
UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

1 of 62 10/23/2008 3:39 PM

 Technical Reports

Proposed Update

Unicode Standard Annex #44

UNICODE CHARACTER DATABASE
Version Unicode 5.2 draft 2
Authors Mark Davis (markdavis@google.com) and Ken Whistler

(ken@unicode.org)
Date 2008-8-27
This Version http://www.unicode.org/reports/tr44/tr44-3.html
Previous
Version

http://www.unicode.org/reports/tr44/tr44-2.html

Latest Version http://www.unicode.org/reports/tr44/
Revision 3

Summary

This annex consolidates information documenting the Unicode Character Database.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in
the Conformance chapter of that version of the Unicode Standard. The version
number of a UAX document corresponds to the version of the Unicode Standard of
which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode
Standard Annex #41, “Common References for Unicode Standard Annexes.” For the
latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode
Technical Reports, see [Reports]. For more information about versions of the Unicode
Standard, see [Versions]. For any errata which may apply to this annex, see [Errata].

Contents

1 Introduction

rick@unicode.org
Text Box
L2/08-384

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

2 of 62 10/23/2008 3:39 PM

2 Conformance
2.1 Simple and Derived Properties
2.2 Use of Default Values
2.3 Stability of Releases

3 Documentation
3.1 Character Properties in the Standard
3.2 The Character Property Model
3.3 NamesList.html
3.4 StandardizedVariants.html
3.5 Unihan and UAX #38
3.6 Data File Comments
3.7 Obsolete Documentation Files

4 UCD Files
4.1 Directory Structure
4.2 File Format Conventions
4.3 File List
4.4 Zipped Files
4.5 UCD in XML

5 Properties
5.1 Property Table
5.2 Derived Extracted Properties
5.3 Property Summary
5.4 Case and Case Mapping
5.5 Property Value Lists
5.6 Property and Property Value Aliases
5.7 Matching Rules
5.8 Invariants
5.9 Validation
5.10 Deprecation

6 Test Files
6.1 NormalizationTest.txt
6.2 Segmentation Test Files and Documentation

7 UCD Change History
Acknowledgments
References
Modifications

Reviewers please note that the entire text of this annex has been extensively rewritten
for this proposed update, to account for the complete incorporation of the former content
of UCD.html into the text of the annex. No attempt has been made to use change bars,
as in this case change bars would obscure more than they would illuminate about the
changed text. Review the entire document as you would new material. The content of
Version 5.1.0 of UCD.html has also been extensively edited and reorganized in the
interest of text flow and clarity, and substantial new documentation has been added to
cover gaps noted during the editorial process. See also Modifications.

Warning: the information in this annex does not completely describe the use and
interpretation of Unicode character properties and behavior. It must be used in
conjunction with the data in the other files in the Unicode Character Database, and
relies on the notation and definitions supplied in The Unicode Standard. All chapter
references are to Version 5.0.0 of the standard unless otherwise indicated.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

3 of 62 10/23/2008 3:39 PM

1 Introduction

The Unicode Standard is far more than a simple encoding of characters. The standard
also associates a rich set of semantics with each encoded character—properties that are
required for interoperability and correct behavior in implementations, as well as for
Unicode conformance. These semantics are embodied in the Unicode Character
Database (UCD), a collection of data files which contain the Unicode character code
points and character names. The data files define the Unicode character properties and
mappings between Unicode characters (such as case mappings).

This annex describes the UCD and provides a guide to the various documentation files
associated with it.

The latest version of the UCD is always located on the Unicode Web site at:

http://www.unicode.org/Public/UNIDATA/

The specific files for the UCD associated with this version of the Unicode Standard
(5.2.0) are located at:

http://www.unicode.org/Public/5.2.0/

Stable, archived versions of the UCD associated with all earlier versions of the Unicode
Standard can be accessed from:

http://www.unicode.org/ucd/

For a description of the changes in the UCD for this version and earlier versions, see
UCD Change History.

2 Conformance

The Unicode Character Database is an integral part of the Unicode Standard.

The UCD contains normative property and mapping information required for
implementation of various Unicode algorithms such as the Unicode Bidirectional
Algorithm, Unicode Normalization, and Unicode Casefolding. The data files also contain
additional informative and provisional character property information.

Each specification of a Unicode algorithm, whether specified in the text of [Unicode] or in
one of the Unicode Standard Annexes, designates which data file(s) in the UCD are
needed to provide normative property information required by that algorithm.

For information on the meaning and application of the terms, normative, informative, and
provisional, see Section 3.5, "Properties" in [Unicode].

For information about the applicable terms of use for the UCD, see the Unicode Terms of
Use.

2.1 Simple and Derived Properties

Some character properties in the UCD are simple properties. This status has no bearing
on whether or not the properties are normative, but merely indicates that their values are

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

4 of 62 10/23/2008 3:39 PM

not derived from some combination of other properties.

Other character properties are derived. This means that their values are derived by rule
from some other combination of properties. Generally such rules are stated as set
operations, and may or may not include explicit exception lists for individual characters.

Sometimes simple properties are defined merely to make the statement of the rule
defining a derived property more compact or general. Such properties are known as
contributory properties. Sometimes these contributory properties are defined to
encapsulate the messiness inherent in exception lists. At other times, a contributory
property may be defined to help stabilize the definition of an important derived property
which is subject to stability guarantees.

Derived character properties are not considered second-class c itizens among Unicode
character properties. They are defined to make implementation of important algorithms
easier to state. Included among the first-class derived proper ties important for such
implementations are: Uppercase, Lowercase, XID_Start, XID_Continue, Math, and
Default_Ignorable_Code_Point, all defined in DerivedCoreProperties.txt, and derived
properties for the optimization of normalization, defined in DerivedNormalizationProps.txt.

Implementations should simply use the derived properties, and should not try to rederive
them from lists of simple properties and collections of rules, because of the chances for
error and divergence when doing so.

If there are any cases of mismatches between the definition of a derived property as
listed in DerivedCoreProperties.txt or similar data files in the UCD, and the definition of a
derived property as a set definition rule, the explicit listing in the data file should always
be taken as the normative definition of the property.

Definitions of property derivations are provided for information only, typically in comment
fields in the data files. Such definitions may be refactored, refined, or corrected over time.
To ensure that there is never any ambiguity between versions of the standard, even if the
definition of a derivation is changed at some point in time, the exact property listing in the
data files for any given version of the standard is always the truth for that property value
for that version—and will never change for that version.

2.2 Use of Default Values

Unicode character properties have default values. Default values are the value or values
that a character property takes for an unassigned code point, or in some instances, for
designated subranges of code points, whether assigned or unass igned. For example, the
default value of a binary Unicode character property is always "N".

For the formal discussion of default values, see D26 in Section 3.5, "Properties" in
[Unicode]. For conventions related to default values in various data files of the UCD, see
File Format Conventions. For documentation regarding the particular default values of
individual Unicode character properties, see the Property Table.

2.3 Stability of Releases

Just as for the Unicode Standard as a whole, each version of the UCD, once published,
is absolutely stable and will never change. Each released version is archived in a
directory on the Unicode web site, with a directory number associated with that version.
URLs pointing to that version's directory are also stable and will be maintained in

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

5 of 62 10/23/2008 3:39 PM

perpetuity.

Any errors discovered for a released version of the UCD are noted in [Errata], and if
appropriate will be corrected in a subsequent version of the UCD.

Stability guarantees constraining how Unicode character proper ties can (or cannot)
change between releases of the UCD are documented in the Unicode Consortium
Stability Policies [Stability].

3 Documentation

This annex provides the core documentation for the UCD, but additional information
about character properties is available in other parts of the standard and in additional
documentation files contained within the UCD itself.

3.1 Character Properties in the Standard

The formal definitions related to character properties used by the Unicode Standard are
documented in Section 3.5, "Properties" in [Unicode]. Understanding those definitions
and related terminology is essential to the appropriate use of Unicode character
properties.

See Section 4.1, "Unicode Character Database", in [Unicode] for a general discussion of
the UCD and its use in defining properties. The rest of Chapter 4 provides important
explanations regarding the meaning and use of various normative character properties.

3.2 The Character Property Model

For a general discussion of the property model which underlies the definitions associated
with the UCD, see UTR #23: The Unicode Character Property Model [UTR23]. That
technical report is informative, but over the years various content from it has been
incorporated into normative portions of the Unicode Standard, particularly for the
definitions in Chapter 3.

UTR #23 also discusses string functions and their relation to character properties.

3.3 NamesList.html

NamesList.html formally describes (in BNF) the format of the NamesList.txt data file, the
file which is used to drive the printing of the Unicode code charts and names list. See
also Section 17.1, "Character Names List", in [Unicode] for a detailed discussion of the
conventions used in the Unicode names list.

3.4 StandardizedVariants.html

StandardizedVariants.html documents standardized variants, showing a representative
glyph for each. It is closely tied to the data file, StandardizedVariants.txt, which defines
those sequences normatively.

3.5 Unihan and UAX #38

UAX #38, Unicode Han Database (Unihan) [UAX38] describes the format and content of
Unihan.txt, the data file which collects together all property information for CJK Unified
Ideographs. That annex also specifies in detail which of the Unihan character properties

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

6 of 62 10/23/2008 3:39 PM

are normative, informative, or provisional.

It is important to note that Unihan.txt and its associated documentation is aimed only at
CJK Unified Ideographs. It does not have as its scope legacy East Asian character sets
as a whole, which also contain many non-CJK characters. As a result, while Unihan.txt
contains extensive and detailed mapping information for CJK Unified Ideographs, it must
be supplemented from other sources to establish mapping tables for various important
commercial and national character set standards from East Asia.

3.6 Data File Comments

In addition to the specific documentation files for the UCD, individual data files often
contain extensive header comments describing their content and any special conventions
used in the data.

In some instances, individual property definition sections also contain comments with
information about how the property may be derived. Such comments are informative;
while they are intended to convey the intent of the derivation, in case of any mismatch
between a statement of a derivation in a comment field and the actual listing of the
derived property, it is the list which is to be taken as normative. See Simple and Derived
Properties.

3.7 Obsolete Documentation Files

UCD.html was formerly the primary documentation file for the UCD. Its content has been
wholly incorporated into this document, as of Version 5.2.0.

Unihan.html was formerly the primary documentation file for Unihan.txt. Its content has
been wholly incorporated into [UAX38], as of Version 5.1.0.

Much earlier versions of the Unicode Standard contained small, segmented
documentation files, UnicodeCharacterDatabase.html, PropList.html, and
DerivedProperties.html, which were later incorporated into UCD.html.

4 UCD Files

The heart of the UCD consists of the data files themselves. This section describes the
directory structure for the UCD, the format conventions for the data files, and provides
documentation for data files not documented elsewhere in this annex.

4.1 Directory Structure

Each version of the UCD is released in a separate, numbered directory under the Public
directory on the Unicode web site. The content of that directory is complete for that
release. It is also stable—once released, it will be archived permanently in that directory,
unchanged, at a stable URL.

The specific files for the UCD associated with this version of the Unicode Standard
(5.2.0) are located at:

http://www.unicode.org/Public/5.2.0/

4.1.1 UCD Files Proper

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

7 of 62 10/23/2008 3:39 PM

The UCD proper is located in the ucd subdirectory of the numbered version directory.
That directory contains all of the documentation files and most of the data files for the
UCD, including some data files for derived properties.

Although all UCD data files are version-specific for a release and most contain internal
date and version stamps, the file names of the released data f iles do not differ from
version to version. When linking to a version-specific data fi le, the version will be
indicated by the version number of the directory for the release.

All files for derived extracted properties are in the extracted subdirectory of the ucd
subdirectory. See Derived Extracted Properties for documentation regarding those data
files and their content.

A number of auxiliary properties are specified in files in the auxiliary subdirectory of the
ucd
subdirectory. In Version 5.2.0 it contains data files specifying properties associated with
UAX #29, Unicode Text Segmentation [UAX29] and with UAX #14, Unicode Line
Breaking Algorithm [UAX14], as well as test data for those algorithms. See Segmentation
Test Files and Documentation for more information about the test data.

4.1.2 UCD XML Files

The XML version of the UCD is located in the ucdxml subdirectory of the numbered
version directory. See the UCD in XML for more details.

4.1.3 Charts

The code charts specific to a version of Unicode are archived as a single large pdf file in
the charts
subdirectory of the numbered version directory. See the readme.txt in that subdirectory
and the general web page explaining the Unicode Code Charts for more details.

4.1.4 Beta Review Considerations

Prior to the formal release for any particular version of the UCD, a beta review is
conducted. The beta review files are located in the same directory that is later used for
the released UCD, but during the beta review period, the subdirectory structure differs
somewhat and may contain temporary files, including documentat ion of diffs between
deltas for the beta review. Also, during the beta review, all data file names are suffixed
with version numbers and delta numbers. So a typical file name during beta review may
be "PropList-5.2.0d13.txt" instead of the finally released "PropList.txt".

Notices contained in a ReadMe.txt file in the UCD directory during the beta review period
also make it clear that that directory contains preliminary material under review, rather
than a final, stable release.

4.1.5 File Directory Differences for Early Releases

The UCD in XML
was introduced in Version 5.1.0, so UCD directories prior to that do not contain the
ucdxml subdirectory.

UCD directories prior to Version 4.1.0 do not contain the auxiliary subdirectory.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

8 of 62 10/23/2008 3:39 PM

UCD directories prior to Version 3.2.0 do not contain the extracted subdirectory.

The general structure of the file directory for a released version of the UCD described
above applies to Versions 4.1.0 and later. Prior to Version 4.1.0, versions of the UCD
were not self-contained, complete sets of data files for that version, but instead only
contained any new data files or any data files which had changed since the prior release.

The directory naming conventions and the file naming conventions also differed prior to
Version 4.1.0. So, for example, Version 4.0.0 of the UCD is contained in a directory
named 4.0-Update, and Version 4.0.1 of the UCD in a directory named 4.0-Update1.
Furthermore, for these earlier versions, the data file names do contain explicit version
numbers.

It is important to understand and keep these differences in mind when accessing any
version of the UCD earlier than Version 4.1.0. Full details on the exact collection of data
files associated with the release of any version of the UCD prior to Version 4.1.0 can be
found online by referring to the component listings at Enumerated Versions.

4.2 File Format Conventions

Files in the UCD use the format conventions described in this section, unless otherwise
specified.

4.2.1 Data Fields

Each line of data consists of fields separated by semicolons. The fields are
numbered starting with zero.
The first field (0) of each line in the Unicode Character Database files represents a
code point or range. The remaining fields (1..n) are properties associated with that
code point.
Leading and trailing spaces within a field are not significant . However, no leading or
trailing spaces are allowed in any field of UnicodeData.txt.

4.2.2 Code Points and Sequences

Code points are expressed as hexadecimal numbers with four to six digits. They
are written without the "U+" prefix.
When a data field contains a sequence of code points, spaces separate the code
points.

4.2.3 Code Point Ranges

A range of code points is specified by the form "X..Y".
Each code point in a range has the associated property value specified on a data
file. For example (from Blocks.txt):

0000..007F; Basic Latin
0080..00FF; Latin-1 Supplement

For backward compatibility, ranges in the file UnicodeData.txt are specified by
entries for the start and end characters of the range, rather than by the form "X..Y".
The start character is indicated by a range identifier, followed by a comma and the

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

9 of 62 10/23/2008 3:39 PM

string "First", in angle brackets. This entry takes the place of a regular character
name in field 1 for that line. The end character is indicated on the next line with the
same range identifier, followed by a comma and the string "Last", in angle brackets:

4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
9FC3;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;

When using this convention, the names of all characters in the range are
algorithmically derivable. See [Unicode] for more information on derivation of
character names for such ranges.

4.2.4 Comments

U+0023 NUMBER SIGN ("#") is used to indicate comments: all characters from the
number sign to the end of the line are considered part of the comment, and are
disregarded when parsing data.
In many files, the comments on data lines use a common format, as illustrated here
(from Scripts.txt):

09B2 ; Bengali # Lo BENGALI LETTER LA

The first part of a comment using this common format is the General_Category
value, provided for information. This is followed by the character name for the code
point in the first field (0).
The printing of the General_Category value is suppressed in instances where it
would be redundant, as for DerivedGeneralCategory.txt, in which the value of the
property value in the data field is already the General_Category value.
The symbol "L&" indicates characters of General_Category Lu, Ll, or Lt (uppercase,
lowercase, or titlecase letter). For example:

0386 ; Greek # L& GREEK CAPITAL LETTER ALPHA WITH TONOS

This usage of L& is the same as the derived LC value for the General_Category
property, as documented in PropertyValueAliases.txt.
When the data line contains a range of code points, this common format for a
comment also indicates a range of character names, separated by "..", as illustrated
here:

00BC..00BE ; numeric # No [3] VULGAR FRACTION ONE QUARTER..VULGAR FRACTION THREE

Code point ranges in the data files are calculated so that they all have the same
General_Category value (or LC). While this convention results in more ranges than
are strictly necessary, it makes the contents of the ranges clearer.
When a code point range occurs, the number of items in the range is included in
the comment (in square brackets), immediately following the General_Category
value.
The comments are purely informational, and may change format or be omitted in
the future. They should not be parsed for content.

4.2.5 Code Point Labels

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

10 of 62 10/23/2008 3:39 PM

Surrogate code points, private-use characters, control codes, noncharacters, and
unassigned code points have no names. When such code points are listed in the
data files, for example to list their General_Category values, the comments use
code point labels instead of character names. For example (from
DerivedCoreProperties.txt):

2065..2069 ; Default_Ignorable_Code_Point # Cn [5] <reserved-2065>..<reserv

Code point labels use one of the tags as documented in the table below, followed
by "-" and the code point in hexadecimal. The entire label is then enclosed in angle
brackets.

Code Point Label Tags

Tag General_Category Note
reserved Cn Noncharacter_Code_Point=F
noncharacter Cn Noncharacter_Code_Point=T
control Cc
private-use Co
surrogate Cs

4.2.6 Multiple Values

When a file contains the specification for multiple properties, the second field
specifies the name of the property and the third field specifies the property value.
For example (from DerivedNormalizationProps.txt):

03D2 ; FC_NFKC; 03C5 # L& GREEK UPSILON WITH HOOK SYMBOL
03D3 ; FC_NFKC; 03CD # L& GREEK UPSILON WITH ACUTE AND HOOK SYMBOL

4.2.7 Binary Property Values

For binary properties, the second field specifies the name of the applicable
property, with the implied value of the property being "True". Only the ranges of
characters with the binary property value of "Y" (= True) are listed. For example
(from PropList.txt):

1680 ; White_Space # Zs OGHAM SPACE MARK
180E ; White_Space # Zs MONGOLIAN VOWEL SEPARATOR
2000..200A ; White_Space # Zs [11] EN QUAD..HAIR SPACE

4.2.8 Default Values

Entries for a code point may be omitted in a data file if the code point has the
default value for the property in question.
For string properties, including the definition of foldings, the default value is the
code point of the character itself.
For miscellaneous properties which take strings as values, such as the Unicode

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

11 of 62 10/23/2008 3:39 PM

Name property, the default value is a null string.
For binary properties, the default value is always "N" (= False) and is always
omitted.
For other types of properties, the default value is listed in a comment. For example
(from Scripts.txt):

All code points not explicitly listed for Script
have the value Unknown (Zzzz).

Default values may also be listed in specially formatted comment lines, using the
keyword "@missing". For example:

@missing: 0000..10FFFF; Unknown

Because of the legacy format constraints for UnicodeData.txt, that file contains no
specific information about default values for properties. The default values for fields
in UnicodeData.txt are documented instead in the UnicodeData.txt entry in the
Property Table section below.

Some default values for common catalog, enumeration, and numeric properties are listed
in the table below:

Default Values for Properties

Property Name Default Value
Age unassigned
Block No_Block
Canonical_Combining_Class Not_Reordered (= 0)
Decomposition_Type None
East_Asian_Width Neutral
Numeric_Value NaN
Script Unknown (= Zzzz)

Default values for some Unicode character properties such as Bidi_Class are complex.
See the relevant annexes and other documentation for more details.

4.2.9 Text Encoding

The data files use UTF-8. Unless otherwise noted, non-ASCII characters only
appear in comments.
For legacy reasons, NamesList.txt is exceptional; it is encoded in Latin-1. See
NamesList.html
Segmentation test data files, such as WordBreakTest.txt, make use of non-ASCII
(UTF-8) characters as delimiters for data fields.

4.2.10 Other Conventions

In some test data files, segments of the test data are distinguished by a line starting
with an "@" sign. For example (from NormalizationTest.txt):

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

12 of 62 10/23/2008 3:39 PM

@Part1 # Character by character test

4.2.11 Other File Formats

The data format for Unihan.txt differs from the standard format. See the discussion
of Unihan and UAX #38 earlier in this annex for more information.
The format for NamesList.txt, which documents the Unicode names list and which is
used programmatically to drive the formatting program for Unicode code charts,
also differs significantly from regular UCD data files. See NamesList.html
Index.txt is another exception. It uses a tab-delimited format, with field 0 consisting
of an index entry string, and field 1 a code point. Index.txt represents the data
printed in Section I.1, "Unicode Names Index" in [Unicode]. It is also used to help
maintain the online Unicode Character Name Index.
The various segmentation test data files make use of "#" to delimit comments, but
have distinct conventions for their data fields. See the documentation in their
header sections for details of the data field formats for those files.
The XML version of the UCD has its own file format conventions. In those files, "#"
is used to stand for the code point in algorithmically derivable character names
such as CJK UNIFIED IDEOGRAPH-4E00, so as to allow for name sharing in more
compact representations of the data. See UAX #42, Unicode Character Database
in XML [UAX42] for details.

4.3 File List

The exact list of files associated with any particular version of the UCD is available on the
web site by referring to the component listings at Enumerated Versions.

The majority of the data files in the UCD provide specifications of character properties for
Unicode characters. Those files and their contents are documented in detail in the
Property Table section below.

The data files in the extracted
subdirectory constitute reformatted listings of single character properties extracted from
UnicodeData.txt or other primary data files. The reformatting is provided to make it easier
to see the particular set of characters having certain values for enumerated properties, or
to separate the statement of that property from other properties defined together in
UnicodeData.txt. These extracted, derived data files are further documented in the
Derived Extracted Properties section below.

The UCD also contains a number of test data files, whose purpose is to provide standard
test cases useful in verifying the implementation of complex Unicode algorithms. See the
Test Files section below for more documentation.

The remaining files in the Unicode Character Database do not d irectly specify Unicode
properties. The important ones and their functions are listed in the table below. The
Status column indicates whether the file (and its content) is considered Normative,
Informative, or Provisional.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

13 of 62 10/23/2008 3:39 PM

Other Files in the UCD

File Name Reference Status Description
Index.txt Chapter

17
I Index to Unicode characters, as

printed in the Unicode Standard.
NamesList.txt Chapter

17
I Names list used for production of

the code charts, derived from
UnicodeData.txt. It contains
additional annotations.

NamesList.html Chapter
17

I Documents the format of
NamesList.txt.

StandardizedVariants.txt Chapter
16

N Lists all the standardized variant
sequences that have been defined,
plus a textual description of their
desired appearance.

StandardizedVariants.html Chapter
16

N A derived documentation file,
generated from
StandardizedVariants.txt, plus a list
of sample glyphs showing the
desired appearance of each
standardized variant.

NamedSequences.txt [UAX34] N Lists the names for all approved
named sequences.

NamedSequencesProv.txt [UAX34] P Lists the names for all provisional
named sequences.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

14 of 62 10/23/2008 3:39 PM

For more information about these files and their use, see the referenced annexes or
chapters of Unicode Standard.

4.4 Zipped Files

Starting with Version 4.1.0, zipped versions of all of the UCD files, both data files and
documentation files, are available under the Public/zipped directory on the Unicode web
site. Each collection of zipped files is located there in a numbered subdirectory
corresponding to that version of the UCD.

Two different zipped files are provided for each version:

Unihan.zip is the zipped version of the very large Unihan database file, Unihan.txt.
UCD.zip
is the zipped version of all of the rest of the UCD data files, excluding Unihan.txt.

This bifurcation allows for better management of downloading version-specific
information, because Unihan.zip contains all the pertinent CJK-related property
information, while UCD.zip contains all of the rest of the UCD property information, for
those who may not need the voluminous CJK data.

In versions of the UCD prior to Version 4.1.0, zipped copies of Unihan.txt are provided in
the same directory as the UCD data files. These zipped files are only posted for versions
of the UCD in which Unihan.txt itself was updated.

4.5 UCD in XML

Starting with Version 5.1.0, a set of XML data files using that schema are also released
with each version of the UCD. Those data files make it possible to import and process
the UCD property data using standard XML parsing tools, instead of the specialized
parsing required for the various individual data files of the UCD.

4.5.1 UAX #42

UAX #42, Unicode Character Database in XML [UAX42] defines an XML schema which
is used to incorporate all of the Unicode character property information into the XML
version of the UCD. See that annex for details of the schema and conventions regarding
the grouping of property values for more compact representations.

4.5.2 XML File List

The XML version of the UCD is contained in the ucdxml subdirectory of the UCD. The
files are all zipped. The list of files is shown in the table below:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

15 of 62 10/23/2008 3:39 PM

XML File List

File Name CJK non-CJK
ucd.all.flat.zip x x
ucd.all.grouped.zip x x
ucd.nounihan.flat.zip x
ucd.nounihan.grouped.zip x
ucd.unihan.flat.zip x
ucd.unihan.grouped.zip x

The "flat" file versions simply list all attributes with no particular compression. The
"grouped" file versions apply the grouping mechanism described in [UAX42] to cut down
on the size of the data files.

5 Properties

This section documents the Unicode character properties, relat ing them in detail to the
particular UCD data files in which they are specified. For enumerated properties in
particular, this section also documents the actual values which those properties can
have.

An index of all the non-CJK character properties by name can be found below in the
Property Summary
section. For a comparable index of CJK character propertes, see UAX #38, Unicode Han
Database (Unihan) [UAX38].

5.1 Property Table

The big property table below specifies the list of character properties defined in each data
file of the UCD.

For each data file in the UCD there is a separate section of the property table. In that
section, the first column lists the character properties speci fied in that file.

The data files which define a single property or a small number of properties are listed
first, followed by the data files which define a large number of properties:
DerivedCoreProperties.txt, DerivedNormalizationProps.txt, PropList.txt, and
UnicodeData.txt.

For UnicodeData.txt
the default property values are listed in the first column in parentheses after the property
name, with the special convention (<code point>) indicating that code point itself is the
default value.

The second column in the property table indicates the type of the property, according to
the following key:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

16 of 62 10/23/2008 3:39 PM

Property Type Key

Property Type Symbol Examples
Catalog C Age, Block
Enumeration E Joining_Type, Line_Break
Binary B Uppercase, White_Space
String S Uppercase_Mapping, Case_Folding
Numeric N Numeric_Value
Miscellaneous M Name, Jamo_Short_Name

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

17 of 62 10/23/2008 3:39 PM

Catalog
properties have enumerated values which are expected to be regularly extended in
successive versions of the Unicode Standard. This distinguishes them from
Enumeration properties.
Enumeration
properties have enumerated values which constitute a logical partition space; new
values will generally not be added to them in successive versions of the standard.
Binary
properties are a special case of Enumeration properties, which have exactly two
values: Yes and No (or True and False).
String
properties are typically mappings from a Unicode code point to another Unicode
code point or sequence of Unicode code points; examples include case mappings
and decomposition mappings.
Miscellaneous
properties are those properties that do not fit neatly into the other property
categories; they currently include character names, comments about characters,
and the Unicode_Radical_Stroke property (a combination of numeric values)
documented in UAX #38, Unicode Han Database (Unihan) [UAX38].

The third column in the property table indicates the status of the property: Normative or
Informative.

Finally, the fourth column in the property table provides a description of the property or
properties. This includes information on derivation for derived properties, as well as
references to locations in the standard where the property is defined or discussed in
detail.

In the section of the table for UnicodeData.txt, the data field numbers are also supplied in
parentheses at the start of the description.

For a few entries in the property table, values specified in the fields in a data file only
contribute to a full definition of a Unicode character property. For example, the values in
field 1 (Name) in UnicodeData.txt do not provide all the values for the Name property for
all code points; Jamo.txt
must also be used, and the Name property for CJK Unified Ideographs is derived by rule.

Properties marked as stabilized
are no longer actively maintained, nor are they extended as new characters are added.

None of the Unicode character properties should be used simply on the basis of the
descriptions in the Property Table without consulting the relevant discussions in the
Unicode Standard. Because of the enormous variety of characters in the repertoire of the
Unicode Standard, character properties tend not to be self-evident in application, even
when the names of the properties may seem familiar from their usage with much smaller
legacy character encodings.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

18 of 62 10/23/2008 3:39 PM

Property Table

ArabicShaping.txt
Joining_Type
Joining_Group

E N Basic Arabic and Syriac character shaping pro
initial, medial and final shapes. See Section 8

BidiMirroring.txt
Bidi_Mirroring_Glyph S I Informative mapping for substituting charact

implementation of bidirectional mirroring. Th
of characters with the Bidi_Mirrored property
characters that normally are displayed with th
mirrored glyph. See UAX #9: The Unicode Bid
Algorithm [UAX9]. Do not confuse this with t
property itself.

Blocks.txt
Block C N List of block names, which are arbitrary name

code points. See Chapter 17 in [Unicode].
CompositionExclusions.txt
Composition_Exclusion B N Properties for normalization. See UAX #15: U

Normalization Forms [UAX15]. Unlike other fi
CompositionExclusions simply lists the releva

CaseFolding.txt
Simple_Case_Folding
Case_Folding

S N Mapping from characters to their case-folded
informative file containing normative derived

Derived from UnicodeData and SpecialCasing

Note: The case foldings are omitted in the da
the same as the code point itself.

DerivedAge.txt
Age C N/I This file shows when various code points wer

designated/assigned in successive versions o
standard.

The Age property is normative in the sense th
completely specified based on when a charac
the standard. However, DerivedAge.txt is pro
information. The value of the Age property fo
can be derived by analysis of successive vers
and Age is not used normatively in the specif
Unicode algorithm.

EastAsianWidth.txt
East_Asian_Width E I Properties for determining the choice of wide

glyphs in East Asian contexts. Property value
UAX #11: East Asian Width [UAX11].

HangulSyllableType.txt
Hangul_Syllable_Type E N The values L, V, T, LV, and LVT used in Chapt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

19 of 62 10/23/2008 3:39 PM

Jamo.txt
Jamo_Short_Name

M N The Hangul Syllable names are derived from
Names, as described in Chapter 3 in [Unicode

LineBreak.txt
Line_Break E N Properties for line breaking. For more inform

#14: Unicode Line Breaking Algorithm [UAX1
GraphemeBreakProperty.txt
Grapheme_Cluster_Break E I

See UAX #29: Unicode Text Segmentation [UA

SentenceBreakProperty.txt
Sentence_Break E I

See UAX #29: Unicode Text Segmentation [UA

WordBreakProperty.txt
Word_Break E I

See UAX #29: Unicode Text Segmentation [UA

NameAliases.txt
Name_Alias

M N Normative formal aliases for characters with
as described in Chapter 4 in [Unicode]. These
match the formal aliases published in the Un
code charts.

NormalizationCorrections.txt
used in Decomposition Mappings S N NormalizationCorrections lists code point dif

Normalization Corrigenda. For more informat
Unicode Normalization Forms [UAX15].

Scripts.txt
Script C I Script values for use in regular expressions. F

information, see UAX #24: Unicode Script Pro
SpecialCasing.txt
Uppercase_Mapping
Lowercase_Mapping
Titlecase_Mapping

S I Data for producing (in combination with the s
mappings from UnicodeData.txt) the full case

Unihan.txt (for more information, see [UAX38])
Numeric_Type
Numeric_Value

E I The characters tagged with kPrimaryNumeric
kAccountingNumeric, and kOtherNumeric are
Numeric_Type numeric, and the values indica

Most characters have these properties based
UnicodeData.txt. See Numeric_Type.

Unicode_Radical_Stroke M I The Unicode radical-stroke count, based on t
kRSUnicode.

DerivedCoreProperties.txt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

20 of 62 10/23/2008 3:39 PM

Alphabetic B I Characters with the Alphabetic property. For
see Chapter 4 in [Unicode].

Generated from: Lu + Ll + Lt + Lm + Lo + Nl
Other_Alphabetic

Default_Ignorable_Code_Point B N For programmatic determination of default ig
points. New characters that should be ignore
(unless explicitly supported) will be assigned
permitting programs to correctly handle the d
of such characters when not otherwise suppo
information, see the FAQ Display of Unsuppo
and Section 5.20, "Default Ignorable Code Po

Generated from
Other_Default_Ignorable_Code_Point
+ Cf (format characters)
+ Variation_Selector
- White_Space
- FFF9..FFFB (annotation characters)
- 0600..0603, 06DD, 070F (exceptional Cf ch
should be visible)

Lowercase B I Characters with the Lowercase property. For
see Chapter 4 in [Unicode].

Generated from: Ll + Other_Lowercase

Grapheme_Base B I For programmatic determination of graphem
boundaries. For more information, see UAX #
Segmentation [UAX29].

Generated from: [0..10FFFF] - Cc - Cf - Cs -
- Grapheme_Extend

Grapheme_Extend B I For programmatic determination of graphem
boundaries. For more information, see UAX #
Segmentation [UAX29].

Generated from: Me + Mn + Other_Grapheme

Note: Depending on an application's interpre
(private use), they may be either in Grapheme
Grapheme_Extend, or in neither.

Grapheme_Link B I Deprecated property, formerly proposed for
determination of grapheme cluster boundarie

Generated from: Canonical_Combining_Class

ID_Start B I Used to determine programming identifiers,

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

21 of 62 10/23/2008 3:39 PM

UAX #31: Unicode Identifier and Pattern SyntID_Continue B I
Math B I Characters with the Math property. For more

Chapter 4 in [Unicode].

Generated from: Sm + Other_Math

Uppercase B I Characters with the Uppercase property. For
see Chapter 4 in [Unicode].

Generated from: Lu + Other_Uppercase

XID_Start B I Used to determine programming identifiers,
UAX #31: Unicode Identifier and Pattern SyntXID_Continue B I

DerivedNormalizationProps.txt
Full_Composition_Exclusion B N Characters that are excluded from compositi

explicitly in CompositionExclusions.txt, plus
of Singleton Decompositions and Non-Starte
as documented in that data file.

Expands_On_NFC
Expands_On_NFD
Expands_On_NFKC
Expands_On_NFKD

B N Characters that expand to more than one cha
specified normalization form.

FC_NFKC_Closure S N Characters that require extra mappings for c
Folding plus Normalization Form KC. Charact
this property have a third field with the mapp

Generated with the following, where Fold is d
default fold operation (excluding the Turkic-
b = NFKC(Fold(a));
c = NFKC(Fold(b));
if (c != b) add mapping from a to c
to the set of mappings that constitute the FC

Note: The FC_NFKC_Closure value is omitted
it is the same as the code point itself.

NFD_Quick_Check
NFKD_Quick_Check
NFC_Quick_Check
NFKC_Quick_Check

E N For property values, see Decompositions and
(Abbreviated names: NFD_QC, NFKD_QC, NFC

PropList.txt
ASCII_Hex_Digit B N ASCII characters commonly used for the repr

hexadecimal numbers.
Bidi_Control B N Format control characters which have specific

Unicode Bidirectional Algorithm [UAX9].
Dash B I Punctuation characters explicitly called out a

Unicode Standard, plus their compatibility eq
these have the General_Category value Pd, bu

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

22 of 62 10/23/2008 3:39 PM

General_Category value Sm because of their u
mathematics.

Deprecated B N For a machine-readable list of deprecated ch
characters will ever be removed from the stan
usage of deprecated characters is strongly di

Diacritic B I Characters that linguistically modify the mea
character to which they apply. Some diacritic
combining characters, and some combining c
diacritics.

Extender B I Characters whose principal function is to ext
shape of a preceding alphabetic character. Ty
length and iteration marks.

Hex_Digit B I Characters commonly used for the representa
hexadecimal numbers, plus their compatibilit

Hyphen (Stabilized as of 3.2) B I Dashes which are used to mark connections
words, plus the Katakana middle dot. The Ka
functions like a hyphen, but is shaped like a
dash.

Ideographic B I Characters considered to be CJKV (Chinese, Ja
and Vietnamese) ideographs.

IDS_Binary_Operator B N Used in Ideographic Description Sequences.
IDS_Trinary_Operator B N Used in Ideographic Description Sequences.
Join_Control B N Format control characters which have specific

control of cursive joining and ligation.
Logical_Order_Exception B N There are a small number of characters that d

order. These characters require special handl
processing.

Noncharacter_Code_Point B N Code points permanently reserved for interna
Other_Alphabetic B I Used in deriving the Alphabetic property.
Other_Default_Ignorable_Code_Point B N Used in deriving the Default_Ignorable_Code_
Other_Grapheme_Extend B N Used in deriving the Grapheme_Extend prop
Other_ID_Continue B N Used for backward compatibility of ID_Contin
Other_ID_Start B N Used for backward compatibility of ID_Start.
Other_Lowercase B I Used in deriving the Lowercase property.
Other_Math B I Used in deriving the Math property.
Other_Uppercase B I Used in deriving the Uppercase property.
Pattern_Syntax B N Used for pattern syntax as described in UAX #

Identifier and Pattern Syntax [UAX31].Pattern_White_Space B N
Quotation_Mark B I Punctuation characters that function as quota
Radical B N Used in Ideographic Description Sequences.
Soft_Dotted B N Characters with a "soft dot", like i or j. An acc

these characters causes the dot to disappear
above can be added where required, such as

STerm B I Sentence Terminal. Used in UAX #29: Unicod
Segmentation [UAX29].

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

23 of 62 10/23/2008 3:39 PM

Terminal_Punctuation B I Punctuation characters that generally mark th
units.

Unified_Ideograph B N Used in Ideographic Description Sequences.
Variation_Selector B N Indicates characters that are Variation Selecto

the behavior of these characters, see
StandardizedVariants.html, Section 16.4, Var
[Unicode], and the Unicode Ideographic Varia
[UTS37].

White_Space B N Separator characters and control characters w
treated by programming languages as "white
purpose of parsing elements.

Note: ZERO WIDTH SPACE and ZERO WIDTH N
are not included, because their functions are
line-break control. Their names are unfortun
in this respect.

Note: There are other senses of "whitespace"
different set of characters.

UnicodeData.txt
Name (<none>) M N (1) These names match exactly the names pu

code charts of the Unicode Standard. The der
Syllable names are omitted from this file; see
derivation.

General_Category (Cn) E N (2) This is a useful breakdown into various ch
which can be used as a default categorization
implementations. For the property values, se
Category Values.

Canonical_Combining_Class (0) N N (3) The classes used for the Canonical Orderi
the Unicode Standard. This property could be
either an enumerated property or a numeric
principal use of the property is in terms of th
For the property value names associated with
numeric values, see DerivedCombiningClass.
Combining Class Values.

Bidi_Class (L, AL, R) E N (4) These are the categories required by the U
Bidirectional Algorithm. For the property valu
Bidirectional Class Values. For more informat
The Unicode Bidirectional Algorithm [UAX9].

The default property values depend on the co
given in DerivedBidiClass.txt

Decomposition_Type (None)
Decomposition_Mapping (<code
point>)

E
S

N (5) This field contains both values, with the ty
brackets. The decomposition mappings exac
decomposition mappings published with the
in the Unicode Standard. For more informatio
Decomposition Mappings.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

24 of 62 10/23/2008 3:39 PM

Note: The decomposition mapping is omitted
the decomposition mapping is the same as th
itself.

Numeric_Type (None)
Numeric_Value (NaN)

E
N

N (6) If the character has the decimal digit prop
in Chapter 4 in [Unicode], then the value of th
represented with an integer value in fields 6,

E
N

N (7) If the character has the digit property, but
digit, then the value of that digit is represent
value in fields 7 and 8. This covers digits tha
handling, such as the compatibility superscri

E
N

N (8) If the character has the numeric property,
Chapter 4 in [Unicode], the value of that char
represented with a positive or negative intege
number in this field. This includes fractions s
example, "1/5" for U+2155 VULGAR FRACTIO

Some characters have these properties based
the Unihan data file. See Numeric_Type, Han.

Bidi_Mirrored (N) B N (9) If the character is a "mirrored" character i
text, this field has the value "Y"; otherwise "N
"Bidi Mirrored—Normative" of [Unicode]. Do n
with the Bidi_Mirroring_Glyph property.

Unicode_1_Name (<none>) M I (10) Old name as published in Unicode 1.0. T
provided when it is significantly different from
name for the character. The value of field 10
characters does not always match the Unicod
Instead, field 10 contains ISO 6429 names fo
functions, for printing in the code charts.

ISO_Comment (<none>) M I (11) ISO 10646 comment field. It appears in p
10646 names list, or contains an asterisk to
note.

Simple_Uppercase_Mapping
(<code point>)

S N (12) Simple uppercase mapping (single chara
If a character is part of an alphabet with case
has a simple uppercase equivalent, then the
equivalent is in this field. The simple mappin
character result, where the full mappings ma
multi-character results. For more information
Case Mapping.

Note: The simple uppercase is omitted in the
uppercase is the same as the code point itsel

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

25 of 62 10/23/2008 3:39 PM

Simple_Lowercase_Mapping
(<code point>)

S N (13) Simple lowercase mapping (single charac

Note: The simple lowercase is omitted in the
lowercase is the same as the code point itself

Simple_Titlecase_Mapping
(<code point>)

S N (14) Simple titlecase mapping (single charact

Note: The simple titlecase may be omitted in
titlecase is the same as the uppercase.

5.2 Derived Extracted Properties

A number of Unicode character properties have been separated out, reformatted, and
listed in range format, one property per file. These files are located under the extracted
directory of the UCD. The exact list of derived extracted files and the extracted properties
they represent are given in the Extracted Properties table below.

The derived extracted files are provided purely as a reformatting of data for properties
specified in other data files. In case of any inadvertant mismatch between the primary
data files specifying those properties and these lists of extracted properties, the primary
data files are taken as definitive.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

26 of 62 10/23/2008 3:39 PM

Extracted Properties

File Status Property Extracted from
DerivedBidiClass.txt N Bidi_Class UnicodeData.txt,

field 4
DerivedBinaryProperties.txt N Bidi_Mirrored UnicodeData.txt,

field 9
DerivedCombiningClass.txt N Canonical_Combining_Class UnicodeData.txt,

field 3
DerivedDecompositionType.txt N/I Decomposition_Type the <tag> in

UnicodeData.txt,
field 5

DerivedEastAsianWidth.txt I East_Asian_Width EastAsianWidth.txt,
field 1

DerivedGeneralCategory.txt N General_Category UnicodeData.txt,
field 2

DerivedJoiningGroup.txt N Joining_Group ArabicShaping.txt,
field 2

DerivedJoiningType.txt N Joining_Type ArabicShaping.txt,
field 1

DerivedLineBreak.txt N Line_Break LineBreak.txt, field
1

DerivedNumericType.txt N Numeric_Type UnicodeData.txt,
fields 6 through 8

DerivedNumericValues.txt N Numeric_Value UnicodeData.txt,
field 8

For the extraction of Decomposition_Type, characters with canonical decomposition
mappings in field 5 of UnicodeData.txt have no tag. For those characters, the extracted
value is Decomposition_Type=Canonical. For characters with compatibility
decomposition mappings, there are explicit tags in field 5, and the value of
Decomposition_Type is equivalent to those tags. The value
Decomposition_Type=Canonical is normative. Other values for Decomposition_Type are
informative.

Numeric_Value is extracted based on the actual numeric value of the data in field 8 of
UnicodeData.txt.

Numeric_Type is extracted as follows. If fields 6, 7, and 8 in UnicodeData.txt are all
non-empty, then Numeric_Type=Decimal. Otherwise, if fields 7 and 8 are both
non-empty, then Numeric_Type=Digit. Otherwise, if field 8 is non-empty, then
Numeric_Type=Numeric. The default value is Numeric_Type=None.

5.3 Property Summary

The following table provides a summary list of the Unicode character properties,
excluding most of those specific to Unihan.txt. The properties are roughly organized into
groups based on their usage. This grouping is primarily for documentation convenience
and except for contributory properties, has no normative implications. The link on each

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

27 of 62 10/23/2008 3:39 PM

property leads its description in the Property Table above.

Property Summary Table

General Normalization CJK
Name Canonical_Combining_Class Ideographic
Name_Alias Decomposition_Mapping Unified_Ideograph
Block Composition_Exclusion Radical
Age Full_Composition_Exclusion IDS_Binary_Operator
General_Category Decomposition_Type IDS_Trinary_Operator
Script FC_NFKC_Closure Unicode_Radical_Stroke
White_Space NFC_Quick_Check Miscellaneous
Alphabetic NFKC_Quick_Check Math
Hangul_Syllable_Type NFD_Quick_Check Quotation_Mark
Noncharacter_Code_Point NFKD_Quick_Check Dash
Default_Ignorable_Code_Point Expands_On_NFC Hyphen
Deprecated Expands_On_NFD STerm
Logical_Order_Exception Expands_On_NFKC Terminal_Punctuation
Variation_Selector Expands_On_NFKD Diacritic
Case Shaping and Rendering Extender
Uppercase Join_Control Grapheme_Base
Lowercase Joining_Group Grapheme_Extend
Lowercase_Mapping Joining_Type Grapheme_Link (deprecated)
Titlecase_Mapping Line_Break Unicode_1_Name
Uppercase_Mapping Grapheme_Cluster_Break ISO_Comment
Case_Folding Sentence_Break Contributory Properties
Simple_Lowercase_Mapping Word_Break Other_Alphabetic
Simple_Titlecase_Mapping East_Asian_Width Other_Default_Ignorable_Cod
Simple_Uppercase_Mapping Bidirectional Other_Grapheme_Extend
Simple_Case_Folding Bidi_Class Other_ID_Start
Soft_Dotted Bidi_Control Other_ID_Continue
Identifiers Bidi_Mirrored Other_Lowercase
ID_Continue Bidi_Mirroring_Glyph Other_Math
ID_Start Numeric Other_Uppercase
XID_Continue Numeric_Value Jamo_Short_Name
XID_Start Numeric_Type
Pattern_Syntax Hex_Digit
Pattern_White_Space ASCII_Hex_Digit

5.3.1 Contributory Properties

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

28 of 62 10/23/2008 3:39 PM

Contributory properties contain sets of exceptions used in the generation of other
properties derived from them. The contributory properties specifically concerned with
identifiers and casing contribute to the maintenance of stabil ity guarantees for properties
and/or to invariance relationships between related properties. Other contributory
properties are simply defined as a convenience for property derivation.

Most contributory properties have names using the pattern "Other_XXX" and are used to
derive the corresponding "XXX" property. For example, the Other_Alphabetic property is
used in the derivation of the Alphabetic property.

Contributory properties are typically defined in PropList.txt and the corresponding derived
property is then listed in DerivedCoreProperties.txt.

Jamo_Short_Name
is an unusual contributory property, both in terms of its name and how it is used. It is
defined in its own property file, Jamo.txt, and is used to der ive the Name property value
for Hangul syllable characters, according to the rules spelled out in Section 3.12,
"Conjoining Jamo Behavior" in [Unicode].

Contributory properties are incomplete by themselves and are not intended for
independent use. For example, an API returning Unicode property values should
implement the derived core properties such as Alphabetic or
Default_Ignorable_Code_Point, rather than the corresponding contributory properties,
Other_Alphabetic or Other_Default_Ignorable_Code_Point.

5.4 Case and Case Mapping

Case for bicameral scripts and case mapping of characters are complicated topics in the
Unicode Standard—both because of their inherent algorithmic complexity and because of
the number of characters and special edge cases involved.

This section provides a brief roadmap to discussions about these topics, and
specifications and definitions in the standard, as well as explaining which case-related
properties are defined in the UCD.

Section 3.13, "Default Case Algorithms" in [Unicode] provides formal definitions for
case-related concepts (cased, case-ignorable, ...), for case conversion (toUppercase(X),
...), and for case detection (isUppercase(X), ...). It also provides the formal definition of
caseless matching for the standard, taking normalization into account.

Section 4.2, "Case—Normative", in [Unicode] introduces case and case mapping
properties. Table 4-1, "Sources for Case Mapping Information", describes the kind of
case-related information that is available in various data files of the UCD. The table
below lists those data files again, giving the explicit list of case-related properties defined
in each. The link on each property leads its description in the Property Table above.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

29 of 62 10/23/2008 3:39 PM

UCD Files and Case Properties

File Name Case Properties
UnicodeData.txt Simple_Uppercase_Mapping,

Simple_Lowercase_Mapping,
Simple_Titlecase_Mapping

SpecialCasing.txt Uppercase_Mapping, Lowercase_Mapping,
Titlecase_Mapping

CaseFolding.txt Simple_Case_Folding, Case_Folding
DerivedCoreProperties.txt Uppercase, Lowercase
PropList.txt Soft_Dotted, Other_Uppercase, Other_Lowercase

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

30 of 62 10/23/2008 3:39 PM

For compatibility with existing parsers, UnicodeData.txt only contains case mappings for
characters where they constitute one-to-one mappings; it also omits information about
context-sensitive case mappings. Information about these special cases can be found in
the separate data file, SpecialCasing.txt, expressed as separate properties.

Section 5.18, "Case Mappings", in [Unicode] discusses various implementation issues for
handling case, including language-specific case mapping, as fo r Greek and for Turkish.
That section also describes case folding in particular detail.

The special casing conditions associated with case mapping for Greek, Turkish, and
Lithuanian are specified in an additional field in SpecialCasing.txt. For example, the
lowercase mapping for sigma in Greek varies according to its position in a word. The
condition list does not constitute a formal character property in the UCD, because it is a
statement about the context of occurrence of casing behavior for a character or
characters, rather than a semantic attribute of those characters. Note that versions of the
UCD from Version 3.2.0 to Version 5.0.0 did list property aliases for
Special_Case_Condition (scc), but this was determined to be an error when the UCD
was analyzed for representation in XML; consequently, the Special_Case_Condition
property aliases were removed as of Version 5.1.0.

Caseless matching is of particular concern for a number of text processing algorithms, so
is also discussed at some length in UAX #31: Unicode Identifier and Pattern Syntax
[UAX31] and in UTS #10: Unicode Collation Algorithm [UTS10].

Further information about locale-specific casing conventions can be found in the Unicode
Common Locale Data Repository [CLDR].

5.5 Property Value Lists

The following subsections give summaries of property values for certain Enumeration
properties. Other property values are documented in other, topically-specific annexes; for
example, the Line_Break property values are documented in UAX #14: Unicode Line
Breaking Algorithm [UAX14] and the various segmentation-related property values are
documented in UAX #29: Unicode Text Segmentation [UAX29].

5.5.1 General Category Values

The General_Category property of a code point provides for the most general
classification of that code point. It is usually determined based on the primary
characteristic of the assigned character for that code point. For example, is the character
a letter, a mark, a number, punctuation, or a symbol, and if so, of what type? Other
General_Category values define the classification of code points which are not assigned
to regular graphic characters, including such statuses as private-use, control, surrogate
code point, and reserved unassigned.

Many characters have multiple uses, and not all such cases can be captured entirely by
the General_Category value. For example, the General_Category value of Latin, Greek,
or Hebrew letters does not attempt to cover (or preclude) the numerical use of such
letters as Roman numerals or in other numerary systems. Conversely, the
General_Category of ASCII digits 0..9 as Nd (decimal digit) neither attempts to cover (or
preclude) the occasional use of these digits as letters in var ious orthographies. The
General_Category is simply the first-order, most usual categor ization of a character.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

31 of 62 10/23/2008 3:39 PM

For more information about the General_Category property, see Chapter 4 in [Unicode].

The values in the General_Category field in UnicodeData.txt make use of the short,
abbreviated property value aliases for General_Category. For convenience in reference,
the General_Category Values table below lists all the abbreviated and long value aliases
for General_Category values, reproduced from PropertyValueAliases.txt, along with a
brief description of each category.

General_Category Values

Abbr Long Description
Lu Uppercase_Letter an uppercase letter
Ll Lowercase_Letter a lowercase letter
Lt Titlecase_Letter a digraphic character, with first part uppercase
Lm Modifier_Letter a modifier letter
Lo Other_Letter other letters, including syllables and ideographs
Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)
Mc Spacing_Mark a spacing combining mark (positive advance width)
Me Enclosing_Mark an enclosing combining mark
Nd Decimal_Number a decimal digit
Nl Letter_Number a letterlike numeric character
No Other_Number a numeric character of other type
Pc Connector_Punctuation a connecting punctuation mark, like a tie
Pd Dash_Punctuation a dash or hyphen punctuation mark
Ps Open_Punctuation an opening punctuation mark (of a pair)
Pe Close_Punctuation a closing punctuation mark (of a pair)
Pi Initial_Punctuation an initial quotation mark
Pf Final_Punctuation a final quotation mark
Po Other_Punctuation a punctuation mark of other type
Sm Math_Symbol a symbol of primarily mathematical use
Sc Currency_Symbol a currency sign
Sk Modifier_Symbol a non-letterlike modifier symbol
So Other_Symbol a symbol of other type
Zs Space_Separator a space character (of various non-zero widths)
Zl Line_Separator U+2028 LINE SEPARATOR only
Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only
Cc Control a C0 or C1 control code
Cf Format a format control character
Cs Surrogate a surrogate code point
Co Private_Use a private-use character
Cn Unassigned a reserved unassigned code point or a noncharacter

Note that the value gc=Cn does not actually occur in UnicodeData.txt, because that data
file does not list unassigned code points.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

32 of 62 10/23/2008 3:39 PM

Characters with the quotation-related General_Category values Pi or Pf may behave like
opening punctuation (gc=Ps) or closing punctuation (gc=Pe), depending on usage and
quotation conventions.

The symbol "L&" is used to stand for any combination of uppercase, lowercase or
titlecase letters (Lu, Ll, or Lt), in the first part of comments in the data files. The LC value
for the General_Category property, as documented in PropertyValueAliases.txt also
stands for uppercase, lowercase or titlecase letters.

The Unicode Standard does not assign non-default property values to control characters
(gc=Cc), except for certain well-defined exceptions involving the Unicode Bidirectional
Algorithm, the Unicode Line Breaking Algorithm, and Unicode Text Segmentation. Also,
implementations will usually assign behavior to certain line breaking control
characters—most notably U+000D and U+000A (CR and LF)—according to platform
conventions. See Section 5.8 "Newline Guidelines" in [Unicode] for more information.

5.5.2 Bidirectional Class Values

The values in the Bidi_Class field in UnicodeData.txt make use of the short, abbreviated
property value aliases for Bidi_Class. For convenience in reference, the Bidi_Class
Values table below lists all the abbreviated and long value al iases for Bidi_Class values,
reproduced from PropertyValueAliases.txt, along with a brief description of each
category.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

33 of 62 10/23/2008 3:39 PM

Bidi_Class Values

Abbr Long Description
L Left_To_Right any strong left-to-right character
LRE Left_To_Right_Embedding U+202A: the LR embedding control
LRO Left_To_Right_Override U+202D: the LR override control
R Right_To_Left any strong right-to-left (non-Arabic-type)

character
AL Arabic_Letter any strong right-to-left (Arabic-type) character
RLE Right_To_Left_Embedding U+202B: the RL embedding control
RLO Right_To_Left_Override U+202E: the RL override control
PDF Pop_Directional_Format U+202C: terminates an embedding or override

control
EN European_Number any ASCII digit or Eastern Arabic-Indic digit
ES European_Separator plus and minus signs
ET European_Terminator a terminator in a numeric format context,

includes currency signs
AN Arabic_Number any Arabic-Indic digit
CS Common_Separator commas, colons, and slashes
NSM Nonspacing_Mark any nonspacing mark
BN Boundary_Neutral most format characters, control codes, or

noncharacters
B Paragraph_Separator various newline characters
S Segment_Separator various segment-related control codes
WS White_Space spaces
ON Other_Neutral most other symbols and punctuation marks

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

34 of 62 10/23/2008 3:39 PM

Please refer to UAX #9: The Unicode Bidirectional Algorithm [UAX9] for an an
explanation of the significance of these values when formatting bidirectional text.

5.5.3 Character Decomposition Mapping

The value of the Decomposition_Mapping property for a character is provided in field 5 of
UnicodeData.txt. This is a string property, consisting of a sequence of one or more
Unicode code points. The default value of the Decomposition_Mapping property is the
code point of the character itself. The use of the default value for a character is indicated
by leaving field 5 empty in UnicodeData.txt. Informally, the value of the
Decomposition_Mapping property for a character is known simply as its decomposition
mapping. When a character's decomposition mapping is other than the default value, the
decomposition mapping is printed out explicitly in the names l ist for the Unicode code
charts.

The prefixed tags supplied with a subset of the decomposition mappings generally
indicate formatting information. Where no such tag is given, the mapping is canonical.
Conversely, the presence of a formatting tag also indicates that the mapping is a
compatibility mapping and not a canonical mapping. In the absence of other formatting
information in a compatibility mapping, the tag is used to dis tinguish it from canonical
mappings.

In some instances a canonical mapping or a compatibility mapping may consist of a
single character. For a canonical mapping, this indicates that the character is a canonical
equivalent of another single character. For a compatibility mapping, this indicates that the
character is a compatibility equivalent of another single character.

The compatibility formatting tags used in the UCD are listed in the table below:

Compatibility Formatting Tags

Tag Description
 Font variant (for example, a blackletter form)
<noBreak> No-break version of a space or hyphen
<initial> Initial presentation form (Arabic)
<medial> Medial presentation form (Arabic)
<final> Final presentation form (Arabic)
<isolated> Isolated presentation form (Arabic)
<circle> Encircled form
<super> Superscript form
<sub> Subscript form
<vertical> Vertical layout presentation form
<wide> Wide (or zenkaku) compatibility character
<narrow> Narrow (or hankaku) compatibility character
<small> Small variant form (CNS compatibility)
<square> CJK squared font variant
<fraction> Vulgar fraction form
<compat> Otherwise unspecified compatibility character

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

35 of 62 10/23/2008 3:39 PM

Note:
There is a difference between decomposition and the Decomposit ion_Mapping property.
The Decomposition_Mapping property is a string property whose values (mappings) are
defined in UnicodeData.txt, while the decomposition (also termed "full decomposition") is
defined in Section 3.7, "Decomposition" in [Unicode] to use those mappings recursively.

The canonical decomposition is formed by recursively applying the canonical
mappings, then applying the Canonical Ordering Algorithm.
The compatibility decomposition is formed by recursively applying the canonical
and compatibility mappings, then applying the Canonical Ordering Algorithm.

Starting from Unicode 2.1.9, the decomposition mappings in UnicodeData.txt can be
used to derive the full decomposition of any single character in canonical order, without
the need to separately apply the Canonical Ordering Algorithm. However, canonical
ordering of combining character sequences must still be applied in decomposition when
normalizing source text which contains any combining marks.

The normalization of Hangul conjoining jamos and of Hangul syl lables depends on
algorithmic mapping, as specified in Section 3.12, "Conjoining Jamo Behavior" in
[Unicode]. That algorithm specifies the full decomposition of all precomposed Hangul
syllables, but effectively it is equivalent to the recursive application of pairwise
decomposition mappings, as for all other Unicode characters. Formally, the
Decomposition_Mapping property value for a Hangul syllable is the pairwise
decomposition and not the full decomposition.

Each character with the Hangul_Syllable_Type value LVT will have a
Decomposition_Mapping consisting of a character with an LV value and a character with
a T value. Thus for U+CE31 the Decomposition_Mapping is <U+CE20, U+11B8>, rather
than <U+110E, U+1173, U+11B8>.

5.5.4 Canonical Combining Class Values

The values in the Canonical_Combining_Class field in UnicodeData.txt are numerical
values used in the Canonical Ordering Algorithm. Some of those numerical values also
have explicit symbolic labels as property value aliases, to make their intended application
more understandable. For convenience in reference, the Canonical_Combining_Class
Values table below lists all the long symbolic aliases for Canonical_Combining_Class
values, reproduced from PropertyValueAliases.txt, along with a brief description of each
category.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

36 of 62 10/23/2008 3:39 PM

Canonical_Combining_Class Values

Value Long Description
0 Not_Reordered Spacing and enclosing marks; also many vowel and

consonant signs, even if nonspacing
1 Overlay Marks which overlay a base letter or symbol
7 Nukta Diacritic nukta marks in Brahmi-derived scripts
8 Kana_Voicing Hiragana/Katakana voicing marks
9 Virama Viramas
10 Start of fixed position classes
199 End of fixed position classes
200 Attached_Below_Left Marks attached at the bottom left
202 Attached_Below Marks attached directly below
204 Marks attached at the top right
208 Marks attached to the left
210 Marks attached to the right
212 Marks attached at the top left
214 Marks attached directly above
216 Attached_Above_Right Marks attached at the top right
218 Below_Left Distinct marks at the bottom left
220 Below Distinct marks directly below
222 Below_Right Distinct marks at the bottom right
224 Left Distinct marks to the left
226 Right Distinct marks to the right
228 Above_Left Distinct marks at the top left
230 Above Distinct marks directly above
232 Above_Right Distinct marks at the top right
233 Double_Below Distinct marks subtending two bases
234 Double_Above Distinct marks extending above two bases
240 Iota_Subscript Greek iota subscript only

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

37 of 62 10/23/2008 3:39 PM

Some of the Canonical_Combining_Class values in the table are not currently used for
any characters but are specified here for completeness. Some values do not have long
symbolic aliases, but these two sets are not congruent. Do not assume that absence of a
long symbolic alias implies non-use of a particular Canonical_Combining_Class. See
DerivedCombiningClass.txt
for a complete listing of the use of Canonical_Combining_Class values for any particular
version of the UCD.

Combining marks with ccc=224 (Left) follow their base character in storage, as for all
combining marks, but are rendered visually on the left side of them. Note that for all past
versions of the UCD and continuing with this version of the UCD, only two tone marks
used in certain notations for Hangul syllables have ccc=224. Those marks are actually
rendered visually on the left side of the preceding grapheme cluster, in the case of
Hangul syllables resulting from sequences of conjoining jamos.

Those few instances of combining marks with ccc=Left should be distinguished from the
far more numerous examples of left-side vowel signs and vowel letters in Brahmi-derived
scripts. The Canonical_Combining_Class value is zero (Not_Reordered) for both
ordinary, left-side (reordrant) vowel signs such as U+093F DEVANAGARI VOWEL SIGN
I and for Thai-style left-side (Logical_Order_Exception=Yes) vowel letters such as
U+0E40 THAI CHARACTER SARA E. The "Not_Reordered" of ccc=Not_Reordered
refers to the behavior of the character in terms of the Canonical Ordering Algorithm as
part of the definition of Unicode Normalization; it does not refer to any issues of visual
reordering of glyphs involved in display and rendering. See Section 3.11, "Canonical
Ordering Behavior" in [Unicode].

5.5.5 Decompositions and Normalization

Decomposition is specified in Chapter 3, Conformance of [Unicode]. UAX #15, Unicode
Normalization Forms [UAX15] specifies the interaction between decomposition and
normalization. That annex specifies how the decompositions def ined in UnicodeData.txt
are used to derive normalized forms of Unicode text.

A number of derived properties related to Unicode normalization are called the
"Quick_Check" properties. These are defined to enable various optimizations for
implementations of normalization, as explained in Section 14, "Detecting Normalization
Forms", in UAX #15, Unicode Normalization Forms [UAX15]. The values for the four
Quick_Check properties for all code points are listed in DerivedNormalizationProps.txt.
The interpretations of the possible property values are summarized in the table below:

Quick_Check Property Values

Property Value Description
NFC_QC, NFKC_QC,
NFD_QC, NFKD_QC

No Characters that cannot ever occur in the
respective normalization form.

NFC_QC, NFKC_QC Maybe Characters that may occur in the respective
normalization, depending on the context.

NFC_QC, NFKC_QC,
NFD_QC, NFKD_QC

Yes All other characters. This is the default value for
Quick_Check properties.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

38 of 62 10/23/2008 3:39 PM

5.6 Property and Property Value Aliases

Both Unicode character properties themselves and their values are given symbolic
aliases. The formal lists of aliases are provided so that well-defined symbolic values are
available for XML formats of the UCD data, for regular expression property tests, and for
other programmatic textual descriptions of Unicode data. The aliases for properties are
defined in PropertyAliases.txt. The aliases for property values are defined in
PropertyValueAliases.txt.

Alias Files in the UCD

File Name Status Description
PropertyAliases.txt N Names and abbreviations for properties
PropertyValueAliases.txt N Names and abbreviations for property values

Aliases are defined as ASCII-compatible identifiers, using only uppercase or lowercase
A-Z, digits, and underscore "_". Case is not significant when comparing aliases, but the
preferred form used in the data files for longer aliases is to titlecase them.

Aliases may be translated in appropriate environments, and additional aliases may be
useful in certain contexts. There is no requirement that only the aliases defined in the
alias files of the UCD be used when referring to Unicode character properties or their
values; however, their use is recommended for interoperability in data formats or in
programmatic contexts.

5.6.1 Property Aliases

In PropertyAliases.txt, the first field specifies an abbreviated symbolic name for the
property, and the second field specifies the long symbolic name for the property. These
are the preferred aliases. Additional aliases for a few proper ties are specified in the third
or subsequent fields.

The long symbolic name alias is self-descriptive, and is treated as the official name of a
Unicode character property. For clarity it is used whenever possible when referring to that
property in this annex and elsewhere in the Unicode Standard. For example: "The
Line_Break property is discussed in UAX #14, Unicode Line Breaking Algorithm
[UAX14]."

The abbreviated symbolic name alias is short and less mnemonic, but is useful for
expressions such as "lb=BA" in data or in other contexts where the meaning is clear.

The property aliases specified in PropertyAliases.txt constitute a unique name space.
When using these symbolic values, no alias for one property wi ll match an alias for
another property.

5.6.2 Property Value Aliases

In PropertyValueAliases.txt, the first field contains the abbreviated alias for a Unicode
property, the second field specifies an abbreviated symbolic name for a value of that
property, and the third field specifies the long symbolic name for that value of that
property. These are the preferred aliases. Additional aliases for some property values
may be specified in the fourth or subsequent fields. For example, for binary properties,
the abbreviated alias for the True value is "Y", and the long alias is "Yes", but each entry

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

39 of 62 10/23/2008 3:39 PM

also specifies "T" and "True" as additional aliases for that value, as shown in the table
below:

Binary Property Value
Aliases

Long Abbreviated Other Aliases
Yes Y True, T
No N False, F

Not every property value has an associated alias. Property value aliases are typically
supplied for catalog and enumeration properties, which have well-defined, enumerated
values. It does not make sense to specify property value aliases, for example, for the
Numeric_Value property, whose value could be any number, or for a string property such
as Simple_Lowercase_Mapping, whose values are mappings from one code point to
another.

The Canonical_Combining_Class property requires special handling in
PropertyValueAliases.txt. The values of this property are numeric, but they comprise a
closed, enumerated set of values. The more important of those values are given symbolic
name aliases. In PropertyValueAliases.txt, the second field provides the numeric value,
while the third field contains the abbreviated symbolic name alias and the fourth field
contains the long symbolic name alias for that numeric value. For example:

ccc; 230; A ; Above
ccc; 232; AR ; Above_Right

Taken by themselves, property value aliases do not constitute a unique name space. The
abbreviated aliases, in particular, are often re-used as aliases for values for different
properties. All of the binary property value aliases, for example, make use of the same
"Y", "Yes", "T", "True" symbols. Property value aliases may also overlap the symbols
used for property aliases. For example, "Sc" is the abbreviated alias for the
"Currency_Symbol" value of the General_Category value, but it is also the abbreviated
alias for the Script property. However, the aliases for values for any single property are
always unique within the context of that property. What that means is that expressions
that combine a property alias and a property value alias, such as "lb=BA" or "gc=Sc"
always
refer unambiguously just to one value of one given property, and will not match any other
value of any other property.

The property value alias entries for three properties, Age, Block, and Joining_Group,
make use of a special metavalue "n/a" in the field for the abbreviated alias. This should
be understood as meaning that no abbreviated alias is defined for that value for that
property, rather than as an alias per se.

In a few cases, because of longstanding legacy practice in referring to values of a
property by short identifiers, the abbreviated alias and the long alias are the same. This
can be seen, for example, in some property value aliases for the Line_Break property
and the Grapheme_Cluster_Break property.

5.7 Matching Rules

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

40 of 62 10/23/2008 3:39 PM

When matching Unicode character property names and values, it is strongly
recommended that all Property and Property Value Aliases be recognized. For best
results in matching, rather than using exact binary comparisons, the following loose
matching rules should be observed.

Numeric Property Values

For all numeric properties, and for properties such as Unicode_Radical_Stroke which are
constructed from combinations of numeric values, use loose matching rule UAX44-LM1
when comparing property values.

UAX44-LM1. Apply numeric equivalences.

"01.00" is equivalent to "1".
"1.666667" in the UCD is a repeating fraction, and equivalent to "10/6" or "5/3".

Character Names

Unicode character names constitute a special case. Formally, they are values of the
Name property. While each Unicode character name for an assigned character is
guaranteed to be unique, names are assigned in such a way that the presence or
absence of spaces cannot be used to distinguish them. Furthermore, implementations
sometimes create identifiers from Unicode character names by inserting underscores for
spaces. For best results in comparing Unicode character names, use loose matching rule
UAX44-LM2.

UAX44-LM2.
Ignore case, whitespace, underscore ('_'), and all medial hyphens except the hyphen in
U+1180 HANGUL JUNGSEONG O-E.

"zero-width space" is equivalent to "ZERO WIDTH SPACE" or "zerowidthspace"
"character -a" is not equivalent to "character a"

Symbolic Values

Property aliases and property value aliases are symbolic values. When comparing them,
use loose matching rule UAX44-LM3.

UAX44-LM3. Ignore case, whitespace, underscore ('_'), and hyphens.

"linebreak" is equivalent to "Line_Break" or "Line-break"
"lb=BA" is equivalent to "lb=ba" or "LB=BA"

Loose matching is generally appropriate for the property values of Catalog, Enumeration,
and Binary properties, which have symbolic aliases defined for their values. Loose
matching should not be done for the property values of String properties, which do not
have symbolic aliases defined for their values; exact matching for String property values
is important, as case distinctions or other distinctions in those values may be significant.

5.8 Invariants

Property values in the UCD may be subject to correction in subsequent versions of the
standard, as errors are found. Also, some multi-valued propert ies such as Line_Break or

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

41 of 62 10/23/2008 3:39 PM

Word_Break may have additional values defined for them. However, some property
values and some aspects of the file formats are considered invariant. This section
documents such invariants.

5.8.1 Character Property Invariants

All formally guaranteed invariants for properties or property values are described in the
Unicode Character Encoding Stability Policy [Stability]. That policy and the list of
invariants it enumerates are maintained outside the context of the Unicode Standard per
se. They are not part of the standard, but rather are constraints on what can and cannot
change in the standard between versions, and on what decisions the Unicode Technical
Committee can and cannot take regarding the standard.

In addition to the formally guaranteed invariants described in the Unicode Character
Encoding Stability Policy, this section notes a few additional points regarding character
property invariants in the UCD.

Some character properties are simply considered immutable: once assigned, they are
never changed. For example, a character's name is immutable, because of its
importance in exact identification of the character. The Canonical_Combining_Class and
Decomposition_Mapping of a character are immutable, because of their important to the
stability of the Unicode Normalization Algorithm [UAX15].

The list of immutable character properties is shown in the table below:

Immutable Properties

Property Name Abbr Name
Name na
Jamo_Short_Name jsn
Canonical_Combining_Class ccc
Decomposition_Mapping dm
Pattern_Syntax Pat_Syn
Pattern_White_Space Pat_WS

In some cases, a property is not immutable, but the list of possible values that it can have
is considered invariant. For example, while at least some General_Category values are
subject to change and correction, the enumerated set of possib le values that the
General_Category property can have is fixed and cannot be added to in the future.

All characters other than those of General_Category M* are guaranteed to have
Canonical_Combining_Class=0. Currently it is also true that al l characters other than
those of General_Category Mn have Canonical_Combining_Class=0. However, the more
constrained statement is not a guaranteed invariant; it is possible that some new
character of General_Category Me or Mc could be given a non-zero value for
Canonical_Combining_Class in the future.

In Unicode 4.0 and thereafter, the General_Category value Decimal_Number (Nd), and
the Numeric_Type value Decimal
(de) are defined to be co-extensive; that is, the set of characters having
General_Category=Nd will always be the same as the set of characters having
NumericType=de.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

42 of 62 10/23/2008 3:39 PM

5.8.2 UCD File Format Invariants

There are also some constraints on allowable change in the file formats for UCD files. In
general, the file format conventions are changed as little as possible, to minimize the
impact on implementations which parse the machine-readable data files. However, some
of the constraints on allowable file format change go beyond conservatism in format and
instead have the status of invariants. These guarantees apply in particular to
UnicodeData.txt, the very first data file associated with the UCD.

The number and order of the fields in UnicodeData.txt is fixed. Any additional information
about character properties to be added to the UCD in the future will appear in separate
data files, rather than being added as an additional field to UnicodeData.txt or by
reinterpretation of any of the existing fields.

5.8.3 Invariants in Implementations

Applications may wish to take the various character property and file format invariants
into account when choosing how to implement character properties.

The Canonical_Combining_Class offers a good example. The character property
invariants regarding Canonical_Combining_Class guarantee that values, once assigned,
will never change, and that all values used will be in the range 0..255. This means that
the Canonical_Combining_Class can be safely implemented in an unsigned byte and that
any value stored in a table for an existing character will not need to be updated
dynamically for a later version.

In practice, for Canonical_Combining_Class far fewer than 256 values are used. Unicode
3.0 used 53 values; Unicode 3.1 through Unicode 4.1 used 54 values; and Unicode 5.0
through Unicode 5.1 used 55 values. New, non-zero Canonical_Combining_Class values
are seldom added to the standard. (For details about this history, see
DerivedCombiningClass.txt.) Implementations may take advantage of this fact for
compression, because only the ordering of the non-zero values, and not their absolute
values, matters for the Canonical Ordering Algorithm. In principle, it would be possible for
up to 256 values to be used in the future, but the chances of the actual number of values
exceeding 128 are remote at this point. There are implementation advantages in
restricting the number of internal class values to 128—for example, the ability to use
signed bytes without implicit widening to ints in Java.

5.9 Validation

This section still needs more work. The table should be restructured. Two possibilities
are to have a complete list of all the properties, each with an explicit syntax specified for
them (along the lines now done in UAX #38 for the Unihan properties), or to refactor the
discussion as follows: First provide a section classifying the value domains for properties
into pattern types, providing a table which lists all the properties associated with each
pattern type, and then give another table that shows the regex used for each pattern
type. That would be much easier both to understand and and to validate.

The table below appears to have errors and omissions in it sti ll. Age is underspecified,
and should be done more tightly. The expression for Unicode_1_Name is probably too
tight, by contrast. The ISO_Comment field is incorrect. And the regex for the Block and
the Script properties should not be the same. There may be other problems, as well.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

43 of 62 10/23/2008 3:39 PM

The property values for many of the Unicode character properties have a regular syntax
that makes it possible to validate the values in the UCD data files by means of regular
expressions. Regular expressions for a number of the Catalog, String and Miscellaneous
type properties in the UCD are provided in the table below. These expressions use Perl
syntax, but may be of course be converted to other formal conventions for use with other
regular expression engines.

Regular Expressions for Property Values

Abbr Name Regex for Allowable Values
age Age /([0-9]+\.[0-9]|unassigned)/
nv Numeric_Value /-?[0-9]+\.[0-9]+/ Field 2

/-?[0-9]+(\[0-9]+)?/ Field 3
blk Block /[a-zA-Z0-9]+([_\][a-zA-Z0-9]+)*/
sc Script
dm Decomposition_Mapping /[\x{0}-\x{10FFFF}]+/
FC_NFKC FC_NFKC_Closure
cf Case_Folding /[\x{0}-\x{10FFFF}]+/
lc Lowercase_Mapping
tc Titlecase_Mapping
uc Uppercase_Mapping
sfc Simple_Case_Folding /[\x{0}-\x{10FFFF}]/
slc Simple_Lowercase_Mapping
stc Simple_Titlecase_Mapping
suc Simple_Uppercase_Mapping
bmg Bidi_Mirroring_Glyph /[\x{0}-\x{10FFFF}]?/
isc ISO_Comment /([A-Z0-9]+(([-\]|\ -|-\

)[A-Z0-9]+)*|\<CONTROL\>)?/
na1 Unicode_1_Name /([A-Z0-9]+(([-\]|\ -|-\)[A-Z0-9]+)*(\

\((CR|FF|LF|NEL)\))?)?/
na Name /([A-Z0-9]+(([-\]|\ -|-\

)[A-Z0-9]+)*|\<CONTROL\>)?/

5.10 Deprecation

In the Unicode Standard, the term deprecation is used somewhat differently than it is in
some other standards. Deprecation is used to mean that a character or other feature is
strongly discouraged from use. This should not, however, be taken as indicating that
anything has been removed from the standard, nor that anything is planned for removal
from the standard. Any such change is constrained by the Unicode Consortium Stability
Policies [Stability].

For the Unicode Character Database, there are two important types of deprecation to be

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

44 of 62 10/23/2008 3:39 PM

noted. First, an encoded character may be deprecated. Second, a character property
may be deprecated.

When an encoded character is strongly discouraged from use, it is given the property
value Deprecated=True. The Deprecated property is a binary property defined
specifically to carry this information about Unicode characters. Note that very few
characters are ever formally deprecated this way; it is not enough that a character be
uncommon, obsolete, disliked, or not preferred. Only those few characters which have
been determined by the UTC to have serious architectural defects or which have been
determined to cause significant implementation problems are ever deprecated. Note that
even in the most severe cases, such as the deprecated format control characters
(U+206A..U+206F), an encoded character is never removed from the standard.
Furthermore, although deprecated characters are strongly discouraged from use, and
should be avoided in favor of other, more appropriate mechanisms, they may occur in
data. Conformant implementations of Unicode processes such a Unicode normalization
must handle even deprecated characters correctly.

In the Unicode Character Database, a character property itself may also become strongly
discouraged—usually because it no longer serves the purpose it was originally defined
for. In such cases, the property is labelled "deprecated" in the Property Table. For
example, see the Grapheme_Link property.

6 Test Files

The UCD contains a number of test data files. Those provide data in standard formats
which can be used to test implementations of Unicode algorithms. The test data files
distributed with this version of the UCD are listed in the table below.

Unicode Algorithm Test Data Files

File Name Specification Status Unicode Algorithm
NormalizationTest.txt [UAX15] N Unicode Normalization Algorithm
LineBreakTest.txt [UAX14] N Unicode Line Breaking Algorithm
GraphemeBreakTest.txt [UAX29] N Grapheme Cluster Boundary

Determination
WordBreakTest.txt [UAX29] N Word Boundary Determination
SentenceBreakTest.txt [UAX29] N Sentence Boundary Determination

The normative status of these test files reflects their use to determine the correctness of
implementations claiming conformance to the respective algorithms listed in the table.
There is no requirement that any particular Unicode implementation also implement the
Unicode Line Breaking Algorithm, for example, but if it implements that algorithm
correctly, it should be able to replicate the test case results specified in the data entries in
LineBreakTest.txt.

6.1 NormalizationTest.txt

This file contains data which can be used to test an implementation of the Unicode
Normalization Algorithm. (See [UAX15].)

The data file has a Unicode string in the first field (which may consist of just a single code
point). The next four fields then specify the expected output results of converting that

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

45 of 62 10/23/2008 3:39 PM

string to Unicode Normalization Forms NFC, NFD, NFKC, and NFKD, respectively. There
are many tricky edge cases included in the input data, to ensure that implementations
have correctly implemented some of the more complex subtleties of the Unicode
Normalization Algorithm.

The header section of NormalizationTest.txt provides additional information regarding the
normalization invariant relations that any conformant implementation should be able to
replicate.

The Unicode Normalization Algorithm is not tailorable. Conformant implementations
should be expected to produce results as specified in NormalizationTest.txt and should
not deviate from those results.

6.2 Segmentation Test Files and Documentation

LineBreakTest.txt, located in the auxiliary directory of the UCD, contains data which can
be used to test an implementation of the Unicode Line Breaking Algorithm. (See
[UAX14].) The header of that file specifies the data format and the use of the test data to
specify line break opportunities. Note that non-ASCII characters are used in this test data
as field delimiters.

There is an associated documentation file, LineBreakTest.html, which displays the results
of the Line Breaking Algorithm in an interactive chart form, with a documented listing of
the rules.

The Unicode text segmentation test data files are also located in the auxiliary directory of
the UCD. They contain data which can be used to test an implementation of the
segmentation algorithms specified in [UAX29]. The headers of those file specify the data
format and the use of the test data to specify text segmentation opportunities. Note that
non-ASCII characters are used in this test data as field delimiters.

There are also associated documentation files, which display the results of the
segmentation algorithms in an interactive chart form, with a documented listing of the
rules:

GraphemeBreakTest.html
SentenceBreakTest.html
WordBreakTest.html

Unlike the Unicode Normalization Algorithm, the Unicode Line Breaking Algorithm and
the various text segmentation algorithms are tailorable, and there is every expectation
that implementations will tailor these algorithms to produce results as needed. The test
data files only test the default
behavior of the algorithms. Testing of tailored implementations will need to modify and/or
extend the test cases as appropriate to match any documented tailoring.

7 UCD Change History

This section summarizes the changes to the UCD—including its documentation
files—and is organized by Unicode versions. The summary includes changes extending
all the way back to Unicode 2.0.0, taken from the obsoleted UCD.html documentation file,
which predates the creation of this annex. The intent is for this first consolidated version
of the annex to preserve that complete prior history from UCD.html. Subsequent versions

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

46 of 62 10/23/2008 3:39 PM

of the annex will provide only an abbreviated UCD change history section containing only
the delta change information from each preceding version.

Starting from Unicode 4.0.1, references in the change history are often made to a Public
Review Issue (PRI). See http://www.unicode.org/review/resolved-pri.html for more
information about each of those cases.

Changes documented prior to Unicode 4.0 only covered UnicodeData.txt. From Unicode
4.0 onward, the documentation of changes includes modifications of other files as well.

Unicode 5.2.0

General:

TBD

Common file changes:

TBD

Changes in specific files:

TBD

Unicode 5.1.0

General:

Added UCD in XML to the release, in a new subdirectory "ucdxml".

UCD.html:

Added clarification regarding the Decomposition_Mapping for Hangul syllables.
Added specific documentation about First/Last convention for ranges in
UnicodeData.txt.
Improved introduction to General Category Values.
Added reference to UTR #23 and updated other references.
Added note regarding abbreviation of Quick Check property names.
Added notes regarding omissions of foldings where the value is the same as the
code point itself.
Applied correction for erratum about derivation of Default_Ignorable_Code_Point.
Added the section on Validation of property values, with string property validation,
default values, and boolean values.
Removed Special_Case_Condition. (The property values were never defined
clearly enough to be applied.)
Corrected typos for PropList and Composition_Exclusion.
Updated property type for Jamo_Short_Name to Miscellaneous (M).
Added clarification of property type for Canonical_Combining_Class.
Updated listing of default values for UnicodeData fields.
Moved documentation of Grapheme_Link from PropList.txt to
DerivedCoreProperties.txt section.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

47 of 62 10/23/2008 3:39 PM

Updated references to Unihan.html, to refer to UAX #38, instead. Removed invalid
bookmarks on Unihan property tags.

Changes in specific files:

Appropriate data files were updated to include the 1,624 new characters added in
Unicode 5.1.

UnicodeData.txt
The 5 Arabic characters that surround numeral sequences (U+0600..U+0603,
U+06DD) were changed from Bidirectional_Class=AL to AN. This has the
effect of putting the surrounding sign and the numeral sequence in the same
directional run, making them easier to implement correctly.
11 directional quotation marks (U+2018..U+201F, U+301D..U+301F) were
changed to Bidi_Mirrored=N. This constituted a partial reversion of the
change for Version 5.0 related to PRI #91.
U+05BE was changed from gc=Po to gc=Pd.
U+02EC and U+0374 were changed from gc=Sk to gc=Lm.
U+A802 was changed from gc=Mc to gc=Mn.
10 compatibility ideographs were given numeric values.

Unihan.txt
Two existing unified ideographs, U+6F06 and U+9621, were given numeric
values.
One new provisional property was added. Corrections and additions to other
properties were made. See [UAX38] for the modification history.

ArabicShaping.txt
A new joining group, BURUSHASKI YEH BARREE, was added.

BidiMirroring.txt
Removed glyph mappings for the 11 characters that were changed to
Bidi_Mirrored=N.
Updated glyph mappings for U+2278 and U+2279 to [BEST FIT].

Blocks.txt
Added 17 new block definitions.

DerivedNumericValues.txt
A third field was added to this file, expressing the extracted numeric value as
a whole integer, if possible, or as a rational fraction, for example, 1/6.

LineBreak.txt
There were numerous updates to linebreaking properties. See the
Modification History in UAX #14 for details. Also see PRI #105.

NamedSequences.txt
Lithuanian named sequences were approved and moved to this file from
NamedSequencesProv.txt.

NamedSequencesProv.txt
A new, complete set of named sequences for Tamil consonants and syllables
were added to this file.

PropertyAliases.txt
Added entry for Jamo_Short_Name.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

48 of 62 10/23/2008 3:39 PM

Added corrected alias for Simple_Case_Folding.
Removed entry for Special_Case_Condition.

PropertyValueAliases.txt
Appropriate aliases were added for new Block and Script values.
For Block aliases, new values "ASCII", "Latin_1", and "Greek" were added for
common use.
Appropriate aliases were added for new Word_Break and Sentence_Break
values.
Explicit Y/N, T/F aliases were added for all binary properties.
Additional aliases using underscores were added for aliases that used
hyphen-minus.
Some titlecased aliases were added for consistency.

PropList.txt
The middle dots (U+00B7, U+0387) were added to identifiers by changing
them to Other_ID_Continue=Y. See PRI #100.
For consistency, the halfwidth Katakana sound marks (U+FF9E, U+FF9F)
were added to Grapheme_Extend by making them
Other_Grapheme_Extend=Y.
The tag characters (U+E0001, U+E0020..U+E007F) were changed to
Deprecated=Y.
Other_Math values were adjusted for a number of mathematical symbols.
U+05BE was changed to Dash=Y, consistent with the change in its General
Category.

Scripts.txt
11 new Script values were added: Sundanese, Lepcha, Ol_Chiki, Vai,
Saurashtra, Kayah_Li, Rejang, Lycian, Carian, Lydian, and Cham.
U+0374 and U+0385 were changed from Greek to Common, because of
canonical equivalence issues.
U+0CF1 and U+0CF2 were changed from Kannada to Common, because of
their use in Vedic texts.
Roman numeral compatibility characters, U+2160..U+2183, were changed
from Common to Latin.
A circled Hangul character, U+327E, was changed from Common to Hangul.
Squared Katakana compatibility characters, U+32D0..U+32FE and
U+3300..U+3357, were changed from Common to Katakana.

SpecialCasing.txt
Clarified the use of language tags for specification of casing contexts.

StandardizedVariants.txt
Updated documentation to note the existence of ideographic variation
sequences and the Ideographic Variation Database (IVD).

GraphemeBreakProperty.txt
Added Prepend class (for Logical_Order_Exception=Y).
Added SpacingMark class (for most gc=Mc).

SentenceBreakProperty.txt
Added Extend and SContinue classes.
Split U+0009 and U+000A off from Sep class into CR and LF classes.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

49 of 62 10/23/2008 3:39 PM

Removed U+00A0 from OLetter class.
WordBreakProperty.txt

Added CR, LF, Newline, Extend, and MidNumLet classes.
Moved U+0027 and U+2019 from MidLetter class to MidNumLet class.
Moved U+002E from MidNum class to MidNumLet class.
Added U+060C and U+066C to MidNum class.

Text Boundary Test Files
The existing test files, GraphemeBreakTest.txt, SentenceBreakTest.txt, and
WordBreakTest.txt were substantially extended.
A new test file, LineBreakTest.txt, was added, with test cases for UAX #14.

Unicode 5.0.0

UCD.html:

Added new properties.
Updated property invariants for combining classes.
Reorganized order of sections in the document for clarity.

Common file changes:

In many data files an explicit default property assignment range was added (in a
machine-readable comment line), to assist implementations in assigning values for code
points not otherwise listed in the data file.

Changes in specific files:

Appropriate data files were updated to include the 1,369 new characters added in
Unicode 5.0.

Two new data files, NameAliases.txt and NamedSequencesProv.txt, were added to the
UCD.

UnicodeData.txt

Note that except for the changes involving U+0294 LATIN LETTER GLOTTAL
STOP, changes made to General_Category and Bidirectional_Class impacted
primarily a handful of archaic letters.

U+10341 GOTHIC LETTER NINETY was changed from gc=Lo to gc=Nl. This
change also impacted a numeric field, for consistency.
U+103D0 OLD PERSIAN WORD DIVIDER was changed from gc=So to
gc=Po, and from bc=ON to bc=L.
U+103D1..U+103D5 were changed from bc=ON to bc=L.
U+23B4..U+23B6 were changed from various punctuation assignments to
gc=So.
U+2132 TURNED CAPITAL F was changed from gc=So to gc=Lu, and from
bc=ON to bc=L.
U+2183 ROMAN NUMERAL REVERSED ONE HUNDRED was changed from
gc=Nl to gc=Lu.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

50 of 62 10/23/2008 3:39 PM

U+0294 LATIN LETTER GLOTTAL STOP was changed from gc=Ll to gc=Lo.
Casing assignments were added for several characters for new case pairs.
Case mappings were removed for U+0294 LATIN LETTER GLOTTAL STOP
and updated for U+0241 LATIN CAPITAL LETTER GLOTTAL STOP.
30 characters were changed to Bidi_Mirrored=Y. These consisted of
compatibility paired punctuation and some quotation marks. See PRI #80 and
PRI #91.

Unihan.txt
4 new provisional properties were added, and extensive corrections and
additions to other properties were made. See Unihan.html for the modification
history.

ArabicShaping.txt
New joining classes were added for N'Ko.

BidiMirroring.txt
30 entries were added, to give glyph mappings for characters changed to
Bidi_Mirrored=Y. See PRI #80 and PRI #91.

Blocks.txt
Added 9 new block definitions.

DerivedCoreProperties.txt
The deprecated derived property, Grapheme_Link, was added to this file.

LineBreak.txt
There were numerous updates to linebreaking properties. See the
Modification History in UAX #14 for details. Also see PRI #88.

NamedSequences.txt
6 named sequences for Gurmukhi and one for Latin were removed.

PropertyValueAliases.txt
Appropriate aliases were added for new Block and Script values.

PropList.txt
The Grapheme_Link property was deprecated and moved to
DerivedCoreProperties.txt as derivable. U+034F COMBINING GRAPHEME
JOINER was removed from the derivation.
U+1D6A4 MATHEMATICAL ITALIC SMALL DOTLESS I and U+1D6A5
MATHEMATICAL ITALIC SMALL DOTLESS J were added to Other_Math.
U+1039F UGARITIC WORD DIVIDER and U+103D0 OLD PERSIAN WORD
DIVIDER were added to Terminal_Punctuation.

Scripts.txt
5 new Script values were added: Balinese, Cuneiform, Phoenician, Phags-pa,
and Nko.
A new Script value Unknown was added and made the default for unassigned
characters. See PRI #87.
3 Mongolian punctuation characters used by Phags-pa were changed to
Script=Common.
U+1DBF MODIFIER LETTER SMALL THETA was changed from Script=Latin
to Script=Greek.
U+2132 TURNED CAPITAL F was changed from Script=Common to
Script=Latin.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

51 of 62 10/23/2008 3:39 PM

StandardizedVariants.txt
6 standardized variation sequences were added for Phags-pa.

WordBreakProperty.txt
U+2132 TURNED CAPITAL F was added to ALetter.
220 characters from the Myanmar, Khmer, Tai Le, and New Tai Lue scripts
were removed from ALetter, because those scripts do not cusomarily use
spaces between words and require special handling.

Unicode 4.1.0

General:

Added a new subdirectory "auxiliary". In Version 4.1.0 it contains data files for
properties associated with UAX #29: Text Boundaries [UAX29].

UCD.html:

Added description of new directory and release structure, including files in the
auxiliary subdirectory.
Removed exception for field numbering in LineBreak.txt and EastAsianWidth.txt.
Added new properties, and changed some of the documentation of the identifier
properties.
Removed the material that is now to be in Unihan.html.
Removed the listing of default Bidi_Class values, referring now to
DerivedBidiClass.txt.
Replaced direct links to UAXes with links to references section.

Common file changes:

All remaining files not corrected for Unicode 4.0.1 have had their headers updated to
explicitly point to Terms of Use. The headers have also been synchronized somewhat to
share a more common format for file version, date, and pointers to documentation. The
major exception is UnicodeData.txt, which for legacy reasons, has no header.

Changes in specific files:

Appropriate data files were updated to include the 1,273 new characters added in
Unicode 4.1.0.

The description of the Unihan properties was separated out from UCD.html, extensively
revised, and moved into a new documentation file, Unihan.html.

UnicodeData.txt
The Bidi_Class value of U+202F was changed from bc=WS to bc=CS. See
PRI #45.
The Bidi_Class value of U+FF0F was changed from bc=ES to bc=CS. See
PRI #44.
The Bidi_Class value of U+2212 MINUS SIGN and 9 other characters similar
to either a minus sign or a plus sign were changed to bc=ES. See PRI #57.
U+30FB KATAKANA MIDDLE DOT and U+FF65 HALFWIDTH KATAKANA
MIDDLE DOT were changed from gc=Pc to gc=Po. See PRI #55.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

52 of 62 10/23/2008 3:39 PM

Case mappings were added for Georgian capitals (Asomtavruli) to map them
to the newly added Nuskhuri alphabet.
U+A015 YI SYLLABLE WU was changed from gc=Lo to gc=Lm.
9 Ethiopic digits were changed from gc=Nd to gc=No.
The Numeric_Type of U+1034A GOTHIC LETTER NINE HUNDRED was
changed from nt=None to nt=Nu, and it was given a Numeric_Value of 900.
Uppercase and titlecase mappings were added for U+019A LATIN SMALL
LETTER L WITH BAR and U+0294 LATIN LETTER GLOTTAL STOP to map
them to newly added capital letters.

Unihan.txt
Extensive additions and corrections were made for this data fi le. See
Unihan.html for the modification history.

ArabicShaping.txt
The Joining_Group of U+06C2 ARABIC LETTER HEH GOAL WITH HAMZA
ABOVE was changed to jg=Heh_Goal.

BidiMirroring.txt
The Bidi_Mirroring_Glyph value for U+2A2D was corrected.

Blocks.txt
Added 20 new block definitions.

LineBreak.txt
The Line_Break property of all conjoining jamos was updated from lb=ID to
make use of Hangul-specific Line_Break property values, aligned with the
Hangul_Syllable_Type property.
Many other corrections were made to the Line_Break property of characters,
particularly for punctuation marks specific to Runic, Mongolian, Tibetan and
various Indic scripts. See the Modification History in UAX #14 for details.

PropertyAliases.txt
Properties and aliases were added for UAX #29, Text Boundaries:
Grapheme_Cluster_Break, Word_Break, and Sentence_Break.
Properties and aliases were added for: Other_ID_Continue,
Pattern_White_Space, and Pattern_Syntax.
An alias was added for White_Space: "space", for compatibility with POSIX.

PropertyValueAliases.txt
Property value aliases were added for all new properties, and for new values
added to existing catalog properties (blocks and scripts).
Property value aliases were added for compatibility with POSIX: "cntrl", "digit",
and "punct".

PropList.txt
3 new properties were added: Other_ID_Continue, Pattern_White_Space, and
Pattern_Syntax.
U+30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN was given the Dash
property.
U+A015 YI SYLLABLE WU was given the Extender property.
Golden number runes (U+16EE..U+16F0), Roman numerals
(U+2160..U+2183), and U+1034A GOTHIC LETTER NINE HUNDRED were
removed from Other_Alphabetic.
Circled Latin letters (U+24B6..U+24E9) were added to Other_Alphabetic.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

53 of 62 10/23/2008 3:39 PM

These changes to Other_Alphabetic were to better align Alphabetic and
casing properties. The derived property Alphabetic is now a superset of the
derived properties Lowercase and Uppercase, for compatibility with
POSIX-style character classes.
3 musical symbol combining flags (U+1D170..U+1D172) were added to
Other_Grapheme_Extend to fix an inconsistency in the data.
U+200B ZERO WIDTH SPACE was removed from
Other_Default_Ignorable_Code_Point.

Scripts.txt
8 new Script values were added: Buginese, Coptic, New_Tai_Lue, Glagolitic,
Tifinagh, Syloti_Nagri, Old_Persian, and Kharoshthi.
The Script value Katakana_Or_Hiragana (Hrkt) was removed.
The Script for the 14 Coptic letters in the Greek and Coptic block were
updated to sc=Copt.
10 characters (punctuation and extenders) shared by Katakana and Hiragana
were changed from sc=Hrkt to sc=Zyyy.

SpecialCasing.txt
The case mapping contexts defined in this file were updated.
A number of clarifying changes were made to comments in the header of this
data file.

Unicode 4.0.1

UCD.html:

Added documentation for two new properties.
Added the property types Catalog and Miscellaneous.
Described loose matching of property names and values.
Added to documentation of file format.

Common file changes:

Some property values have different casing (upper versus lower) for consistency
between the data files and the PropertyValueAlias file. There are some additional
changes in comments:

Nearly all files changed headers to explicitly point to Terms of Use.
Labels for code points without names now have a more uniform style, such as
<reserved-1234>.
Where characters with a default value are not listed, that information is indicated in
the total code point counts.
The full property name and property value name (for enumerated properties) is
usually supplied in a comment.

Changes in specific files:

UnicodeData.txt
Changed the General_Category value of Zero Width Space (U+200B) from Zs
to Cf. For background information, see PRI #21.
Bidi Conformance was made much clearer and more rigorous, also resulting

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

54 of 62 10/23/2008 3:39 PM

in a number of property changes. In particular, the Bidi_Class changes impact
number and date formatting with the following characters: +, - , /
A review of Bidi_Class=BN and Default_Ignorable_Code_Point characters
resulted in a number of changes; for details, see PRI #28.
Some other Bidi_Class tweaks were made for consistency.
Braille symbols were changed to being strong Left-to-right, to reflect usage.
The Bidi_Class and other property values of the Join_Control characters were
not changed, but their role in combining characters sequences was. For more
information, see http://www.unicode.org/versions/Unicode4.0.1/.
Removed an extraneous space at the end of the name field for two
characters.

Unihan.txt
There was a major revision of the Unihan data file, to bring i t up-to-date for
Unicode 4.0. (It was not released in Version 4.0.0, because of the time
required to complete and check corrections to the data file.) This update rolls
in fixes for nearly all known errors in the prior version of the file and adds a
very large amount of other informative data. For details, see the header of that
file.
Added three new tags: kHanyuPinlu, kGSR, and kIRG_USource.
Completed data for kCihaiT, kCowles, kGradeLevel, and kLau.
The kMandarin field has been corrected and its order restored to a
"frequency" order.

ArabicShaping.txt
Moved one entry into code point order.

Blocks.txt
Corrected name of the Cyrillic Supplement block.

DerivedCoreProperties.txt
ZWNJ/ZWJ (U+200C..U+200D) now have the Grapheme_Extend property.

DerivedNormalizationProps.txt
The particular values associated with the Quick Check properties for
characters were not changed, but a revision was made in how the Quick
Check properties are expressed in the file, to bring it more into line with the
model for other properties. This resulted in a significant change in the format
of the data file and the explicit separation of Yes, No, and Maybe values. In
addition, the actual aliases for the property values changed in the data file.

Index.txt
Updated to correspond to the character index published as part of the
Unicode Standard, Version 4.0.

LineBreak.txt
Many changes for consistency and to better match best practice in existing
line break implementations. See the Modification History in UAX #14 for
details.

PropertyAliases.txt
Addition of some property categories, with the order of proper ty aliases
adjusted for clarity.
Addition of alias entries for the new STerm and Variation_Selector properties.

PropertyValueAliases.txt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

55 of 62 10/23/2008 3:39 PM

Addition of specific values and aliases for age.
Addition of second alias for the Cyrillic Supplement block.
Addition of second alias for the Inseparable value of the Line Break property.
Revision of the all the Normalization Quick Check properties, to replace the
pseudo-property "qc" with actual specific properties with expl icit enumerated
value aliases.
Addition of Katakana_Or_Hiragana script alias.
Fixed None, so it is used uniformly in first aliases instead of being the only
n/a.

PropList.txt
Major revision of the Other_Math property to align the derived Math property
with the explanation given in UTR #25.
Extension of the list of characters with the Soft_Dotted property.
Significant update of the list of characters with the Terminal_Punctuation
property.
Addition of a new STerm property, to simplify the description used in UAX
#29.
Addition of the Variation_Selector property.
Reassignment of the list of characters with the
Other_Default_Ignorable_Code_Point property, to enable simpler derivation.
Addition of ZWNJ/ZWJ (U+200C..U+200D) to Other_Grapheme_Extend.

Scripts.txt
Significant revision of script assignments, to assign specific script values to
many characters that previously had the Common script value.
Addition of the Katakana_Or_Hiragana script value, with list of characters for
it.
The Script=Common values are now listed explicitly.

SpecialCasing.txt
Correction of typo in comments.

Unicode 4.0.0

General:

For details on changes made to the UCD for Unicode 4.0.0, see Section D.4, "Changes
from Unicode Version 3.2 to Version 4.0" in Appendix D of The Unicode Standard,
Version 4.0.

The Hyphen property is now Stabilized.
Two Khmer characters were deprecated and four others were strongly discouraged.

Common file changes:

Default property values were more precisely defined, for code points not explicitly listed
in the data files.

Changes in specific files:

UnicodeData.txt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

56 of 62 10/23/2008 3:39 PM

Numeric_Type=Decimal was aligned with General_Category=Nd.
The General_Category value of the modifier letters U+02B9..U+02BA,
U+02C6..U+02CF was changed to Lm.

Unihan.txt
CJK numeric values were added.
A new Unicode_Radical_Stroke property was defined.

ArabicShaping.txt
U+06DD ARABIC END OF AYAH was changed to Join_Type=Non_Joining.

Blocks.txt
Added new block definitions.

DerivedCoreProperties.txt
Modifed the derivation of Grapheme_Extend to remove halfwidth katakana
marks and most gc=Mc (except as needed to preserve canonical
equivalences).

HangulSyllableType.txt
A new data file, defining the Hangul_Syllable_Type property.

LineBreak.txt
Modified to add lb=NL and lb=WJ values.

PropList.txt
Other_Default_Ignorable_Code_Point was extended to include Hangul filler
characters, soft hyphen (U+00AD), the combining grapheme joiner (U+034F),
and zero width space (U+200B).
U+06DD ARABIC END OF AYAH and U+070F SYRIAC ABBREVIATION
MARK were removed from Other_Default_Ignorable_Code_Point.

PropertyValueAliases.txt
Added property value aliases for new blocks and scripts.
Added property value aliases for other new properties.
Added property value aliases NL and WJ for Line_Break.

Scripts.txt
Added Script property values for newly encoded scripts.
Added a Script property value for Braille.

SpecialCasing.txt
Fixes were made for Turkish and Lithuanian.

Unicode 3.2.0

General:

For details on changes made to the UCD for Unicode 3.2.0, see Section D.3, "Changes
from Unicode Version 3.1 to Version 3.2" in Appendix D of The Unicode Standard,
Version 4.0.

Added a new subdirectory "extracted". It contains the data files for Derived
Extracted Properties.

Changes in specific files:

Appropriate data files were updated to include the 1,016 new characters added in

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

57 of 62 10/23/2008 3:39 PM

Unicode 3.2.0.

UnicodeData.txt
Updated ISO 6429 names for control functions to match the currently
published version of that standard.
Changed the General_Category value for Mongolian free variation selectors
(U+180B..U+180D) from Cf to Mn.
Changed the General_Category value for U+0B83 TAMIL SIGN VISARGA
(aytham) from Mc to Lo.
Changed the General_Category value for U+06DD ARABIC END OF AYAH
from Me to Cf.
Changed the General_Category value for U+17D7 KHMER SIGN LEK TOO
from Po to Lm.
Changed the General_Category value for U+17DC KHMER SIGN
AVAKRAHASANYA from Po to Lo.
Changed canonical decomposition for U+F951 from 96FB to 964B (see
Corrigendum #3: U+F951 Normalization).

PropertyAliases.txt
A new data file, defining aliases for properties.

PropertyValueAliases.txt
A new data file, defining aliases for property values.

Unicode 3.1.1

Changes in specific files:

UnicodeData.txt
Modification of the ISO 10646 annotation (in the ISO_Comment f ield)
regarding Greek tonos, affecting entries for U+0301 and U+030D.

Unicode 3.1.0

General:

For details on changes made to the UCD for Unicode 3.1.0, see Section D.2, "Changes
from Unicode Version 3.0 to Version 3.1" in Appendix D of The Unicode Standard,
Version 4.0.

Changes in specific files:

Appropriate data files were updated to include the 2,237 new entries, to cover new
individual characters and the new ranges of Unified CJK Ideographs encoded in Unicode
3.1.0.

UnicodeData.txt
Changed the General_Category value of U+16EE..U+16F0 (Runic golden
numbers) from No to Nl.

Unicode 3.0.1

General:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

58 of 62 10/23/2008 3:39 PM

Added 5- and 6-digit representation of code points past U+FFFF.

Changes in specific files:

UnicodeData.txt
Added Private Use range definitions for Planes 15 and 16.
Minor additions for the 10646 annotations (ISO_Comment field).

Unicode 3.0.0

Modifications made for Version 3.0.0 of UnicodeData.txt include many new characters
and a number of property changes. These are summarized in Appendix D of The
Unicode Standard, Version 3.0.

Unicode 2.1.9

Modifications made for Version 2.1.9 of UnicodeData.txt include:

Corrected combining class for U+05AE HEBREW ACCENT ZINOR.
Corrected combining class for U+20E1 COMBINING LEFT RIGHT ARROW
ABOVE.
Corrected combining class for U+0F35 and U+0F37 to 220.
Corrected combining class for U+0F71 to 129.
Added a decomposition for U+0F0C TIBETAN MARK DELIMITER TSHEG BSTAR.
Added decompositions for several Greek symbol letters: U+03D0..U+03D2,
U+03D5, U+03D6, U+03F0..U+03F2.
Removed decompositions from the conjoining jamo block: U+1100..U+11F8.
Changes to decomposition mappings for some Tibetan vowels for consistency in
normalization. (U+0F71, U+0F73, U+0F77, U+0F79, U+0F81).
Updated the decomposition mappings for several Vietnamese characters with two
diacritics (U+1EAC, U+1EAD, U+1EB6, U+1EB7, U+1EC6, U+1EC7, U+1ED8,
U+1ED9), so that the recursive decomposition can be generated directly in
canonically reordered form (not a normative change).
Updated the decomposition mappings for several Arabic compatibility characters
involving shadda (U+FC5E..U+FC62, U+FCF2..U+FCF4), and two Latin characters
(U+1E1C, U+1E1D), so that the decompositions are generated directly in
canonically reordered form (not a normative change).
Changed Bidi_Class values for: U+00A0 NO-BREAK SPACE, U+2007 FIGURE
SPACE, U+2028 LINE SEPARATOR.
Changed Bidi_Class values for extenders of General_Category Lm: U+3005,
U+3021..U+3035, U+FF9E, U+FF9F.
Changed the General_Category and Bidi_Class values for the Greek numeral
signs: U+0374, U+0375.
Corrected the General_Category value for U+FFE8 HALFWIDTH FORMS LIGHT
VERTICAL.
Added Unicode 1.0 names for many Tibetan characters (informative).

Unicode 2.1.8

Modifications made for Version 2.1.8 of UnicodeData.txt include:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

59 of 62 10/23/2008 3:39 PM

Added combining class 240 for U+0345 COMBINING GREEK YPOGEGRAMMENI
so that decompositions involving iota subscript are derivable directly in canonically
reordered form; this also has a bearing on simplification of casing of polytonic
Greek.
Changes were made in decompositions related to Greek tonos. These result from
the clarification that monotonic Greek "tonos" should be equated with U+0301
COMBINING ACUTE, rather than with U+030D COMBINING VERTICAL LINE
ABOVE. (All Greek characters in the Greek block involving "tonos"; some Greek
characters in the polytonic Greek in the 1FXX block.)
Changed decompositions involving dialytika tonos. (U+0390, U+03B0)
Changed ternary decompositions to binary. (U+0CCB, U+FB2C, U+FB2D) These
changes simplify normalization.
Removed canonical decomposition for the generic candrabindu (U+0310).
Corrected error in canonical decomposition for U+1FF4.
Added compatibility decompositions to clarify collation tables. (U+2100, U+2101,
U+2105, U+2106, U+1E9A)
A series of General_Category changes to assist the convergence of the Unicode
definition of identifier with ISO TR 10176:

So > Lo: U+0950, U+0AD0, U+0F00, U+0F88..U+0F8B
Po > Lo: U+0E2F, U+0EAF, U+3006
Lm > Sk: U+309B, U+309C
Po > Pc: U+30FB, U+FF65
Ps/Pe > Mn: U+0F3E, U+0F3F

A series of Bidi_Class changes for consistency:
L > ET: U+09F2, U+09F3
ON > L: U+3007
L > ON: U+0F3A..U+0F3D, U+037E, U+0387

Add case mapping: U+01A6 ↔ U+0280
Updated symmetric swapping value for guillemets: U+00AB, U+00BB, U+2039,
U+203A.
Changes to combining class values. Most Indic fixed position class nonspacing
marks were changed to combining class 0. This fixes some inconsistencies in how
canonical reordering would apply to Indic scripts, including T ibetan. Indic interacting
top/bottom fixed position classes were merged into single (non-zero) classes as
part of this change. Tibetan subjoined consonants are changed from combining
class 6 to combining class 0. Thai pinthu (U+0E3A) moved to combining class 9.
Moved two Devanagari stress marks into generic above and below combining
classes (U+0951, U+0952).
Corrected the placement of semicolon near the symmetric swapping field. This
affected U+FA0E and other scattered positions to U+FA29.

Version 2.1.7

This version was for internal change tracking only, and never publicly released.

Version 2.1.6

This version was for internal change tracking only, and never publicly released.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

60 of 62 10/23/2008 3:39 PM

Unicode 2.1.5

Modifications made for Version 2.1.5 of UnicodeData.txt include:

Changed decomposition for U+FF9E and U+FF9F so that correct collation
weighting will automatically result from the canonical equivalences.
Removed canonical decompositions for U+04D4, U+04D5, U+04D8, U+04D9,
U+04E0, U+04E1, U+04E8, U+04E9 (the implication being that no canonical
equivalence is claimed between these 8 characters and similar Latin letters), and
updated 4 canonical decompositions for U+04DB, U+04DC, U+04EA, U+04EB to
reflect the implied difference in the base character.
Added Pi and Pf as General_Category values and assigned these values to the
relevant quotation marks, based on the Unicode Technical Corrigendum on
Quotation Characters.
Updated many Bidi_Class values, following the advice of the ad hoc committee on
bidi, to make the Bidi_Class values of compatibility characters more consistent.
Changed General_Category values of several Tibetan characters: U+0F3E,
U+0F3F, U+0F88..U+0F8B to make them non-combining, reflecting the combined
opinion of Tibetan experts.
Added case mapping for U+03F2.
Corrected case mapping for U+0275.
Added titlecase mappings for U+03D0, U+03D1, U+03D5, U+03D6, U+03F0..
U+03F2.
Corrected compatibility label for U+2121.
Add specific entries for all the CJK compatibility ideographs, U+F900..U+FA2D, so
the canonical decomposition for each can be carried in the database.

Version 2.1.4

This version was for internal change tracking only, and never publicly released.

Version 2.1.3

This version was for internal change tracking only, and never publicly released.

Unicode 2.1.2

Modifications made in updating UnicodeData.txt to Version 2.1.2 for the Unicode
Standard, Version 2.1 (from Version 2.0) include:

Added two characters (U+20AC and U+FFFC).
Amended Bidi_Class values for U+0026, U+002E, U+0040, U+2007.
Corrected case mappings for U+018E, U+019F, U+01DD, U+0258, U+0275,
U+03C2, U+1E9B.
Changed combining order class for U+0F71.
Corrected canonical decompositions for U+0F73, U+1FBE.
Changed decomposition for U+FB1F from compatibility to canonical.
Added compatibility decompositions for U+FBE8, U+FBE9, U+FBF9..U+FBFB.
Corrected compatibility decompositions for U+2469, U+246A, U+3358.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

61 of 62 10/23/2008 3:39 PM

Version 2.1.1

This version was for internal change tracking only, and never publicly released.

Unicode 2.0.0

The modifications made in updating UnicodeData.txt for the Unicode Standard, Version
2.0 include:

Changed decompositions for Greek characters with tonos to use U+030D.
Removed entries for the Unicode 1.1 Hangul Syllables block (U+3400..U+4DFF);
mapping to the characters in the new Hangul Syllables block are in a separate
table.
Marked compatibility decompositions with additional tags.
Changed old tag names for clarity.
Revision of decompositions to use first-level decomposition, instead of maximal
decomposition.
Correction of all known errors in decompositions from earlier versions.
Added control code names (as comments in the Unicode_1_Name field).
Added Hangul Jamo decompositions.
Added Number category to match properties list in book.
Fixed General_Category values of Koranic Arabic marks.
Fixed General_Category values of precomposed characters to match
decomposition where possible.
Added Hebrew cantillation marks and the Tibetan script.
Added place holders for ranges such as CJK Ideographic Area and the Private Use
Area.
Added General_Category values Me, Sk, Pc, Nl, Cs, Cf, and rectified a number of
mistakes in the database.

Acknowledgments

Mark Davis and Ken Whistler are the authors of the initial version and have added to and
maintained the text of this annex. Julie Allen provided editorial suggestions for
improvement of the text. Over the years, many members of the UTC have participated in
the review of the UCD and its documentation.

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 3

Proposed update for Unicode 5.2.0.
Completely reorganized and rewritten, to include all the content from the obsoleted

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

62 of 62 10/23/2008 3:39 PM

UCD.html.
[Temporary] Added review note at top of text, and modified review notes to use css
"reviewnote" class. Added "changedspan" to modifications section.
Added Section 5.10 re deprecation.

Revision 2

Initial approved version for Unicode 5.1.0.

Revision 1

Initial draft.

Copyright © 2000-2008 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

