
UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

1 of 30 1/29/2008 10:31 AM

 Technical Reports

Proposed Update to

Unicode Standard Annex #29

UNICODE TEXT SEGMENTATION

Version Unicode 5.1 (draft 5)
Authors Mark Davis (mark.davis@google.com)
Date 2008-01-16
This Version http://www.unicode.org/reports/tr29/tr29-12.html
Previous Version http://www.unicode.org/reports/tr29/tr29-11.html
Latest Version http://www.unicode.org/reports/tr29/
Revision 12

Summary

This annex describes guidelines for determining default segmentation boundaries
between certain significant text elements: grapheme clusters (“user-perceived
characters”), words, and sentences. For line break boundaries, see UAX #14, “Line
Breaking Properties.”

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in
the Conformance chapter of that version of the Unicode Standard. The version
number of a UAX document corresponds to the version of the Unicode Standard of
which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode
Standard Annex #41, “Common References for Unicode Standard Annexes.” For the
latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode
Technical Reports, see [Reports]. For more information about versions of the Unicode
Standard, see [Versions].

Contents

rick@unicode.org
Text Box
L2/08-061

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

2 of 30 1/29/2008 10:31 AM

1 Introduction
1.1 Notation

2 Conformance
3 Grapheme Cluster Boundaries

3.1 Default Grapheme Cluster Boundary Specification
4 Word Boundaries

4.1 Default Word Boundary Specification
5 Sentence Boundaries

5.1 Default Sentence Boundary Specification
6 Implementation Notes

6.1 Normalization
6.2 Replacing Ignore Rules
6.3 Regular Expressions
6.4 Random Access
6.5 Tailoring

7 Testing
Acknowledgments
References
Modifications

1 Introduction

This annex describes guidelines for determining default boundaries between certain
significant text elements: grapheme clusters (“user-perceived characters”), words, and
sentences. The process of boundary determination is also called segmentation.

A string of Unicode-encoded text often needs to be broken up into text elements
programmatically. Common examples of text elements include what users think of as
characters, words, lines (more precisely, where line breaks are allowed), and sentences.
The precise determination of text elements may vary according to orthographic
conventions for a given script or language. The goal of matching user perceptions cannot
always be met exactly because the text alone does not always contain enough
information to unambiguously decide boundaries. For example, the period (U+002E FULL

STOP) is used ambiguously, sometimes for end-of-sentence purposes, sometimes for
abbreviations, and sometimes for numbers. In most cases, however, programmatic text
boundaries can match user perceptions quite closely, although sometimes the best that
can be done is not to surprise the user.

Rather than concentrate on algorithmically searching for text elements (often called
segments), a simpler and more useful computation instead detects the boundaries (or
breaks) between those text elements. The determination of those boundaries is often
critical to performance, so it is important to be able to make such a determination as
quickly as possible. (For a general discussion of text elements, see Chapter 2, General
Structure, of [Unicode].)

The default boundary determination mechanism specified in this annex provides a
straightforward and efficient way to determine some of the most significant boundaries in
text: grapheme clusters (what end users usually think of as characters), words, and
sentences. Boundaries used in line breaking (also called word wrapping) are to be found
in [LineBreak].

The sheer number of characters in the Unicode Standard, together with its
representational power, place requirements on both the specification of text element

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

3 of 30 1/29/2008 10:31 AM

boundaries and the underlying implementation. The specification needs to allow for the
designation of large sets of characters sharing the same characteristics (for example,
uppercase letters), while the implementation must provide quick access and matches to
those large sets. The mechanism also must handle special features of the Unicode
Standard, such as nonspacing marks and conjoining jamo.

The default boundary determination builds upon the uniform character representation of
the Unicode Standard, while handling the large number of characters and special
features such as nonspacing marks and conjoining jamo in an ef fective manner. As this
mechanism lends itself to a completely data-driven implementat ion, it can be tailored to
particular orthographic conventions or user preferences without recoding.

As in other Unicode algorithms, these specifications provide a logical description of the
processes: implementations can achieve the same results without using code or data
that follows these rules step-by-step. In particular, many production-grade
implementations will use a state-table approach. In that case, the performance does not
depend on the complexity or number of rules. Rather, the only feature affecting
performance is the number of characters that may match after the boundary position in a
rule that applies.

1.1 Notation

A boundary specification summarizes boundary property values used in that
specification, then lists the rules for boundary determinations in terms of those property
values. The summary is provided as a list, where each element of the list is one of the
following:

A literal character
A range of literal characters
All characters satisfying a given condition, using properties defined in the Unicode
Character Database [UCD]:

Non-Boolean property values are given as <property>=<property value>,
such as General_Category = Titlecase_Letter.
Boolean properties are given as <property>=true, such as Uppercase = true.
Other conditions are specified textually in terms of UCD properties.

Boolean combinations of the above
The two special identifiers sot and eot stand for start and end of text, respectively

For example, the following is such a list:

General_Category = Line Separator (Zl), or
General_Category = Paragraph Separator (Zp), or
General_Category = Control (Cc), or
General_Category = Format (Cf)
and not U+000D CARRIAGE RETURN (CR)<]
and not U+000A LINE FEED (LF)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

In the table assigning the boundary property values, all of the values are intended to be
disjoint except for the special value Any. In case of conflict, rows higher in the table have
precedence in terms of assigning property values to characters . Data files containing

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

4 of 30 1/29/2008 10:31 AM

explicit assignments of the property values are found in [Props].

Boundary determination is specified in terms of an ordered lis t of rules, indicating the
status of a boundary position. The rules are numbered for reference and are applied in
sequence to determine whether there is a boundary at a given offset. That is, there is an
implicit “otherwise” at the front of each rule following the f irst. The rules are processed
from top to bottom. As soon as a rule matches and produces a boundary status
(boundary or no boundary) for that offset, the process is terminated.

Each rule consists of a left side, a boundary symbol (see Table 1), and a right side.
Either of the sides can be empty. The left and right sides use the boundary property
values in regular expressions. The regular expression syntax used is a simplified version
of the format supplied in Unicode Technical Standard #18, “Unicode Regular
Expressions” [RegEx].

Table 1. Boundary Symbols

÷ Boundary (allow break here)
× No boundary (do not allow break here)
→ Treat whatever on the left side as if it were what is on the right side

An underscore (“_”) is used to indicate a space in examples.

These rules are constrained in three ways, to make implementat ions significantly simpler
and more efficient. These constraints have not been found to be limitations for natural
language use. In particular, the rules are formulated so that they can be efficiently
implemented, such as with a deterministic finite-state machine based on a small number
of property values.

Single boundaries.
Each rule has exactly one boundary position. This restriction is more a limitation on
the specification methods, because a rule with multiple boundaries could be
expressed instead as multiple rules. For example:

“a b ÷ c d ÷ e f” could be broken into two rules “a b ÷ c d e f” and “a b c d ÷ e
f”
“a b × c d × e f” could be broken into two rules “a b × c d e f” and “a b c d × e
f”

1.

Ignore degenerates.
No special provisions are made to get marginally better behavior for degenerate
cases that never occur in practice, such as an A followed by an Indic combining
mark.

2.

Limited negation.
Negation of expressions is limited to instances that resolve to a match against
single characters, such as “¬(OLetter | Upper | Lower | Sep)”.

3.

2 Conformance

There are many different ways to divide text elements corresponding to grapheme
clusters
user-perceived characters, words, and sentences, and the Unicode Standard does not
restrict the ways in which implementations can produce these divisions.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

5 of 30 1/29/2008 10:31 AM

This specification defines a default mechanism; more sophisticated implementations can
and should
tailor it for particular locales or environments. For example, reliable detection of Thai,
Lao, Chinese, or Japanese word break boundaries requires the use of dictionary lookup,
analogous to English hyphenation. An implementation therefore may need to provide
means to override or subclass the default mechanism described in this annex. Note that
tailoring can either add boundary positions or remove boundary positions, compared to
the default specified here.

Note: Locale-sensitive boundary specifications can be expressed in LDML [UTS35]
and be contained in the Common Locale Data Repository [CLDR]. The repository
already contains some tailorings, with more to follow.

To maintain canonical equivalence, all of the following specif ications are defined on NFD
text, as defined in Unicode Standard Annex #15, “Unicode Normalization Forms”
[UAX15]. A boundary exists in non-NFD text if and only if it would occur at the
corresponding position in NFD text. However, the default rules have been written to
provide equivalent results for non-NFD text and can be applied directly. Even in the case
of tailored rules, the requirement to use NFD is only a logical specification; in practice,
implementations can avoid normalization and achieve the same results. For more
information, see Section 6, Implementation Notes.

3 Grapheme Cluster Boundaries

Review Issue:
In the course of editing this section, the editorial committee realized that the UTC actions
directing the creation of what was called extended combining character sequences
introduced terminological inconsistencies. The tentative conclusion was that extended
combining character sequence should be defined in an addition of text to 5.1.0, and that
the related notion of a tailored, "extended default grapheme cluster" should be defined
here. That tentative conclusion is incorporated into the following text. We may also end
up adding prepending Thai/Lao characters to the extended default grapheme cluster.

Be aware that this may be significantly revised at the upcoming UTC meeting.

In this section, the Unicode Standard provides a determination of where the grapheme
cluster boundaries fall in a string of text. This algorithm can be tailored for specific locales
or other customizations, such as the contractions used in collation tailoring tables.

It is important to recognize that what the user thinks of as a character or basic unit of a
language may not be just a single Unicode code point. Instead, one or more Unicode
code points
may make up that basic unit of the language. To avoid ambiguity with the computer use
of the term character, this is called a user-perceived character or a grapheme cluster. For
example, “G” + acute-accent
is a grapheme cluster: it is thought of as a single character by users, yet is actually
represented by two Unicode code points.

There are many types of grapheme clusters. Examples include:

combining character sequences such as G + U+0301 (́) COMBINING ACUTE
ACCENT
language-specific digraphs such as Slovak ch

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

6 of 30 1/29/2008 10:31 AM

language-specific sequences with letter modifiers such as kw

Hangul syllables such as gag: 각
Khmer subjoined consonants such as consonant sign coeng ka: 17D2 (្) KHMER
SIGN COENG + 1780 (ក) KHMER LETTER KA
Tamil grapheme clusters such as ni: U+0BA8 (ந) TAMIL LETTER NA + U+0BBF (
◌ி) TAMIL VOWEL SIGN I

see also: Where is my Character? and NamedSequences.txt.

Grapheme cluster boundaries are important for collation, regular expressions, and
counting “character” positions within text. Word boundaries, l ine boundaries, and
sentence boundaries do not occur within a grapheme cluster: in other words, a
grapheme cluster is an atomic unit with respect to the process of determining these other
boundaries.

Historically, the Unicode Standard originally provided for grapheme clusters based on
the notion of a base character (such as A or カ) followed by zero or more nonspacing
marks. As Unicode developed, this simple definition needed to be expanded. Base
characters needed to be extended to include any sequence of Hangul Jamo characters
that form a Hangul Syllable, as defined by D118 in The Unicode Standard, such as the
sequence:

U+1100 (ᄀ) HANGUL CHOSEONG KIYEOK

U+1161 (ᅡ) HANGUL JUNGSEONG A

U+11A8 (ᆨ) HANGUL JONGSEONG KIYEOK

 One way to think of this is as a sequence of characters that form a "stack".

Similarly, nonspacing marks needed to be extended to include the Join Controls
(U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER), to work
correctly with Indic languages, plus add a few spacing combining marks to ensure
canonical equivalence. Additional cases need to be added for complete, whereby any
string of text can be divided up into a sequence of grapheme clusters. Some of these
may be degenerate cases, such as a control code, or an isolated combining mark.

All of this goes together to form the definition of what is called a Default Grapheme
Cluster (DGC).

An important tailoring of the default grapheme cluster is an extension to include all
spacing combining marks, such as the spacing (but dependent) vowel signs in Indic
scripts. For example, this includes U+093F (ि◌) DEVANAGARI VOWEL SIGN I. This
tailoring of grapheme cluster is called an extended default grapheme cluster (or XDGC).
Extended default grapheme clusters should be used in implementations in preference to
default grapheme clusters, because it provides better results for Indic scripts such as
Tamil.

Note to Reviewers:
The UTC debated whether or not to just change the definition of default grapheme
clusters to encompass what is here defined as extended default grapheme clusters, but

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

7 of 30 1/29/2008 10:31 AM

decided that it might pose a compatibility problem for implementations and standards
using the older definition. Feedback on this issue would be welcome.

A key feature of default grapheme clusters (and the tailored extended default grapheme
clusters) are that they remain unchanged across all canonically equivalent forms of the
underlying text. Thus the boundaries remain unchanged whether the text is in NFC or
NFD. This is important for searching and for regular expressions, where it provides a
very clear and easily explained basis for canonically equivalent matching by making the
fundamental unit of matching be a (extended) default grapheme cluster.

Note: Default grapheme clusters have been referred to as “locale-independent
graphemes.” The term cluster is used to emphasize that the term grapheme is used
differently in linguistics. For simplicity and to align terminology with Unicode
Technical Standard #10, “Unicode Collation Algorithm” [UTS10], the terms default
and tailored are used in preference to locale-independent and locale-dependent,
respectively.

As far as a user is concerned, the underlying representation o f text is not important, but it
is important that an editing interface present a uniform implementation of what the user
thinks of as characters. Grapheme clusters commonly behave as units in terms of mouse
selection, arrow key movement, backspacing, and so on. For example, when an
accented character is represented by a character sequence, then using the right arrow
key would skip from the start of the base character to the end of the last character of the
cluster.

However, in some cases editing a grapheme cluster element by element may be
preferable. For example, on a given system the backspace key might delete by code
point, while the delete key
may delete an entire cluster. Moreover, there is not a one-to-one relationship between
grapheme clusters and keys on a keyboard. A single key on a keyboard may correspond
to a whole grapheme cluster, a part of a grapheme clusters, or a sequence of more than
one grapheme clusters.

In those relatively rare circumstances where programmers need to supply end users with
character counts, the counts should correspond to the number o f segments delimited by
grapheme clusters. Grapheme clusters may also be used in searching and matching; for
more information, see Unicode Technical Standard #10, “Unicode Collation Algorithm”
[UTS10], and Unicode Technical Standard #18, “Unicode Regular Expressions” [UTS18].

A default grapheme cluster begins with a base character, except when a nonspacing
mark is at the start of text, or when it is preceded by a control or format character. In
place of a single base character, a Hangul syllable composed of one or more characters
may serve as the base. For the rules defining the boundaries, see Table 2. For more
information on the composition of Hangul syllables, see Chapter 3, Conformance, of
[Unicode].

Note: The boundary between default grapheme clusters can be determined by just
the two adjacent characters. See Section 7, Testing, for a chart showing the
interactions of pairs of characters.

Degenerate Cases.
These definitions are designed to be simple to implement. They need to provide an
algorithmic determination of the valid, default grapheme clusters and extended default

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

8 of 30 1/29/2008 10:31 AM

grapheme clusters . However, they do not have to cover edge cases that will not occur in
practice.
For the purpose of segmentation, they may also include degenerate cases that are not
thought of as grapheme clusters, such as an isolated control character or combining
mark.

For comparison, here is a table showing the relationship between combining character
sequences and default grapheme clusters, using regex notation. Note that given
alternates (X|Y), the first match is taken.

Table 1a. Combining character sequences and default grapheme clusters

Value Summary List of
Characters

Notes

CCS base? (Mark | ZWJ | ZWNJ
)+

A single base character is not a CCS. But a
single combining mark is a (degenerate)
CCS.

XCCS extended_base? (Mark |
ZWJ | ZWNJ)+

extended_base includes Hangul Syllables

DGC (CRLF
| (Hangul-syllable |
!Control)
 Grapheme_Extend*
| .)

Degenerate cases include any isolated
non-base characters.

XDGC (CRLF
| (Hangul-syllable |
!Control)
 (Grapheme_Extend |
Spacing_Mark)*
| .)

The definitions of default grapheme clusters and extended default grapheme clusters are
not meant to exclude the use of more sophisticated definitions of tailored grapheme
clusters where appropriate: definitions that more precisely match the user expectations
within individual languages for given processes. For example, “ch” may be considered a
grapheme cluster in Slovak, for processes such as collation; Thai never breaks between
pre-consonant vowels and consonants. The default definitions are, however, designed to
provide a much more accurate match to overall user expectations for what the user
perceives of as characters than is provided by individual Unicode code points.

Display of Grapheme Clusters. Grapheme clusters are not the same as ligatures. For
example, the grapheme cluster “ch” in Slovak is not normally a ligature and, conversely,
the ligature “fi” is not a grapheme cluster. Default grapheme clusters do not necessarily
reflect text display. For example, the sequence <f, i> may be displayed as a single glyph
on the screen, but would still be two grapheme clusters.

For more information on the matching of grapheme clusters with regular expressions, see
Unicode Techncial Standard #18, “Unicode Regular Expressions” [UTS18].

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

9 of 30 1/29/2008 10:31 AM

Note: As with the other default specifications, implementations may override (tailor)
the results to meet the requirements of different environments or particular
languages.

3.1 Default Grapheme Cluster Boundary Specification

The Grapheme_Cluster_Break property value assignments are explicitly listed in the
corresponding data file; see [Props]. The contents of this data file are summarized in
Table 2.

Table 2. Grapheme_Cluster_Break Property Values

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Control General_Category = Line Separator (Zl), or
General_Category = Paragraph Separator (Zp), or
General_Category = Control (Cc), or
General_Category = Format (Cf)
and not U+000D CARRIAGE RETURN (CR)
and not U+000A LINE FEED (LF)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Extend Grapheme_Extend = true

This includes:
General_Category = Nonspacing_Mark
General_Category = Enclosing_Mark
U+200C ZERO WIDTH NON-JOINER
U+200D ZERO WIDTH JOINER

plus a few Spacing Marks needed for canonical equivalence.

SpacingMark General_Category = Spacing Mark
and Grapheme_Cluster_Break ≠ Extend

L Hangul_Syllable_Type=L, that is:
U+1100 (ᄀ) HANGUL CHOSEONG KIYEOK

..U+1159 (ᅙ) HANGUL CHOSEONG YEORINHIEUH

U+115F (ᅟ) HANGUL CHOSEONG FILLER

V Hangul_Syllable_Type=V, that is:
U+1160 (ᅠ) HANGUL JUNGSEONG FILLER

..U+11A2 (ᆢ) HANGUL JUNGSEONG SSANGARAEA

T Hangul_Syllable_Type=T, that is:
U+11A8 (ᆨ) HANGUL JONGSEONG KIYEOK

..U+11F9 (ᇹ) HANGUL JONGSEONG YEORINHIEUH

LV Hangul_Syllable_Type=LV, that is:
U+AC00 (가) HANGUL SYLLABLE GA

U+AC1C (개) HANGUL SYLLABLE GAE

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

10 of 30 1/29/2008 10:31 AM

U+AC38 (갸) HANGUL SYLLABLE GYA
...

LVT Hangul_Syllable_Type=LVT, that is:
U+AC01 (각) HANGUL SYLLABLE GAG

U+AC02 (갂) HANGUL SYLLABLE GAGG

U+AC03 (갃) HANGUL SYLLABLE GAGS

U+AC04 (간) HANGUL SYLLABLE GAN
...

Any This is not a property value; it is used in the rules to represent
any code point

Grapheme Cluster Boundary Rules

The same rules are used for both default grapheme clusters and extended default
grapheme clusters, with one exception. The latter adds rule 9b, while the former omits it.

Break at the start and end of text.
GB1. sot ÷
GB2. ÷ eot
Do not break between a CR and LF. Otherwise, break before and after controls.
GB3. CR × LF
GB4. (Control | CR | LF) ÷
GB5. ÷ (Control | CR | LF)
Do not break Hangul syllable sequences.
GB6. L × (L | V | LV | LVT)
GB7. (LV | V) × (V | T)
GB8. (LVT | T) × T
Do not break before extending characters.
GB9. × Extend
Only for tailoring to extended default grapheme clusters: Do not break before
SpacingMarks either.
GB9a. × SpacingMark
Otherwise, break everywhere.
GB10. Any ÷ Any

4 Word Boundaries

Word boundaries are used in a number of different contexts. The most familiar ones are

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

11 of 30 1/29/2008 10:31 AM

selection (double-click mouse selection or “move to next word” control-arrow keys) and
the dialog option “Whole Word Search” for search and replace. They are also used in
database queries, to determine whether elements are within a certain number of words of
one another.
Search engines may also use word boundaries in determining matching items.

Word boundaries can also be used in intelligent cut and paste. With this feature, if the
user cuts a selection of text on word boundaries, adjacent spaces are collapsed to a
single space. For example, cutting “quick” from “The_quick_fox” would leave “The_ _fox”.
Intelligent cut and paste collapses this text to “The_fox”. Figure 1 gives an example of
word boundaries.

Figure 1. Word Boundaries

The quick (“brown”) fox can’t jump 32.3 feet, right?

There is a boundary, for example, on either side of the word brown. These are the
boundaries that users would expect, for example, if they chose Whole Word Search.
Matching brown
with Whole Word Search works because there is a boundary on ei ther side. Matching
brow does not. Matching “brown”
also works because there are boundaries between the parentheses and the quotation
marks.

Proximity tests in searching determines whether, for example, “quick” is within three
words of “fox”. That is done with the above boundaries by ignoring any words that do not
contain a letter, as in Figure 2. Thus, for proximity, “fox” is within three words of “quick”.
This same technique can be used for “get next/previous word” commands or keyboard
arrow keys. Letters are not the only characters that can be used to determine the
“significant” words; different implementations may include other types of characters such
as digits or perform other analysis of the characters.

Figure 2. Extracted Words

Thequickbrownfoxcan’tjump32.3feetright

Word boundaries are related to line boundaries, but are distinct: there are some word
break boundaries that are not line break boundaries, and vice versa. A line break
boundary is usually a word break boundary, but there are exceptions such as a word
containing a SHY (soft hyphen): it will break across lines, yet is a single word.

Note:
As with the other default specifications, implementations may override (tailor) the
results to meet the requirements of different environments or particular languages.
For some languages, it may also be necessary to have different tailored word break
rules for selection versus Whole Word Search.

In particular, the characters with the Line_Break property values of
Contingent_Break (CB), Complex_Context (SA/South East Asian), and XX
(Unknown) are assigned word boundary property values based on criteria outside
of the scope of this annex.

4.1 Default Word Boundary Specification

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

12 of 30 1/29/2008 10:31 AM

The Word_Break property value assignments are explicitly listed in the corresponding
data file; see [Props]. The contents of this data file are summarized in Table 3.

Table 3. Word_Break Property Values

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Extend Grapheme_Extend = true, or
General_Category = Spacing Mark

Format General_Category = Format (Cf)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Katakana Script = KATAKANA, or
any of the following:
U+3031 (〱) VERTICAL KANA REPEAT MARK

U+3032 (〲) VERTICAL KANA REPEAT WITH VOICED SOUND MARK

U+3033 (〳) VERTICAL KANA REPEAT MARK UPPER HALF

U+3034 (〴) VERTICAL KANA REPEAT WITH VOICED SOUND MARK UPPER HALF

U+3035 (〵) VERTICAL KANA REPEAT MARK LOWER HALF

U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK

U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

U+30A0 () KATAKANA-HIRAGANA DOUBLE HYPHEN

U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND MARK

U+FF70 (ｰ) HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK
U+FF9E (ﾞ) HALFWIDTH KATAKANA VOICED SOUND MARK
U+FF9F (ﾟ) HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

Note: Halfwidth Katakana voicing marks are now in Extend

ALetter Alphabetic = true, or
U+05F3 (׳) HEBREW PUNCTUATION GERESH

and Ideographic = false
and Word_Break ≠ Katakana
and LineBreak ≠ Complex_Context (SA)
and Script ≠ Hiragana
and Word_Break ≠ Extend
and Grapheme_Extend = false

MidNumLet U+0027 (') APOSTROPHE
U+002E (.) FULL STOP
U+2018 (') LEFT SINGLE QUOTATION MARK
U+2019 (') RIGHT SINGLE QUOTATION MARK

U+2024 (․) ONE DOT LEADER
U+FE52 (﹒) SMALL FULL STOP
U+FF07 (＇) FULLWIDTH APOSTROPHE
U+FF0E (．) FULLWIDTH FULL STOP

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

13 of 30 1/29/2008 10:31 AM

Review Issue: The above 4 characters have been tentatively
added to MidNumLet for Unicode 5.1. As of Unicode 5.0, there
were already compatibility equivalents of characters in MinNum
and MidLetter, but the lists were not complete. These
characters add compatibility equivalents to those characters
that "bridge" numeric and alphabetic words. The inclusion of
these characters only has an effect if they are surrounded by
either numbers or alphabetic letters. In particular, this change
has no effect if these characters are adjacent to ideographs.

MidLetter Any of the following:
U+0027 (') APOSTROPHE
U+00B7 (·) MIDDLE DOT
U+05F4 (״) HEBREW PUNCTUATION GERSHAYIM

U+2018 (‘) LEFT SINGLE QUOTATION MARK
U+2019 (’) RIGHT SINGLE QUOTATION MARK (curly apostrophe)
U+2027 (‧) HYPHENATION POINT
U+003A (:) COLON (used in Swedish)

U+0387 (·) GREEK ANO TELEIA
U+FE13 () PRESENTATION FORM FOR VERTICAL COLON
U+FE55 (﹕) SMALL COLON
U+FF1A (：) FULLWIDTH COLON

Review Issue: The above 4 characters have been tentatively
added to MidLetter for Unicode 5.1. As of Unicode 5.0, there
were already compatibility equivalents of characters in MinNum
and MidLetter, but the lists were not complete. The inclusion of
these characters only has an effect if they are surrounded by
alphabetic letters. In particular, this change has no effect if
these characters are adjacent to ideographs. While 0387 (·)
GREEK ANO TELEIA or 00B7 (·) MIDDLE DOT (its compatibility
equivalent) may be used as a semicolon in Greek, like COLON it
is safe to allow either one within words, since in the use as
semicolon there would not be a letter immediately following.

MidNum Line_Break = Infix_Numeric, or
any of the following:
U+066C (٬) ARABIC THOUSANDS SEPARATOR

U+FE50 (﹐) SMALL COMMA
U+FE54 (﹔) SMALL SEMICOLON
U+FF0C (，) FULLWIDTH COMMA
U+FF1B (；) FULLWIDTH SEMICOLON

Review Issue: The above 4 characters have been tentatively
added to MidNumber for Unicode 5.1. As of Unicode 5.0, there
were already compatibility equivalents of characters in MinNum
and MidLetter, but the lists were not complete. The inclusion of

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

14 of 30 1/29/2008 10:31 AM

these characters only has an effect if they are surrounded by
numbers. In particular, this change has no effect if these
characters are adjacent to ideographs.

and not U+003A (:) COLON
and not U+FE13 () PRESENTATION FORM FOR VERTICAL
COLON
and not U+002E (.) FULL STOP

Numeric Line_Break = Numeric
and not U+066C (٬) ARABIC THOUSANDS SEPARATOR

ExtendNumLet General_Category = Connector_Punctuation

Any This is not a property value; it is used in the rules to represent
any code point

Word Boundary Rules

Break at the start and end of text.
WB1. sot ÷
WB2. ÷ eot
Do not break within CRLF.
WB3. CR × LF
Ignore Format and Extend characters, except when they appear at the
beginning of a region of text.
(See Section 6.2, Replacing Ignore Rules.)
WB4. X (Extend | Format)* → X
Do not break between most letters.
WB5. ALetter × ALetter
Do not break letters across certain punctuation.
WB6. ALetter × (MidLetter | MidNumLet)

ALetter
WB7. ALetter (MidLetter | MidNumLet) × ALetter
Do not break within sequences of digits, or digits adjacent to letters
(“3a”, or “A3”).
WB8. Numeric × Numeric
WB9. ALetter × Numeric
WB10. Numeric × ALetter
Do not break within sequences, such as “3.2” or “3,456.789”.
WB11. Numeric (MidNum | MidNumLet) × Numeric

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

15 of 30 1/29/2008 10:31 AM

WB12. Numeric × (MidNum | MidNumLet)
Numeric

Do not break between Katakana.
WB13. Katakana × Katakana
Do not break from extenders.
WB13a. (ALetter | Numeric | Katakana |

ExtendNumLet)
× ExtendNumLet

WB13b. ExtendNumLet × (ALetter | Numeric |
Katakana)

Otherwise, break everywhere (including around ideographs).
WB14. Any ÷ Any

Notes:

It is not possible to provide a uniform set of rules that resolves all issues across
languages or that handles all ambiguous situations within a given language. The
goal for the specification presented in this annex is to provide a workable default;
tailored implementations can be more sophisticated.

For Thai, Lao, Khmer, Myanmar, and other scripts that do not use typically use
spaces between words, a good implementation should not just depend on the
default word boundary specification, but should use a more sophisticated
mechanism, as is also required for line breaking. Ideographic scripts such as
Japanese and Chinese are even more complex. Where Hangul text is written
without spaces, the same applies. However, in the absence of such a more
sophisticated mechanism, the rules specified in this annex at least supply a
well-defined default.

The correct interpretation of hyphens in the context of word boundaries is
challenging. It is quite common for separate words to be connected with a hyphen:
“out-of-the-box,” “under-the-table,” “Italian-American,” and so on. A significant
number are hyphenated names, such as “Smith-Hawkins.” When doing a Whole
Word Search or query, users expect to find the word within those hyphens. While
there are some cases where they are separate words (usually to resolve some
ambiguity such as “re-sort” as opposed to “resort”), it is bet ter overall to keep the
hyphen out of the default definition. Hyphens include U+002D HYPHEN-MINUS, U+2010
HYPHEN, possibly also U+058A (֊) ARMENIAN HYPHEN, and U+30A0 KATAKANA-HIRAGANA DOUBLE

HYPHEN.

Implementations may, however, build on the information supplied by word
boundaries. For example, a spell-checker would first check that each word
according to the above definition was valid, checking four words in “out-of-the-box.”
However, if that failed, it could build the compound word and check if it as a whole
was in the dictionary (even if all the components were not in the dictionary), such
as with “re-iterate.” Of course, spell-checkers for highly inf lected or agglutinative
languages will need much more sophisticated algorithms.

The use of the apostrophe is ambiguous. It is usually considered part of one word

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

16 of 30 1/29/2008 10:31 AM

(“can’t” or “aujourd’hui”) but it may also be considered as part of two words
(“l’objectif”). A further complication is the use of the same character as an
apostrophe and as a quotation mark. Therefore leading or trail ing apostrophes are
best excluded from the default definition of a word. In some languages, such as
French and Italian, tailoring to break words when the character after the apostrophe
is a vowel may yield better results in more cases. This can be done by adding a
rule WB5a.

Break between apostrophe and vowels (French, Italian).
WB5a. apostrophe ÷ vowels

and defining appropriate property values for apostrophe and vowels. Apostrophe
includes U+0027 (') APOSTROPHE and U+2019 (’) RIGHT SINGLE QUOTATION MARK (curly
apostrophe). Finally, in some transliteration schemes, apostrophe is used at the
beginning of words, requiring special tailoring.

To allow acronyms like “U.S.A.”, a tailoring may include U+002E FULL STOP in
ExtendNumLet.

Certain cases such as colons in words (c:a) are included in the default even though
they may be specific to relatively small user communities (Swedish) because they
do not occur otherwise, in normal text, and so do not cause a problem for other
languages.

For Hebrew, a tailoring may include a double quotation mark between letters,
because legacy data may contain that in place of U+05F4 (״) gershayim. This can be
done by adding double quotation mark to MidLetter. U+05F3 (׳) HEBREW PUNCTUATION

GERESH may also be included in a tailoring.

Format characters are included if they are not initial. Thus <LRM><ALetter> will
break before the <letter>, but there is no break in <ALetter><LRM><ALetter> or
<ALetter><LRM>.

Characters such as hyphens, apostrophes, quotation marks, and colon should be
taken into account when using identifiers that are intended to represent words of
one or more natural languages. See Section 2.3, Specific Character Adjustments,
of [UAX31]. Treatment of hyphens, in particular, may be different in the case of
processing identifiers than when using word break analysis for a Whole Word
Search or query, because when handling identifiers the goal wi ll be to parse
maximal units corresponding to natural language “words,” rather than to find
smaller word units within longer lexical units connected by hyphens.

Normally word breaking doesn't require breaking between different scripts.
However, adding that capability may be useful in combination with other extensions
of word segmentation. For example, in Korean the sentence "I l ive in Chicago." is
written as three segments delimited by spaces:

나는 Chicago에 산다.

According to Korean standards, the grammatical suffixes, such as '에' meaning 'in',
are considered separate words. Thus the above sentence would be broken into the
following five words:

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

17 of 30 1/29/2008 10:31 AM

나, 는, Chicago, 에, and 산다.

Separating the first two words requires a dictionary lookup, but for Latin text
("Chicago") the separation is trivial based on the script boundary.

Modifier letters (Lm) are almost all included in the ALetter c lass, by virtue of their
Alphabetic property value. Thus, by default, modifier letters do not cause word
breaks and should be included in word selections. Modifier symbols (Sk) are not in
the ALetter class and so do cause word breaks by default.
Some or all of following characters may be tailored to be in MidNum, depending on
the environment, to allow for languages that use spaces as thousands separators,
such as €1 234,56.

0020 () SPACE
00A0 () NO-BREAK SPACE
2007 ( ) FIGURE SPACE
2008 ( ) PUNCTUATION SPACE
2009 ( ) THIN SPACE
202F ( ) NARROW NO-BREAK SPACE

Open Issue:
While this tailoring would be needed for number formats such as 1 234,56, it is
unclear to the committee which of these spaces should be recommended, if any.
Including SPACE is also the problem that it may cause simple l ists of numbers {1 2
56 92} to be interpreted as a single word.

5 Sentence Boundaries

Sentence boundaries are often used for triple-click or some other method of selecting or
iterating through blocks of text that are larger than single words. They are also used to
determine whether words occur within the same sentence in database queries.

Plain text provides inadequate information for determining good sentence boundaries.
Periods can signal the end of a sentence, indicate abbreviations, or be used for decimal
points, for example. Without much more sophisticated analysis, one cannot distinguish
between the two following examples of the sequence <?, ”, space, uppercase-letter>:

He said, “Are you going?” John shook his head.

“Are you going?” John asked.

Without analyzing the text semantically, it is impossible to be certain which of these
usages is intended (and sometimes ambiguities still remain). However, in most cases a
straightforward mechanism works well.

Note:
As with the other default specifications, implementations are free to override (tailor)
the results to meet the requirements of different environments or particular
languages.

5.1 Default Sentence Boundary Specification

The Sentence_Break property value assignments are explicitly l isted in the

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

18 of 30 1/29/2008 10:31 AM

corresponding data file; see [Props]. The contents of this data file are summarized in
Table 4.

Table 4. Sentence_Break Property Values

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Extend Grapheme_Extend = true, or
General_Category = Spacing Mark

Sep Any of the following characters:
U+000A LINE FEED (LF)
U+000D CARRIAGE RETURN (CR)
U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR (LS)
U+2029 PARAGRAPH SEPARATOR (PS)

Format General_Category = Format (Cf)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Sp Whitespace = true
and Sentence_Break ≠ Sep
and Sentence_Break ≠ CR
and Sentence_Break ≠ LF
and not U+00A0 (NBSP) NO-BREAK SPACE (NBSP)

Lower Lowercase = true
and GRAPHEME EXTEND = false

Upper General_Category = Titlecase_Letter (Lt), or
Uppercase = true

OLetter Alphabetic = true, or
U+00A0 () NO-BREAK SPACE (NBSP), or
U+05F3 (׳) HEBREW PUNCTUATION GERESH
and Lower = false
and Upper = false
and Sentence_Break ≠ Extend
and Grapheme_Extend = false

Numeric Linebreak = Numeric (NU)

ATerm U+002E (.) FULL STOP
2024 (․) ONE DOT LEADER
FE52 (﹒) SMALL FULL STOP
FF0E (．) FULLWIDTH FULL STOP

Review Issue: The above 3 characters have been tentatively
added to ATerm for Unicode 5.1. As of Unicode 5.0, there
were already compatibility equivalents of characters in some
property values, but the lists were not complete.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

19 of 30 1/29/2008 10:31 AM

SContinue U+002C (,) COMMA
U+002D (-) HYPHEN-MINUS
U+003A (:) COLON
U+003B (;) SEMICOLON
U+2014 (—) EM DASH
U+3001 (、) IDEOGRAPHIC COMMA
U+FE10 () PRESENTATION FORM FOR VERTICAL COMMA
U+FE11 () PRESENTATION FORM FOR VERTICAL
IDEOGRAPHIC COMMA
U+FE13 () PRESENTATION FORM FOR VERTICAL COLON
U+FE14 () PRESENTATION FORM FOR VERTICAL SEMICOLON
U+FE31 (︱) PRESENTATION FORM FOR VERTICAL EM DASH
U+FF0C (，) FULLWIDTH COMMA
U+FF0D (－) FULLWIDTH HYPHEN-MINUS
U+FF1A (：) FULLWIDTH COLON
U+FF1B (；) FULLWIDTH SEMICOLON

Review Issue: We'd also like feedback about adding the
following characters:

U+FE50 SMALL COMMA
U+FF64 HALFWIDTH IDEOGRAPHIC COMMA
U+FE51 SMALL IDEOGRAPHIC COMMA
U+055D ARMENIAN COMMA
U+060C ARABIC COMMA
U+060D ARABIC DATE SEPARATOR
U+07F8 NKO COMMA
U+1802 MONGOLIAN COMMA
U+1808 MONGOLIAN MANCHU COMMA

U+FE55 SMALL COLON

U+2013 EN DASH
U+FE32 PRESENTATION FORM FOR VERTICAL EN DASH
U+FE58 SMALL EM DASH
U+FE63 SMALL HYPHEN-MINUS

Review Issue: And feedback about removing the following
characters, because of the canonical equivalence of U+003B
SEMICOLON to U+037E GREEK QUESTION MARK, used as a
sentence terminator.

U+003B SEMICOLON
U+FE14 PRESENTATION FORM FOR VERTICAL SEMICOLON
U+FF1B FULLWIDTH SEMICOLON

STerm STerm = true

Close General_Category = Open_Punctuation (Po), or
General_Category = Close_Punctuation (Pe), or

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

20 of 30 1/29/2008 10:31 AM

Linebreak = Quotation (QU)
and not U+05F3 (׳) HEBREW PUNCTUATION GERESH
and ATerm = false
and STerm = false

Any This is not a property value; it is used in the rules to
represent any code point

Sentence Boundary Rules

Break at the start and end of text.
SB1. sot ÷
SB2. ÷ eot
Do not break within CRLF.
SB3. CR × LF
Break after paragraph separators.
SB4. Sep | CR | LF ÷
Ignore Format and Extend characters, except when they appear at the beginning
of a region of text. (See Section 6.2, Replacing Ignore Rules.)
SB5. X (Extend | Format)* → X
Do not break after ambiguous terminators like period, if they are immediately
followed by a number or lowercase letter, if they are between uppercase letters,
or if the first following letter (optionally after certain punctuation) is lowercase,
or if they are followed by “continuation” punctuation such as comma, colon, or
semicolon. For example, a period may be an abbreviation or numeric period,
and thus may not mark the end of a sentence.
SB6. ATerm × Numeric
SB7. Upper ATerm × Upper
SB8. ATerm Close* Sp* × (¬(OLetter | Upper | Lower |

Sep | CR | LF| STerm | ATerm))*
Lower

SB8a. (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
Break after sentence terminators, but include closing punctuation, trailing
spaces, and a paragraph separator (if present). [See note below.]
SB9. (STerm | ATerm) Close* × (Close | Sp | Sep | CR | LF)
SB10. (STerm | ATerm) Close* Sp* × (Sp | Sep | CR | LF)
SB11. (STerm | ATerm) Close* Sp* (Sep |

CR | LF)?
÷

Otherwise, do not break.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

21 of 30 1/29/2008 10:31 AM

SB12. Any × Any

Notes:

Note added in proof. NBSP should have been given the property Sp (to match the
updated Word_Break). Implementations are encouraged to tailor Sp so as to
include NBSP.

Note added in proof: The context required for determining a break position should
never extend beyond the surrounding break positions on either side.
Implementations are recommended to add Sterm and ATerm to the righthand side
of Rule SB8, which then becomes:

SB8* ATerm Close* Sp* × (¬(OLetter | Upper | Lower |
Sep | STerm | ATerm))* Lower

Note added in proof: Rule SB11 has a typo. Implementations are recommended to
implement the following corrected version which adds a Sep?:

SB11* (STerm | ATerm) Close* Sp*
Sep?

÷

Rules SB6-8 are designed to forbid breaks within strings like

c.d
3.4
U.S.

... the resp. leaders are ...
... etc.)’ ‘(the ...

They permit breaks in strings like

 She said “See spot run.” John shook his head. ...
... etc. 它们指...
...理数字. 它们指...

They cannot detect cases like “...Mr. Jones...”; more sophisticated tailoring would
be required to detect such cases.

Rules SB9-11 are designed to allow breaks after sequences of the following form,
but not within them:

(STerm | ATerm) Close* Sp* (Sep | CR | LF)?

6 Implementation Notes

6.1 Normalization

The boundary specifications are stated in terms of text normal ized according to
Normalization Form NFD (see Unicode Standard Annex #15, “Unicode Normalization
Forms” [UAX15]). In practice, normalization of the input is not required. To ensure that
the same results are returned for canonically equivalent text (that is, the same boundary

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

22 of 30 1/29/2008 10:31 AM

positions will be found, although those may be represented by different offsets), the
grapheme cluster boundary specification has the following features:

There is never a break within a sequence of nonspacing marks.a.
There is never a break between a base character and subsequent nonspacing
marks.

b.

The specification also avoids certain problems by explicitly assigning the Extend property
value to certain characters, such as U+09BE (◌া) BENGALI VOWEL SIGN AA, to deal with particular
compositions.

The other default boundary specifications never break within grapheme clusters, and
they always use a consistent property value for each grapheme cluster as a whole.

6.2 Replacing Ignore Rules

An important rule for the default word and sentence specificat ions ignores Extend and
Format characters. The main purpose of this rule is to always treat a grapheme cluster
as a single character—that is, as if it were simply the first character of the cluster. Both
word and sentence specifications do not distinguish between L, V, T, LV, and LVT: thus it
does not matter whether there is a sequence of these or a sing le one. In addition, there is
a specific rule to disallow breaking within CRLF. Thus ignoring Extend is sufficient to
disallow breaking within a grapheme cluster. Format characters are also ignored by
default, because these characters are normally irrelevant to such boundaries.

The “Ignore” rule is then equivalent to making the following changes in the rules:

Replace the “Ignore” rule by the following, to disallow breaks within sequences
(except after CRLF and related characters):

Original → Modified
X (Extend | Format)*→X → (¬Sep) × (Extend | Format)

In all subsequent rules, insert (Extend | Format)* after every boundary property
value. (It is not necessary to do this after the final property, on the right side of
the break symbol.) For example:

Original → Modified
X Y × Z W → X (Extend | Format)* Y (Extend | Format)* × Z

(Extend | Format)* W
X Y × → X (Extend | Format)* Y (Extend | Format)* ×

An alternate expression that resolves to a single character is treated as a whole.
For example:

Original → Modified
(STerm | ATerm) → (STerm | ATerm) (Extend | Format)*

not → (STerm (Extend | Format)* | ATerm (Extend |
Format)*)

The Ignore rules should not be overridden by tailorings, with the possible exception of
remapping some of the Format characters to other classes.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

23 of 30 1/29/2008 10:31 AM

6.3 Regular Expressions

The preceding rules can be converted into a regular expression that will produce the
same results. The regular expression must be evaluated starting at a known boundary
(such as the start of the text) and take the longest match (except in the case of sentence
boundaries, where the shortest match needs to be used).

The conversion into a regular expression is fairly straightforward, although it takes a little
thought. For example, the Default Grapheme Cluster Boundaries of Table 1 can be
transformed into the following regular expression:

 Control
| CR LF
| (¬Control? | L+ | T+ | L* (LV? V+ | LV | LVT) T*) Extend*

Such a regular expression can also be turned into a fast deterministic finite-state
machine. For more information on Unicode Regular Expressions, see Unicode Technical
Standard #18, “Unicode Regular Expressions” [UTS18].

6.4 Random Access

A further complication is introduced by random access. When iterating through a string
from beginning to end, a regular expression or state machine works well. From each
boundary to find the next boundary is very fast. By constructing a state table for the
reverse direction from the same specification of the rules, reverse iteration is possible.

However, suppose that the user wants to iterate starting at a random point in the text, or
detect whether a random point in the text is a boundary. If the starting point does not
provide enough context to allow the correct set of rules to be applied, then one could fail
to find a valid boundary point. For example, suppose a user cl icked after the first space
after the question mark in “Are_you_there? _ _ No,_I’m_not”. On a forward iteration
searching for a sentence boundary, one would fail to find the boundary before the “N”,
because the “?” had not been seen yet.

A second set of rules to determine a “safe” starting point provides a solution. Iterate
backward with this second set of rules until a safe starting point is located, then iterate
forward from there. Iterate forward to find boundaries that were located between the safe
point and the starting point; discard these. The desired boundary is the first one that is
not less than the starting point. The safe rules must be designed so that they function
correctly no matter what the starting point is, so they have to be conservative in terms of
finding boundaries, and only find those boundaries that can be determined by a small
context (a few neighboring characters).

Figure 3. Random Access

This process would represent a significant performance cost if it had to be performed on
every search. However, this functionality can be wrapped up in an iterator object, which

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

24 of 30 1/29/2008 10:31 AM

preserves the information regarding whether it currently is at a valid boundary point. Only
if it is reset to an arbitrary location in the text is this extra backup processing performed.
The iterator may even cache local values that it has already traversed.

6.5 Tailoring

Rule-based implementation can also be combined with a code-based or table-based
tailoring mechanism. For typical state machine implementations, for example, a Unicode
character is typically passed to a mapping table that maps characters to boundary
property values. This mapping can use an efficient mechanism such as a trie. Once a
boundary property value is produced, it is passed to the state machine.

The simplest customization is to adjust the values coming out of the character mapping
table. For example, to mark the appropriate quotation marks for a given language as
having the sentence boundary property value Close, artificial property values can be
introduced for different quotation marks. A table can be applied after the main mapping
table to map those artificial character property values to the real ones. To change
languages, a different small table is substituted. The only real cost is then an extra array
lookup.

For code-based tailoring a different special range of property values can be added. The
state machine is set up so that any special property value causes the state machine to
halt and return a particular exception value. When this exception value is detected, the
higher-level process can call specialized code according to whatever the exceptional
value is. This can all be encapsulated so that it is transparent to the caller.

For example, Thai characters can be mapped to a special property value. When the state
machine halts for one of these values, then a Thai word break implementation is invoked
internally, to produce boundaries within the subsequent string of Thai characters. These
boundaries can then be cached so that subsequent calls for next or previous boundaries
merely return the cached values. Similarly Lao characters can be mapped to a different
special property value, causing a different implementation to be invoked.

7 Testing

There is no requirement that Unicode-conformant implementations implement these
default boundaries. As with the other default specifications, implementations are also free
to override (tailor) the results to meet the requirements of different environments or
particular languages. For those who do implement the default boundaries as specified in
this annex, and wish to check that that their implementation matches that specification,
three test files have been made available in [Tests29].

These tests cannot be exhaustive, because of the large number of possible
combinations; but they do provide samples that test all pairs of property values, using a
representative character for each value, plus certain other sequences.

A sample HTML file is also available for each that shows various combinations in chart
form, in [Charts29]. The header cells of the chart consist of a property value, followed by
a representative code point number. The body cells in the chart show the break status:
whether a break occurs between the row property value and the column property value. If
the browser supports tool-tips, then hovering the mouse over the code point number will
show the character name, General_Category, Line_Break, and Scr ipt property values.
Hovering over the break status will display the number of the rule responsible for that
status.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

25 of 30 1/29/2008 10:31 AM

Note: To determine a boundary it is not sufficient to just test the two adjacent
characters, except for the case of the default grapheme clusters.

The chart may be followed by some test cases. These test cases consist of various
strings with the break status between each pair of characters shown by blue lines for
breaks and by whitespace for non-breaks. Hovering over each character (with tool-tips
enabled) shows the character name and property value; hovering over the break status
shows the number of the rule responsible for that status.

Due to the way they have been mechanically processed for generation, the test rules do
not match the rules in this annex precisely. In particular:

The rules are cast into a more regex-style.1.
The rules “sot ÷”, “÷ eot”, and “÷ Any” are added mechanically and have artificial
numbers.

2.

The rules are given decimal numbers without prefix, so rules such as WB13a are
given a number using tenths, such as 13.1.

3.

Where a rule has multiple parts (lines), each one is numbered using hundredths,
such as

21.01) × $BA
21.02) × $HY
...

4.

Any “treat as” or “ignore” rules are handled as discussed in this annex, and thus
reflected in a transformation of the rules not visible in the tests.

5.

The mapping from the rule numbering in this annex to the numbering for the test rules is
summarized in Table 5.

Table 5. Numbering of Rules

Rule in This Annex Test Rule Comment
xx1 0.1 start of text
xx2 0.2 end of text
SB8a 8.1

letter styleWB13a 13.1
WB13b 13.2
GB10

999 any
WB14

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained the text of
this annex.

Thanks to Julie Allen, Asmus Freytag, Ted Hopp, Andy Heninger, Michael Kaplan, Steve
Tolkin, Ken Whistler, and Eric Mader for their feedback on this annex, including earlier
versions.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

26 of 30 1/29/2008 10:31 AM

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous versions of this annex.

Revision 12.

Fixed items that were noted in proof for 5.0.0
Draft 2:

Changed to target U5.1
Added CR, LF, Extend, Control as needed under Word and Sentence
boundaries.

Note that this caused all rules containing Sep to be changed.
Clarified use of "Any"
Updated MidLetter to include 2018
Added extended combining character sequences and made corresponding
changes.

Draft 3:
Added SContinue (sentence-continue) to improve sentence segmentation
Added MidNumLet to improve word segmentation, by allowing certain
characters to "bridge" both numbers and alphabetic words.
Added informative note and open issue on the use of space in numbers.
Made changes to property values for Word/Sentence break. In particular, the
following characters have changed properties and thus behavior. For many of
these, there are open issues in the document for which we would appreciate
feedback.

U+0027 (') APOSTROPHE
U+002E (.) FULL STOP
U+2018 (') LEFT SINGLE QUOTATION MARK
U+2019 (') RIGHT SINGLE QUOTATION MARK

U+2024 (․) ONE DOT LEADER
U+FE52 (﹒) SMALL FULL STOP
U+FF07 (＇) FULLWIDTH APOSTROPHE
U+FF0E (．) FULLWIDTH FULL STOP

U+0387 (·) GREEK ANO TELEIA
U+FE13 () PRESENTATION FORM FOR VERTICAL COLON
U+FE55 (﹕) SMALL COLON
U+FF1A (：) FULLWIDTH COLON

U+066C (،) ARABIC THOUSANDS SEPARATOR

U+FE50 (﹐) SMALL COMMA
U+FE54 (﹔) SMALL SEMICOLON

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

27 of 30 1/29/2008 10:31 AM

U+FF0C (，) FULLWIDTH COMMA
U+FF1B (；) FULLWIDTH SEMICOLON

and in Sentence break

2024 (․) ONE DOT LEADER
FE52 (﹒) SMALL FULL STOP
FF0E (．) FULLWIDTH FULL STOP

Draft 4:
Added note on breaking between scripts in 4.1 Default Word Boundary
Specification
Added note on modifier letters.
Added note on SB9-11

Draft 5:
Added open issue for SContinue
Changed some "Open Issue" titles to "Review Issue", as per editorial
committee discussion.

Draft 6:
Added review note that this section needs further direction from the
UTC.
Changed extended combining character sequence to extended default
grapheme cluster
(The former should be defined in an addition of text to 5.1.0.)
Small wording edits; notice of further editing required.

Revision 11.

Removed NBSP from ALetter.
Added note on problem with Sentence Break rules SB8 and SB11.
Changed table format, minor edits.
Cleaned up description of how to handle Ignore Rules
Added more details on the test file formats (for the html files).
Added note about identifiers and natural language.
Added reference to LDML/CLDR.
Modified GC treatment to use the equivalent (but more straightforward) use of
Extend* in Section 4, Word Boundaries, and Section 5, Sentence Boundaries. (This
is equivalent because breaks are not allowed within Hangul syl lables by the other
rules anyway.) Also unify the application of Extend* and Format*. This combines
two rules into one in each set of rules (former 3 and 4 in Word Boundaries, 4 and 5
in Sentence Boundaries).
Clarified how to apply “ignore” rules in Section 6.2, Grapheme Cluster and Format
Rules, and combined Extend and Format
Added “Do not break within CRLF” to Section 4, Word Boundaries, and Section
5, Sentence Boundaries.
Added 8a in Section 5, Sentence Boundaries, to address an edge condition and fix
a typo in #10.
Replaced “user character” by “user-perceived character”.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

28 of 30 1/29/2008 10:31 AM

Reformed ALetter in Section 4, Word Boundaries, to depend on LineBreak. Fixed
references within properties.
Removed Rule 0 of Section 4, Word Boundaries.
Clarified discussion of NFD, spelling checkers, and cleaned up language around
“engines” and “state machines” vs “implementations”.

Revision 10 being a proposed update, only changes between versions 11 and 9 are
noted here.

Revision 9.

Reworded introduction slightly, moved last half of Notation into the introduction.
Added line above each boundary property value table pointing to the data files for
the precise definition of the properties.
Added note to clarify that grapheme clusters are not broken in word or sentence
boundaries.
Clarified examples in “1. Single boundaries”.
Added pointer to UTS #10
Change the “and not” formulation for clarity.

“and not X = true”→ “and X = false”
“and not X = Y”→ “and X ≠ Y”

Revision 8.

Modified the tables so as to make the property values orthogonal.
Added Joiner/Non-Joiner.
Added additional katakana characters.
Removed MidNumLet, and added ExtendedNumLet (with corresponding changes
to the rules).
Moved the test files to the references.
Fixed up the property file references.

Revision 7.

Incorporated corrigendum for Hangul_Syllable_Type=L explanation, and adjusted
for the change in status of the Joiner characters.
Added override for CB, SA, SG, and XX in wordbreak.
Added “Any” entries, and note about precedence.
Added NBSP, and removed GRAPHEME EXTEND = true from the “alphabetics”.
Added data files with explicit property values.

Revision 6.

Changed Term
to be the 4.0.1 UCD property STerm. Note: the new property provides minor
corrections as well.

Revision 4.

Updated boilerplate.

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

29 of 30 1/29/2008 10:31 AM

Use the Grapheme_Extend property. Dropped note on Other_Grapheme_Extend,
because those changes are in UCD 4.0.0

Deleted note on relation to 3.0 text. Replace reference to 3.2 with one to 4.0.

Replaced the lists of Korean chars by reference to the Hangul_Syllable_Type, with
the lists kept as examples. Added reference to the UCD.

Simplified ALetter and OLetter, because some characters are changing from Sk to
Lm, and thus get included; other Sk are not really candidates for words.

Subtracted characters from certain classes so they wouldn’t overlap:

CR and LF from Control in Grapheme Break

Soft hyphen from MidLetter in Word Break (because it is Cf in 4.0)

ATerm, Term and GERESH from Close in Sentence Break

Added note about finite-state machine; highlighted notes about adjacent
characters.

Fixed the term “interior” (didn’t match the rules); and some character names.

Revision 3.

Removal of two open issues, resolved by UTC
Changed name of “character class” to “property value” for consistency
Other_Grapheme_Extend now includes characters for canonical closure
Minor changes to some other property values
Some additional notes on tailoring words for French, Italian, and Hebrew
Added Section 7, Testing.
Minor editing.

Revision 2.

Simplified grapheme cluster.
Handled format characters appropriately.
Removed Hiragana × Hiragana from word break, as well as prefix/posfix for
numbers (because they should not block Whole-Word Search).
Modified sentence break to catch edge conditions.
Added conformance section, with more warnings throughout that these
specifications need to be tailored for different languages/orthographic conventions.
Tightened up the specifications of the character classes.
Clarified the rule process.
Added explanations of the interaction with normalization.
Added an implementation section (incorporating the previous Random Access
section).

Copyright © 2000-2008
Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and

UAX #29: Unicode Text Segmentation http://www.unicode.org/reports/tr29/tr29-12.html

30 of 30 1/29/2008 10:31 AM

assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical
report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

