
UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

1 of 24 8/4/2008 4:27 PM

 Technical Reports

Proposed Update

Unicode Technical Report #23

THE UNICODE CHARACTER PROPERTY MODEL

Author Ken Whistler and Asmus Freytag (asmus@unicode.org)
Date 2008-07-25
This Version http://www.unicode.org/reports/tr23/tr23-8.html
Previous Version http://www.unicode.org/reports/tr23/tr23-7.html
Latest Version http://www.unicode.org/reports/tr23/
Revision 8

Summary

This document presents a conceptual model of character properties defined in the
Unicode Standard.

Status

This document is a proposed update of a previously approved Unicode Technical
Report. This document may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document
as other than a work in progress.

A Unicode Technical Report (UTR) contains informative material. Conformance
to the Unicode Standard does not imply conformance to any UTR. Other
specifications, however, are free to make normative references to a UTR.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions].

Contents

Scope1.
Overview

2.1 Origin of Character Properties
2.2 Character Behavior in Context
2.3 Relation of Character Properties to Algorithms
2.4 Code Point Properties and Abstract Character Properties
2.5 Normative Properties

2.

rick@unicode.org
Text Box
L2/08-285

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

2 of 24 8/4/2008 4:27 PM

2.6 Informative Properties
2.7 Referring to Properties
2.8 The Unicode Character Database

Definitions
3.1 Properties and Property Values
3.2 Types of Property Values
3.3 Types of Properties
3.4 Conformance Status of Properties
3.5 Classification of Properties
3.6 String Functions
3.7 Classification of String Functions
3.8 Other Definitions

3.

Conformance-related Considerations
4.1 Conformance Requirements
4.2 Algorithms and Character Properties
4.3 Overriding Properties and Higher-level Protocols

4.

Updating Character Properties and Extending the Standard
5.1 Updating Properties
5.2 Stability Guarantees
5.3 Consistency of Properties
5.4 Provisional Properties
5.5 Stabilized Properties

5.

Special Property Values
6.1 Not Applicable Value
6.2 Default Values
6.3 Preliminary Property Assignments

6.

References
Acknowledgements
Revisions

1. Scope

This report discusses of common aspects of character properties. This description
of the Unicode character property model is not intended to supersede the normative
information on properties in The Unicode Standard [Unicode], nor the existing body
of technical reports and documentation files in the Unicode Character Database that
provide detailed descriptions for particular character properties. Instead it presents
a general overview and typology of character properties and property values.

In some ways, the model of character properties presented here goes beyond the
current text of the standard, because it lays the foundation for a future clarification
of the definition of character properties in later updates to the Unicode standard.

This report specifically covers formal character properties, which are those
attributes of characters specified according to the definitions set forth in this
report.

2. Overview

At its most basic, a character property relates a character to a value. At its most
general, a property can be considered a function that maps from code points to
specific property values.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

3 of 24 8/4/2008 4:27 PM

2.1 Origin of Character Properties

The Unicode Standard views character semantics as inherent to the definition of a
character, and conformant processes are required to take these into account when
interpreting characters.

D3 Character semantics:
The semantics of a character are determined by its identity, normative properties, and behavior.

The assignment of character semantics in the Unicode Standard is based on
character behavior. Other character set standards leave it to the implementer, or to
unrelated secondary standards, to assign character semantics to characters. In
contrast, the Unicode Standard supplies a rich set of character attributes, called
properties, for each character contained in it. Many properties are specified in
relation to processes or algorithms that interpret them, in order to implement the
character behavior.

2.2 Character Behavior in Context

The interpretation of some properties (such as whether a character is a digit or not)
is largely independent of context, whereas the interpretation of others (such as
directionality) is applicable to a character sequence as a whole, rather than to the
individual characters that compose the sequence.

Other examples that require context include title casing, and the classification of
neutrals in script assignments. The line breaking rules of UAX#14 Unicode Line
Breaking PropertiesAlgorithm [LineBreak] involve character pairs and triples, and in
certain cases, longer sequences. The glyph(s) defined by a combining character
sequence are the result of contextual analysis in the display shaping engine.
Isolated character properties typically only tell part of the story.

In some cases, the expected character behavior depends on external context, such
as the type and nature of the document, the language of the text, or the cultural
expectations of the user. Properties modeling such behaviors may be specified in
separate standards, as is the case for the UTS#10 Unicode Collation Algorithm
[UCA]. Where a reasonably generic set of property values can be assigned, for
example for [LineBreak], such properties may be defined as part of [Unicode]. Such
properties and any algorithms related to them define useful default behavior, which
can be further customized or tailored to meet more specific requirements.

2.3 Relation of Character Properties to Algorithms

When modeling character behavior with computer processes, formal character
properties are assigned to achieve the expected results. Such modeling depends
heavily on the algorithms used to produce these results. In some cases, a given
character property is specified in close conjunction with a detailed specification of
an algorithm. In other cases, algorithms are implied but not specified, or there are
several algorithms that can make use of the same general character property. The
last case may require occasional implementation-specific adjustments in character
property assignment to make all algorithms work correctly. This can usually be
achieved by overriding specific properties for specific algorithms. (See also Section

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

4 of 24 8/4/2008 4:27 PM

4.3 "Overriding Properties via Higher-level Protocols")

When assigning character properties for use with a given algorithm, it may be
tempting to assign somewhat arbitrary values to some characters, as long as the
algorithm happens to produce the expected results.Proceeding in this way hides the
nature of the character and limits the re-use of character properties by related
processes. Therefore, instead of tweaking the properties to simply make a particular
algorithm easier, the Unicode Standard pays careful attention to the essential
underlying linguistic identity of the character. However, not all aspects of a
character’s identity are relevant in all circumstances, and some characters can be
used in many different ways, depending on context or circumstance. This means the
formal character properties alone are not sufficient to describe the complete range
of desirable or acceptable character behaviors.

Note: In some cases, the relevant algorithm is not defined in the Unicode
standard. For example, the algorithm that converts strings of digits into
numerical values is not defined in the Unicode Standard, but implementations
will nevertheless refer to the numeric_value property.

2.4 Code Point And Abstract Character Properties

Code point properties are properties of code points per se: in a character encoding
standard these are independent of any assignment of actual abstract characters to
those code points. In most character encoding standards, these are trivial, but in the
Unicode Standard they are not.

Examples of code point properties include:

Code point XXX is a surrogate code point.
Code point XXX is a private use code point.
Code point XXX is a reserved code point.
Code point XXX is reserved for encoding format control characters.
Code point XXX is earmarked for encoding a RTL script.
Code point XXX is a Pattern_Syntax code point.
Code point XXX is a Pattern_Whitespace code point.
Code point XXX is located on Plane 1.

These things remain true of a code point whether or not there is a particular
abstract character assigned to them, or they track status of code points as to
whether any abstract character is assigned to them or can be assigned to them, and
so on. Essentially, whenever code points are designated or ranges are reserved in
some way, by constraining what they can contain in the future, code point
properties are assigned.

Character properties are those properties that abstract characters have independent
of any consideration of their encoding.

Examples of character properties include:

G is an alphabetic character.
G is in the Latin script. G is an uppercase letter.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

5 of 24 8/4/2008 4:27 PM

G is not used in hexadecimal expressions.
G collates after F in the English alphabet.
G was putatively invented by Spurius Carvilus Ruga ca. 300.
G commonly represents the velar voiced stop in orthographies.
G is not a punctuation character.
G denotes giga in the SI system of nomenclature.
G has no diacritic.
G is a base character.
G is not a combining character.

By virtue of encoding the abstract character LATIN CAPITAL LETTER G at the code
point U+0047, this universe of character properties, some known and obvious,
others obscure or even undiscovered, are associated with that code point.

Some of those character properties aregeneric and systematic enough to be useful
or even necessary in the implementation of general text processing algorithms —
those are the ones that the Unicode Standard formalizes as properties in the
Unicode Character Database.

General text processing algorithms and the programming APIs through which they
are accessed, must be prepared to deal with any code point, even one that is
unassigned to any characters at the time the implementation was created. As a
result, they nearly always need to properly handle each and every code point for any
character property, even if they only associate a property value of 'unknown' or
'inapplicable' to unassigned or unsupported code points.

This requirement leads to the use of the unifying concept of Encoded Character
Property in the Unicode character property model. An encoded character property
combines the concept of a code point property associating ranges of code points
with default values of a property, with the concept of a character property
associating specific values to the assigned characters. This unified model correlates
well with the reality of Unicode-based implementations, which must supply some
value for each and every code point. In addition, this unified concept simplifies most
of the definitions that are built on top of it, since it is no longer necessary to
separately account for definitions applying to character properties vs. code point
properties.

2.5 Normative Properties

As specified in Chapter 3, Conformance, The Unicode Standard [Unicode] defines
both normative and informative properties.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

6 of 24 8/4/2008 4:27 PM

D33 Normative property: A Unicode character property used in the specification of the standard.

Specification that a character property is normative means that implementations which claim conformance
to a particular version of the Unicode Standard and which make use of that particular property must
follow the specifications of the standard for that property for the implementation to be conformant. For
example, the directionality property (bidirectional character type) is required for conformance whenever
rendering text that requires bidirectional layout, such as Arabic or Hebrew.

Whenever a normative process depends on a property in a specified way, that property is designated as
normative.

The fact that a given Unicode character property is normative does not mean that the values of the
property will never change for particular characters. Corrections and extensions to the standard in the
future may require minor changes to normative values, even though the Unicode Technical Committee
strives to minimize such changes...

Some of the normative Unicode algorithms depend critically on particular property values for their
behavior. Normalization, for example, defines an aspect of textual interoperability that many applications
rely on to be absolutely stable. As a result, some of the normative properties disallow any kind of
overriding by higher-level protocols. Thus the decomposition of Unicode characters is both normative and
not overridable; no higher-level protocol may override these values, because to do so would result in
non-interoperable results for the normalization of Unicode text. Other normative properties, such as case
mapping, are overridable
by higher-level protocols, because their intent is to provide a common basis for behavior. Nevertheless,
they may require tailoring for particular local cultural conventions or particular implementations.

By making a property normative and non-overridable, the Unicode Standard
guarantees that conformant implementations can rely on other conformant
implementations to interpret the character in the same way. This is most useful for
those properties where the Unicode Standard provides precise rules for the
interpretation of characters based on their properties, such as the decompositions
and their use by the Normalization forms [Normal].

Note: One trivial, but important example of conformant implementation is
runtime access to information from the Unicode Character Database [UCD]. For
normative properties exposed by a conformant implementation, conformance
requires the returned values to match the values defined by the Unicode
Consortium.

For some character properties, such as the general category, the Unicode standard
does not define what model of processing the property is intended to support, nor
does it specify the required consequences of a character being defined as "Letter
Other" as opposed to "Symbol Other", for example. In the absence of such
definition, the only effect of conformance that can be rigorously tested is whether a
conformant implementation of a character property function returns the correct
value to its caller. However, many implementations use such normative properties
for their own purposes and guaranteed access to this information helps
interoperability.

For information on which properties are normative, see the documentation file for
the Unicode Character Database [UCDDoc].

For more information on overriding normative properties, see Section 4.3 Overriding
properties via Higher-level Protocols.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

7 of 24 8/4/2008 4:27 PM

2.6 Informative Properties

D35 Informative property: A Unicode character property whose values are provided for information only.

A conformant implementation is free to use or change such values as it may require, while remaining
conformant to the standard. An implementer has the option of establishing a protocol to convey that
particular informative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informative property is
explicitly specified in the Unicode Character Database, its use is strongly recommended for
implementations to encourage comparable behavior between implementations. Note that it is possible for
an informative property in one version of the Unicode Standard to become a normative property in a
subsequent version of the standard if its use starts to acquire conformance implications in some part of the
standard. [emphasis added].

Properties may be informative for two main reasons:

The nature of the property may be unclear. In some cases, the precise set of
characters to which it applies may also not well-determined.

1.

Existing implementations show a range of behaviors for the same character,
many or all of which may be equally useful choices on the part of their
designers.

2.

In some cases, properties are too tentative to be published as informative
properties. In that case they may be explicitly designated as provisional.

2.7 Referring to Properties

The Property Aliases [Alias] and Property Value Aliases [ValueAlias] define a set of
names and abbreviations, called aliases, that are used to refer to properties and
property values. These names can be used for XML formats of data in the Unicode
Character Database [UCD], for regular-expression property tests, and other
programmatic textual descriptions of Unicode data. The names themselves are not
normative, except where they correspond to normative properties in the UCD.
However, other standards may make normative references to both normative and
informative aliases. For more information, see UTS #18: Unicode Regular
Expressions [RegEx].

There is one abbreviated name and one long name for most of the
properties.Additional aliases may be added at any time. The property value names
are not unique across properties. For example, AL means Arabic Letter for the
Bidi_Class property, and AL means Alpha_Left for the Combining_Class property,
and AL means Alphabetic for the Line_Break property. In addition, some property
names may be the same as some property value names. For example, cc means
Combining_Class property, and cc means the General_Category property value
Control. The combination of property value and property name is, however, unique.

The aliases may be translated in appropriate environments, and additional aliases
may be used. The case distinctions, whitespace, and '_' in the property names are
not normative. Unless a specific form is required in a particular application, all
forms are equivalent.

[Unicode] Section 3.1 gives a prescription for referencing properties:

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

8 of 24 8/4/2008 4:27 PM

References to Unicode Character Properties

Properties and property values have defined names and abbreviations, such as

Property: General_Category (gc)
Property Value: Uppercase_Letter (Lu)

To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category property, as defined in Unicode
3.2.0

Then cite that version of the standard, using the standard citation format that is provided for each version
of the Unicode Standard. For Unicode 3.2.0, it is:

The Unicode Consortium. The Unicode Standard, Version 3.2.0, defined by: The Unicode
Standard, Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), as amended
by the Unicode Standard Annex #27: Unicode 3.1 (http://www.unicode.org/reports/tr27/) and the
Unicode Standard Annex #28: Unicode 3.2 (http://www.unicode.org/reports/ tr28/)

2.8 The Unicode Character Database

The Unicode Character Database [UCD] is the main repository for machine-readable
character properties. It consists of a number of files containing property data along
with a documentation file explaining the organization of the database and the
format and meaning of the property data. The main file, "The Unicode Character
Database" [UCDDoc] explains the overall organization of the current version of the
UCD and tells which files contain which properties.

While the Unicode Consortium strives to minimize changes to character property
data, occasionally the character properties for already encoded characters must be
updated. When this situation occurs, the relevant data files of the Unicode Character
Database are revised. The revised data files are posted on the Unicode Web site as
an update version of the standard.

A visual documentation of character code point, character name and reference
glyph, together with excerpts from some of the character properties and augmented
by additional annotations can be found in the Character Code [Charts].

3. Definitions

The following presents a consistent set of definitions related to character properties.
Where possible, these definitions match the formal definitions in Chapter 3,
Conformance, in [Unicode]. In those cases, the original number of the definition is
given at the end in square brackets. As much as possible, the definition numbers in
this document will be retained as new definitions are added. When referring to these
definitions in other contexts, it is customary to prefix the term 'Unicode' to the
defined term to indicate the context. For example 'Character Property', becomes
'Unicode Character Property', etc.

3.1 Properties and Property Values

PD1. Property

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

9 of 24 8/4/2008 4:27 PM

A named attribute of an entity in the Unicode Standard, associated with a
defined set of values. [D19]

PD2. Code Point Property

A property of code points. [D20]

A code point property defines a set of values and a mapping from each
Unicode code point to one of the values of the set.

PD3. Abstract Character Property

A property of abstract characters. [D21]

PD4. Encoded character property.
 A property of encoded characters in the Unicode Standard. [D22]

An encoded character property defines a set of values and a mapping from
each Unicode code point to one of the values of the set.

Encoded character properties typically map a default value to any code point
not assigned to a character.

In the rest of this document, as in the Unicode Standard, the term 'character
property', or the term 'property' without qualifier includes both character and code
point properties and their combined form, the encoded character properties.

PD5. Property Value
One of the set of values associated with a property. [D23 - but there limited to
'encoded character property']

For example, the East Asian Width [EAW] property has the possible values
"Narrow", "Neutral", "Wide", "Ambiguous" and "Unassigned". See [Alias] and
[ValueAlias] for a list of labels for properties and their values respectively.

3.2 Types of Property Values

PD6. Explicit Property Value
A value for and encoded character property which is explicitly associated with a
code point in one of the datafiles of the Unicode Character Database. [D24].

PD7. Implicit Property Value

A value for an encoded character property which is given by generic rule or by
an "otherwise" clause in one of the datafiles of the Unicode Character Database.
[D25]

PD8. Default Property Value

For a given code point property, any value of that property which is assigned,
by default, to unassigned code points or to code points not explicitly specified
to have other values of that property. [D11]

Note: There may be more than one default value per property, with different
values for different ranges, as in the Bidi property.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

10 of 24 8/4/2008 4:27 PM

3.3 Types of Properties

PD9. Enumerated Property
A property with a small set of named values. [D27]

As characters are added to the Unicode Standard, the set of values may need to
be extended in the future, but enumerated properties, such as the LineBreak
property have a relatively fixed set of possible values.

PD10. Closed Enumeration

An enumerated property for which the set of values is closed and will not be
extended for future versions of the Unicode Standard. [D28]

Note: Currently, the General Category is the only closed enumeration, other
than Boolean properties.

PD11. Boolean Property

A closed enumerated property whose set of values is limited to 'true' and
'false'. [D29]

The presence or absence of the property is the essential information.

A Boolean property is sometimes called a 'single valued' property since 'false'
often has the meaning of 'this property does not apply'.

PD12. Numeric Property

A numeric property is a property whose value is a number that can take on any
integer, or real value. [D30]

An example is the numeric_value property. There is no implied limit to the
number of possible distinct values for the property, except the limitations on
representing integers or real numbers in computers.

PD13. String-Valued Property

A property whose value is a string. [D31]

The Canonical Decomposition property is a string-valued property.

PD14. Catalog property
A property that is an enumerated property, typically unrelated to an algorithm,
that may be extended in each successive version of the Unicode Standard.
[D32]

Examples are age and block properties. Additional values for both may be
added each time a new version of the Standard adds new characters or blocks.

PD15. Miscellaneous property

A property whose values are not Boolean, enumerated, numeric, string or
catalog values.

The Unicode character name property is a miscellaneous property.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

11 of 24 8/4/2008 4:27 PM

3.4 Conformance Status of Properties

PD16. Normative Property
A [Unicode character] property used in the specification of the Unicode
standard. [D33]

Note: A normative process that depends on a property in a normative and
testable way, is usually sufficient reason to designate a property as normative.
For example, the interpretation of the bidirectional class is precisely defined in
[Bidi].

If a process does not interpret a given character, it may remain unaware of its
properties. However, it is recommended that processes use carefully-chosen
default values for characters that they do not handle.

PD17. Overridable Property

A normative property whose values may be overridden by conformant
higher-level protocols. [D34]

See Section 4.3 Overriding properties via Higher-level Protocols.

PD18. Informative Property

A [Unicode character] property whose values are provided for information only.
[D35]

Note: Informative properties capture expert implementation experience and
their use is strongly recommended by the Consortium, but there are no
requirements on implementations of the Unicode Standard.

PD19. Provisional Property

A [Unicode character] property whose values are unapproved and tentative, and
which may be incomplete or otherwise not in a usable state. [D36]

Provisional properties may be removed from future versions of the standard,
without prior notice.

3.5 Classification of Properties

The following definitions do not define character or code point properties, but
properties of such properties. In the definitions in this section, the term 'code point'
is used inclusively to mean code point for a code point property and character for a
character property, respectively.

PD20. Context-dependent Property
A property that applies to a code point in the context of a longer code point
sequence. [D37]

For example, the lower case mapping of Greek sigma depends on the
surrounding characters. See also PD33: Context-dependent String Function.

PD21. Context-independent Property

A property that is not context-dependent: it applies to a code point in

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

12 of 24 8/4/2008 4:27 PM

isolation. [D38]

PD22. Stable Transformation

A transformation T on a property P is stable with respect to an algorithm A, if
the result of the algorithm on the transformed property A(T(P)) is the same as
the original result A(P) for all code points. [D39]

PD23. Stable Property

A property is stable with respect to a particular algorithm or process, as long
as possible changes in the assignment of property values are restricted in such
a manner that the result of the algorithm on the property continues to be the
same as the original result for all previously assigned code points. [D40]

For example, while the absolute values of the canonical combining classes are
not guaranteed to be the same between versions of the Unicode Standard, their
relative values will be maintained. As a result, the Canonical Combining Class,
while not immutable, is a stable property with respect to the Normalization
Forms as defined in [Normal].

Note: As new characters are assigned to previously unassigned code points,
replacing any default values for these code points with actual property values
must maintain stability.

PD24. Fixed Property

A property whose values, (other than the default value) once associated with a
character or other designated code point, are fixed and will not be changed,
except to correct obvious or clerical errors. [D41].

For a fixed property, any default values can be replaced without restriction by
actual property values, as new characters are assigned to previously
unassigned code points. Examples of fixed properties are Age or Hangul
Syllable Type.

Note: Designating a property as fixed does not imply stability or immutability,
see below. While the age of a character, for example, is established by the
version of the Unicode Standard at which it was added, errors in the published
listing of the property value could be corrected. For some other properties,
there are explicit stability guarantees that prohibit the correction even of such
errors. See Section 5.2 Stability Guarantees.

PD25. Immutable Property

A fixed property that is also subject to a stability guarantee preventing any
change in the published listing of property values other than assignment of
new values to formerly unassigned code points. [D42]

An immutable property is trivially stable with respect to all context-free
algorithms. An example of an immutable property is the Unicode character
name.

Note: Because character names are values of an immutable property,
misspellings and incorrect names will never be corrected. Any errata will be

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

13 of 24 8/4/2008 4:27 PM

noted in a comment in the names list, and, where needed, an informative
character name alias will be provided.

PD26. Stabilized Property

A property which is neither extended to new characters, nor maintained in any
other manner, but which is retained in the Unicode Character Database. [D43]

A stabilized property is also a fixed property.

PD27. Deprecated Property

A property whose use by implementations is discouraged. [D44]

One of the reasons a property may be deprecated is because a different
combination of properties better expresses the intended semantics.

Where sufficiently widespread legacy support exists for the deprecated
property, not all implementation may be able to discontinue the use of the
deprecated property. In such a case, a deprecated property may be extended to
new characters, so as to maintain it in a usable and consistent state.

PD28. Simple Property

A property whose values are specified directly in the Unicode Character
Database (or elsewhere in the Unicode Standard) and whose values cannot be
derived from other simple properties. [D45]

PD29. Derived Property

A property whose values are algorithmically derived from some combination of
simple properties. [D46]

PD30. Property Alias
A unique identifier for a particular [Unicode character] property. [D47]

The set of property aliases forms a namespace.

PD31. Property Value Alias
A unique identifier for a particular enumerated value for a particular [Unicode
character] property. [D48]

The set of property value aliases for each property form a separate namespace.
Values from different properties may have non-unique names. As a trivial
example, the property value aliases for all Boolean properties are 'true' and
'false'.

3.6 String Functions

None of the following definitions is found in the Unicode Standard at this point,
however, they are useful in the context of discussing Unicode algorithms and their
relation to properties.

PD32. String

An ordered sequence of zero or more code units.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

14 of 24 8/4/2008 4:27 PM

This is related to code unit sequence [D78], but also allows the empty string. In
addition, unlike the definition of Unicode Strings [D80], a string as defined
here is not limited to Unicode code units. Character mappings are common
examples of properties for which the values are strings.

PD33. Offset

An offset into a string is a number from 0 to n where n is the length of the
string in code units, and indicates a position that is logically adjacent between
Unicode code units. An offset of 0 indicates the position before the first code
unit in the string, and an offset of n indicates the position after the last code
unit in the string.

PD34. Code Point Aligned Offset
An offset into a string that is aligned to a code point boundary.

PD35. String Function

A string function is a function whose input is a string S and two offsets a and
b, with a ≤ b.

PD36. Text Boundary Property

A string function whose value is defined for a particular offset.

Text boundary functions are also called segmentation functions, because they
are commonly used to return segments of text between boundaries. A simple
text boundary function, like IsBreak(S,a,b) minimally returns a Boolean value.
However, other text boundary functions may return additional information. For
example, a word-selection boundary function may return whether the previous
segment contained a letter, or a linebreak function may return information on
the relative priority of the break.

3.7 Classification of String Functions

PD37. Context-independent String Function
Given a string S, and offsets a and b, a context-independent string function is
any string function F for which F(S,a,b) is independent of the content of S
before a and after b.

In other words, the input to a context-independent function is fully defined by
the code points between the given offsets.

PD38. Context-dependent String Function

A context-dependent string function is a string function that is not
context-independent.

In other words, the input to a context-dependent string function requires
additional information, such as information about the code points surrounding
the code point range defined by the offsets as well as the code points in the
range. Any text boundary function of the form B (S,x,x) is by definition context
dependent.

PD39. String Transform

A string-valued string function.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

15 of 24 8/4/2008 4:27 PM

PD40. Idempotent String Function (Folding)

A string transform F, with the property that repeated applications of the same
function F produce the same output: F(F(S)) = F(S) for all input strings S.

Such a string function is also called a folding.

A folding establishes an equivalence relation, whereby X ≡ Y if and only if F(X)
= F(Y). This equivalence relation partitions the set of all strings into the set of
equivalence classes for the relation. Conversely, any partition of strings can be
used to generate a folding, by choosing one element of each partition to be the
"target member" that the members of that partition map to.

The notation toX(s) may be used for the folding, and isX(s) for the
corresponding binary function, defined such that isX(s) if and only if toX(s) = s.
For example, toNFC() is the folding that converts to NFC format, while isNFC()
is the test for whether a string is in that format.

A well known example of a folding function is case folding. For case folding,
the equivalence class consists of all case variations, including upper, lower,
title case and mixed case. In the case of Unicode case folding, the target
member is chosen to be the lowercase character.

Folding functions may be context dependent. Normalization is an example of a
context dependent folding.

PD41. Code Point Count Preserving String Function

A string function whose result is a string containing the same number of code
points as its input, is a count preserving string function.

PD42. Buffer Length Preserving String Function

A string function whose result is a string containing the same number of code
units as its input, is a buffer length preserving string function.

3.8 Other Definitions

PD43. Higher-level Protocol
Any agreement on the interpretation of Unicode characters that extends
beyond the scope of this standard. [D16]

4. Conformance-related Considerations

This technical report does not define conformance requirements, but the following
subsections discuss and summarize the conformance requirements related to
character properties stated in the Unicode Standard.

4.1 Conformance Requirements

In Chapter 3, Conformance, The Unicode Standard [Unicode] states that "A process
shall interpret a coded character representation according to the character
semantics established by this standard, if that process does interpret that coded
character representation." The semantics of a character are established by taking its

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

16 of 24 8/4/2008 4:27 PM

coded representation, character name and representative glyph in context and are
further defined by its normative properties and behavior. Neither character name
nor representative glyphs can be relied upon absolutely; a character may have a
broader range of use than the most literal interpretation of its character name, and
the representative glyph is only indicative of one of a range of typical glyphs
representing the same character.

4.2 Algorithms and Character Properties

Unicode algorithms are specified as an idealized series of steps (rules) performed on
an input of character codes and their associated properties. [Unicode] states:

An implementation claiming conformance to a Unicode algorithm need only guarantee that it
produces the same results as those specified in the logical description of the process; it is not
required to follow the actual described procedure in detail. This allows room for alternative
strategies and optimizations in implementation.

As long as the same results are achieved, the implementation is also not required to
use the actual properties published in the [UCD]. Overriding a property value
therefore does not necessarily imply an actual change in property assignments,
merely that the conformant implementation of an algorithm now produces the same
results as if the property values had been changed in the description of the ideal
algorithm.

4.3 Overriding Properties via Higher-level Protocols

In discussing character semantics, the Unicode Standard [Unicode] makes this
statement about overriding properties and character behavior:

Some normative behavior is default behavior; this behavior can be overridden by higher-level protocols.
However, in the absence of such protocols, the behavior must be observed so as to follow the character
semantics.

Overrides by a higher-level protocol can conceptually take many forms, including,
but not limited to:

providing artificial context for an algorithm that defines a context-dependent
string function
applying the algorithm on a substring
emulating the effect of format control characters in markup
reassigning a different property value to a character during processing or
rendering
changing the result of a string function for particular inputs

Where overrides involve normative properties, specific restrictions apply, for
example:

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

17 of 24 8/4/2008 4:27 PM

• The character combination properties and the canonical ordering behavior cannot be overridden by
higher-level protocols.

For additional examples see section 4.3 in UAX #9: The Unicode Bidirectional
Algorithm [Bidi]. There are some normative properties that are fully overridable, for
example General Category.

On the other hand, any and all informative properties may be overridden. However,
if doing so changes the result of a Unicode Algorithm, any implementation wishing
to conform to that algorithm must indicate that overrides have been applied.

5. Updating Properties and Extending the Standard

5.1 Updating Properties

Updates to properties the Unicode Character Database can be required for three
reasons:

To cover new characters added to the Unicode Standard1.
To add new properties2.
To change the assigned values for a property for some characters3.

While the Unicode Consortium endeavors to keep the values of all character
properties as stable as possible, some circumstances may arise that require
changing them. Changing a character's property assignment may impact existing
implementations and is therefore done judiciously and with great care, only when
there is no better alternative.

In particular, as Unicode encodes less well-documented scripts, such as those for
minority languages, the exact character properties and behavior may not be known
when the script is first encoded. The properties for such characters are expected to
be changed as information becomes available.

As implementation experience grows, it may become necessary to readjust property
values. As much as possible, such readjustments are compatible with established
practice. Occasionally, a character property is changed to prevent incorrect
generalizations of a character's use based on its nominal property values. For
example, U+200B ZERO WIDTH SPACE was originally classified as a space character (General
Category=Zs), but is now classified as a Formal Control (gc=Cf) to distinguish this
line break control from space characters.

In other cases, there may have been unintentional mistakes in the original
information that require corrections.

The [UTC] carefully weighs the costs of a change against the benefit of the
correction. In addition, all updates to properties are subject to the stability
guarantees described in the next section.

5.2 Stability Guarantees

Unicode guarantees the stability of character assignments; that is, the identity of a
character encoded at a given location will remain the same. Once a character is

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

18 of 24 8/4/2008 4:27 PM

encoded, its properties may still be changed, but not in such a way as to change the
fundamental identity of the character.

For example, the representative glyph for U+0061 "A" could not be changed to "B";
the general category for U+0061 "A" could not be changed to Ll (lowercase letter);
and the decomposition mapping for U+00C1 (Á) could not be changed to <U+0042,
U+0301> (B, ´).

In addition, for some properties, one or more of the following aspects are
guaranteed to be invariant:

 stability of assignment
 stability of result when applying the property
 stability of set of values for a property
 stability of relation to another property
 stability of file formats

For the most up-to-date specification of all stability guarantees in effect see the
Unicode Character Encoding Stability Policy [Stability]. Note that the status of a
property as normative does not imply a stability guarantee.

5.2.1 Stability of Assignment

Stability of assignment is the characteristic of an immutable property. For example,
once a character is encoded, its code point and name are immutable properties. An
immutable properties allows software and documents to refer to its values without
needing to track future updates to the Standard. One side effect of an immutable
property is that errors in property values cannot be fixed. For example, mistakes in
naming are annotated in the Unicode character names list in a note or by using an
alias, but the formal name remains unchanged, even in cases of clear-cut
typographical errors.

Because Code_Point is an immutable property, if a character is ever found to be
unnecessary, or a mistaken duplicate of an existing character, it will not be
removed. Instead, it can be given an additional property, deprecated, and its use
strongly discouraged. However, the interpretation of all existing documents
containing the character remains the same.

5.2.2 Stability of Result when Applying the Property

Stability of result is the characteristic of a stable property. For example, once a
character is encoded, its canonical combining class and decomposition (canonical or
compatibility) are stable with respect to normalization. Stability with respect to
normalization is defined in such a way that if a string contains only characters from
a given version of the Unicode Standard (say Unicode 3.2), and it is put into a
normalized form in accordance with that version of Unicode, then it will be in
normalized form when normalized according to any future version of Unicode.

However, unlike character code and character name, some properties that are
guaranteed to be stable may be corrected in exceptional circumstances that are
clearly defined by the Unicode Character Encoding Stability Policy [Stability]. In
addition to other requirements, the correction must be of an obvious mistake, such

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

19 of 24 8/4/2008 4:27 PM

as a typographical error, and any alternative would violate the stability of the
identity of the character in question. The obviates the need for encoding duplicate
characters simply to correct clerical or other clear-cut errors in property
assignments.

5.2.3 Stability of Set of Values for a Property

For most properties, additional property values may be created and assigned to both
new and existing characters. For example additional line breaking classes will be
assigned if characters are discovered to require line breaking behavior that cannot
be expressed with the existing set of classes. For other properties the set of values
is guaranteed to be fixed, or their range is limited. For example, the set of values for
the General Category or Bidirectional Class is fixed, while Combining classes are
limited to the values 0 to 255.
5.2.4 Stability of Relation to Another Property

In many cases, once a character has a certain value for one property, it is likely to
have a particular value for a given other property. These relations are used by the
Unicode Consortium in assigning properties to new characters, and in evaluating
properties for internal consistency. In some cases, such dependencies are explicitly
guaranteed and stable.

For example, all characters other than those of General Category M* have the
combining class 0.

5.2.5 Stability of File Formats

In principle, the way the property information is presented in the Unicode Character
Database is independent of the way this information is defined. However, as the
Unicode Standard gets updated, it becomes easier for implementations to track
updates if file formats remain unchanged and other aspects of the way the data are
organized can remain stable. For the majority of properties, such stability is an
informal goal of the development process, but in a few cases, some aspects of the
data organization are covered by formal stability guarantees.

For example, Canonical and Compatibility mappings are always in canonical order,
and the resulting recursive decomposition will also be in canonical order. Canonical
mappings are also always limited either to a single value or to a pair. The second
character in the pair cannot itself have a canonical mapping.

5.3 Consistency of Properties

In an ideal world, all character properties would be perfectly self-consistent, and
related properties would be consistent with each other over the entire range of code
points. However, The Unicode Standard is the product of many compromises. It has
to strike a balance between uniformity of treatment for similar characters, and
compatibility with existing practice for characters inherited from legacy encodings.
Because of this balancing act, one can expect a certain number of anomalies in
character properties.

Sometimes it may be advantageous for an implementation to purposefully override
some of the anomalous property values, increasing the efficiency and uniformity of

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

20 of 24 8/4/2008 4:27 PM

algorithms—as long as the results they produce do not conflict with those specified
by the normative properties of this standard. See Chapter 4, Character Properties in
[Unicode] for some examples.

Property values assigned to new characters added to the Unicode Standard are
generally defined so that related characters are given consistent values, unless
deliberate exceptions are needed. For some properties, definite links between that
property and one or more other properties are defined. For example, for the
LineBreak property, many line break classes are defined in relation to General
Category values.

There are some properties that are interrelated or that are derived from a
combination of other properties, with or without a list of explicit exceptions. When
properties are assigned to newly assigned characters, or when properties are
adjusted, it is necessary to take into account all existing relevant properties and any
derivation relations.

5.4 Provisional Properties

Some of the information provided about characters in the Unicode Character
Database constitutes provisional data. Provisional property data may capture partial
or preliminary information. Such data may contain errors or omissions, or otherwise
not be ready for systematic use; however, provisional property data are included in
the data files for distribution partly to encourage review and improvement of the
information. For example, a number of the tags in the Unihan database provide
provisional property values of various sorts about Han characters.

5.5 Stabilized Properties

Occasionally, as the standard matures, and new characters, properties or algorithms
are defined, the information presented in an existing property may be better
represented via other properties, or it may no longer make sense to extend the
property to new characters. Such a property may then no longer be maintained in
future versions of the Unicode Standard. In that case, it will be designated as
stabilized. For backwards compatibility, a stabilized property will remain part of the
Unicode Character database, but will not be updated or corrected.

An example of a stabilized property is Hyphen.

6. Special Property Values

6.1 Not Applicable Value

Limited properties apply to only a subset of characters. Where these properties are
implemented as a partition of the Unicode code space, the characters to which the
property does not apply are given a special value denoting that the property does
not apply. The "not applicable" value may be the explicit value "N/A" or, for some
properties, take other values such as "XX".

6.2 Default Values

Implementations often need specific properties for all code points, including those
that are unassigned. To meet this need, the Unicode standard assigns default

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

21 of 24 8/4/2008 4:27 PM

properties to ranges of unassigned code points.

All implementations of the Unicode Standard should endeavor to handle additions to
the character repertoire gracefully. In some cases this may require that an
implementation attempts to 'anticipate' likely property values for code points for
which characters have not yet been defined, but where surrounding characters exist
that make it probable that similar characters will be assigned to the code point in
question.

There are three strategies:

Rely on the recommendation from the Unicode Consortium. For example, for
the Bidirectional Class, the Unicode Consortium has published recommended
default values for all code points. For details of these recommendations for
various properties see [UCDDoc].

1.

Treat the unassigned areas of a given character block as if they had property
values common to other characters of the block. A variation of this scheme
bridges small gaps in the allocation inside a block by using the property values
for the characters bracketing the hole.

2.

Give an unassigned code point an implementation defined default property
that will result in graceful if not completely correct behavior, if an encoded
characters is later assigned at that code point.

3.

Each of these strategies has advantages and drawbacks, and none can guarantee
that the behavior of an implementation that is conformant to a prior version of the
Unicode Standard will support characters added in a later version of the Unicode
Standard in precisely the same way as an implementation that is conformant to the
later version. The most that can be hoped for, is that the earlier implementation will
behave more gracefully in such circumstances.

In principle, default values are temporary: they are superseded by final assignments
once characters are assigned to a given code point.

For noncharacter code points, a character property function would return the same
value as the default value for unassigned characters.

6.3 Preliminary Property Assignments

Sometimes, a determination and assignment of property values can be made, but
the information on which it was based may be incomplete or preliminary. In such
cases, the property value may be changed when better information becomes
available. Currently, there is no machine readable way to provide information about
the confidence of a property assignment; however, the text of the Standard or a
Technical Report defining the property may provide general indications of
preliminary status of property assignments where they are known.

This is distinct from provisional properties, where the entire property is preliminary.

References

[Alias] Property Aliases
http://www.unicode.org/unicode/Public/UNIDATA/PropertyAliases.txt

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

22 of 24 8/4/2008 4:27 PM

[Bidi] Unicode Standard Annex #9: TheUnicode Bidirectional Algorithm
http://www.unicode.org/reports/tr9/

[Charts] The online code charts can be found at
http://www.unicode.org/charts/ An index to characters names with
links to the corresponding chart is found at
http://www.unicode.org/charts/charindex.html

[EAW] Unicode Standard Annex #11: East Asian Width
http://www.unicode.org/reports/tr11/

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[FAQ] Unicode Frequently Asked Questions
http://www.unicode.org/faq/
For answers to common questions on technical issues.

[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other documents.

[LineBreak] Unicode Standard Annex #14: Unicode Line Breaking
PropertiesAlgorithm
http://www.unicode.org/reports/tr14/

[Normal] Unicode Technical Report #15: Unicode Normalization Forms
http://www.unicode.org/unicode/reports/tr15/

[RegEx] Unicode Technical Standard #18: Unicode Regular Expressions
http://www.unicode.org/unicode/reports/tr18/

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for technical
reports, and for a list of technical reports.

[Stability] Unicode Character Encoding Stability Policy
http://www.unicode.org/policies/stability_policy.html

[UCA] Unicode Technical Standard #10: Unicode Collation Algorithm
http://www.unicode.org/reports/tr10/

[UCD] About the Unicode Character Database.
http://www.unicode.org/ucd/
For an overview of the Unicode Character Database

[UCDDoc] Unicode Character Database.
http://www.unicode.org/Public/UNIDATA/UCD.html
http://www.unicode.org/reports/tr44/
For documentation of the contents of the Unicode Character Database
and its associated files

[Unicode] The Unicode Standard
For the latest version see: http://www.unicode.org/versions/latest/.
For the last major version see: The Unicode Consortium. The Unicode
Standard, Version 5.0. (Boston, MA, Addison-Wesley, 2003.
0-321-48091-0).

[Unihan] The Unihan Database.
For character information about CJK ideographs; for more information
about the database see [UCDDoc].
The database itself is a available online at
http://www.unicode.org/Public/UNIDATA/Unihan.zip (5 MB)

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

23 of 24 8/4/2008 4:27 PM

[UTC] The Unicode Technical Committee, for more information see
http://www.unicode.org/consortium/utc.html

[ValueAlias] Property Value Aliases
http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt

[Versions] Versions of the Unicode Standard
http://www.unicode.org/standard/versions/
For information on version numbering, and citing and referencing the
Unicode Standard, the Unicode Character Database, and Unicode
Technical Reports.

Acknowledgements

The authors wishes to thank Ken Whistler and Mark Davis for their his extensive
contributions and insightful comments, and Dr. Julie Allen for extensive
copy-editing.

Revisions

Changes from previous revisions

8
Added a note on constraints on new property additions. Updated titles of some
references. Added Ken Whistler as author. Other minor edits.

7
Removed definition PD30 (Limited Property). Updated all definitions that correspond
to definitions in Unicode 5.0.0. Updated all definition numbers according to 5.0.0.
New section 2.4. Additional updates to the text and some other definitions.

[Revision 6, being a proposed update, is superseded and no longer publicly
available. Only modifications between revisions 5 and 7 are tracked here.]

5
Added a definition of idempotent string function, updated the definition or of
folding function, stable property, and fixed property, added or revised the notes and
examples for several definitions, clarified the inclusive use of 'code point' and
'character property' and made minor text improvements in several sections.

4
Added several definitions: limited property, miscellaneous property, removed
definitions of stable transform, revised definitions of fixed and immutable property,
enumerated, numeric and string-valued property, added 4.2 on algorithms and
revised 4.3 on higher-level protocols.

3
Added several definitions: stable transforms, string-valued properties, string
functions, catalog, etc. Removed 6.3 on Undetermined Property values.

2
Fixed Summary, Scope and Stability sections, revised and reordered the definitions,
updated the Status and References sections, renumbered sections, reworded and
fixed typos throughout.

UTR #23: The Unicode Character Property Model http://www.unicode.org/reports/tr23/tr23-8.html

24 of 24 8/4/2008 4:27 PM

1 First version for public review

Copyright © 2000-2008 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no
expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No
liability is assumed for incidental and consequential damages in connection with or arising out
of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

