in #1). It would thus be shorthand for
([\u000A\UuO00B\u000C\u000D\u0085\u2028\u2029] | \u000D\uOOOA).

Note: For some implementations, there may be a performance impact in recognizing CRLF as a

single entity, such as with an arbitrary pattern character ("."). To account for that, an implementation

line boundary character before regex processing.

For more information on line breaking, see [LineBreak].
1.7 Code Points
A fundamental requirement is that Unicode text be interpreted semantically by code point, not code units.

RL1.7 Supplementary Code Points
To meet this requirement, an implementation shall handle the full range of Unicode code points,
including values from U+FFFF to U+ 10FFFF. In particular, where UTF-16 is used, a sequence
consisting of a leading surrogate followed by a trailing surrogate shall be handled as a single code
point in matching.

UTF-16 uses pairs of Unicode code units to express code points above FFFF]6. Surrogate pairs (or their

equivalents in other encoding forms) are be handled internally as single code point values. In particular,
[\u0000-\U0010000] will match all the following sequence of code units:

Code Point UTF-8 Code Units UTF-16 Code Units UTF-32 Code Units
7F 7F 007F 0000007F
80 c2 80 0080 00000080
TFF DF BF 07FF 000007FF
800 E0 A0 80 0800 00000800
FFFF EF BF BF FFFF O0OO0QOFFFF
10000 FO 90 80 80 D800 DCOO 00010000

http://www.unicode.org/reports/tr18/tr18-12.html 10/13/2007

