
UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

1 of 23 10/23/2008 6:11 PM

 Technical Reports

Proposed Update

Unicode Technical Report #17

UNICODE CHARACTER ENCODING MODEL

Authors Ken Whistler (ken@unicode.org), Mark Davis
(markdavis@google.com), Asmus Freytag
(asmus@unicode.org)

Date 2008-08-25
This Version http://www.unicode.org/reports/tr17/tr17-6.html
Previous Version http://www.unicode.org/reports/tr17/tr17-5.html
Latest Version http://www.unicode.org/reports/tr17/
Revision 6

Summary

This document clarifies a number of the terms used to describe character
encodings, and where the different forms of Unicode fit in. It elaborates the
Internet Architecture Board (IAB) three-layer “text stream” definitions into a
four-layer structure.

Status

This document is a proposed update of a previously approved Unicode Technical
Report. This document may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this
document as other than a work in progress.

A Unicode Technical Report (UTR) contains informative material.
Conformance to the Unicode Standard does not imply conformance to any
UTR. Other specifications, however, are free to make normative references to
a UTR.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions].

Contents

The Character Encoding Model1.

rick@unicode.org
Text Box
L2/08-385

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

2 of 23 10/23/2008 6:11 PM

Abstract Character Repertoire
2.1 Versioning
2.2 Characters versus Glyphs
2.3 Compatibility Characters
2.4 Subsets

2.

Coded Character Set (CCS)
3.1 Character Naming
3.2 Code Spaces

3.

Character Encoding Form (CEF)4.
Character Encoding Scheme (CES)

5.1 Byte Order
5.

Character Maps6.
Transfer Encoding Syntax7.
Data Types and API Binding

8.1 Strings
8.

Definitions and Acronyms9.
References
Acknowledgements
Modifications

1 The Character Encoding Model

This report describes a model for the structure of character encodings. The
Unicode Character Encoding Model places the Unicode Standard in the context of
other character encodings of all types, as well as existing models such as the
character architecture promoted by the Internet Architecture Board (IAB) for use on
the internet, or the Character Data Representation Architecture [CDRA] defined by
IBM for organizing and cataloging its own vendor-specific array of character
encodings. This document focuses on how these models should be extended and
clarified to cover all the aspects of the Unicode Standard and ISO/IEC 10646
[10646]. (For a list of common acronyms used in this text, see Section 9
Definitions and Acronyms).

The four levels of the Unicode Character Encoding Model can be summarized as:

ACR: Abstract Character Repertoire
the set of characters to be encoded, for example, some alphabet or
symbol set

CCS: Coded Character Set
a mapping from an abstract character repertoire to a set of nonnegative
integers

CEF: Character Encoding Form
a mapping from a set of nonnegative integers that are elements of a CCS
to a set of sequences of particular code units of some specified width,
such as 32-bit integers

CES: Character Encoding Scheme
a reversible transformation from a set of sequences of code units (from
one or more CEFs to a serialized sequence of bytes)

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

3 of 23 10/23/2008 6:11 PM

In addition to the four individual levels, there are two other useful concepts:

CM: Character Map
a mapping from sequences of members of an abstract character
repertoire to serialized sequences of bytes bridging all four levels in a
single operation.

TES: Transfer Encoding Syntax
a reversible transform of encoded data. This data , which may or may
not contain textual data

The IAB model, as defined in [RFC 2130], distinguishes three levels: Coded
Character Set (CCS), Character Encoding Scheme (CES), and Transfer Encoding
Syntax (TES). However, four levels need to be defined to adequately cover the
distinctions required for the Unicode character encoding model. One of these, the
Abstract Character Repertoire, is implicit in the IAB model. The Unicode model also
gives the TES a separate status outside the model, while adding an additional level
between the CCS and the CES.

The following sections give sample definitions, explanations and examples for
each of the four levels, as well as the Character Map, and the Transfer Encoding
Syntax. These are followed by a discussion of API Binding issues and a complete
list of acronyms used in this document.

2 Abstract Character Repertoire

A character repertoire is defined as an unordered set of abstract characters to be
encoded. The word abstract means that these objects are defined by convention.
In many cases a repertoire consists of a familiar alphabet or symbol set.

Repertoires come in two types: fixed and open. For In most character encodings,
the repertoire is fixed, and often small. Once the repertoire is decided upon, it is
never changed. Addition of a new abstract character to a given repertoire creates a
new repertoire, which then will be given its own catalogue number, constituting a
new object. For the Unicode Standard, on the other hand, the repertoire is
inherently open. Because Unicode is intended to be the universal encoding, any
abstract character that ever could be encoded is potentially a member of the set to
be encoded, whether that character is currently known or not.

Some other character sets use a limited notion of open repertoires. For example,
Microsoft has on occasion extended the repertoire of its Windows character sets by
adding a handful of characters to an existing repertoire. This occurred when the
EURO SIGN was added to the repertoire for a number of Windows character sets, for
example. For suggestions on how to map the unassigned characters of open
repertoires, see [CharMapML].

Repertoires are the entities that get CS (“character set”) values in the IBM CDRA
architecture.

Examples of Character Repertoires:

the Japanese syllabaries and ideographs of JIS X 0208 (CS 01058) [fixed]

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

4 of 23 10/23/2008 6:11 PM

the Western European alphabets and symbols of Latin-1 (CS 00697) [fixed]
the POSIX portable character repertoire [fixed]
the IBM host Japanese repertoire (CS 01001) [fixed]
the Windows Western European repertoire [open]
the Unicode/10646 repertoire [open]

2.1 Versioning

The Unicode Standard versions its repertoire by publication of major and minor
editions of the standard: 1.0, 1.1, 2.0, 2.1, 3.0,... The repertoire for each version is
defined by the enumeration of abstract characters included in that version.

Repertoire extensions for the Unicode Standard are now strictly additive, even
though there were several discontinuities to the earliest versions (1.0 and 1.1) and
affecting backwards compatibility to them. The primary reason for these was ,
because of the merger of the [Unicode] with [10646]. Starting with version 2.0 and
continuing forward indefinitely into future versions, once included, no character is
ever removed from the repertoire, as specified in the Unicode Stability Policy
[Stability]. As of Version 2.0 the Unicode Character Encoding Stability Policy
[Stability] guarantees that no character is ever removed from the repertoire.

Note: The Unicode Character Encoding Stability Policy also constrains
changes to the standard in other ways. For example, many character
properties are subject to consistency constraints, and some properties
cannot be changed once they are assigned. Guarantees for the stability of
normalization prevent the change or addition of decomposition mappings for
existing encoded characters, and also constrain what kinds of characters can
be added to the repertoire in future versions.

The versioning of the repertoire is different from the versioning of the Unicode
Standard as a whole, in particular the Unicode Character Database [UCD], which
defines Character Properties (see also [PropModel]). There are update versions of
the text of the Unicode Standard and of the Unicode Character Database between
major and minor versions of the Unicode Standard. While these update versions
may amend character properties and descriptions of character behavior, they do
not add to the character repertoire. For more information about versions of the
Unicode Standard see Versions of the Unicode Standard [Versions].

ISO/IEC 10646 has a different mechanism for extending its repertoire. The 10646
repertoire is extendedextends its repertoire by a formal amendment process. As
each individual amendment containing additional characters is published, it
extends the 10646 repertoire. The repertoires of the Unicode Standard and
ISO/IEC 10646 are kept in alignment by coordinating the publication of major
versions of the Unicode Standard with the publication of a well-defined list of
amendments for 10646 or with a major revision and republication of 10646.

2.2 Characters versus Glyphs

The elements of the character repertoire are abstract characters. Characters are
different from glyphs, which are the particular images representing a character or
part of a character. Glyphs for the same character may have very different shapes,

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

5 of 23 10/23/2008 6:11 PM

as shown in the following examples Figure 1 for the letter a.

Figure 1

Character Sample Glyphs

Glyphs do not correspond one-forto-one with characters. For example, a
sequence of “f” followed by “i” may be represented displayed with a single glyph,
called an fi ligature. Notice that the shapes are merged together, and the dot is
missing from the “i” in the following example: as shown in Figure 2.

Figure 2

Character Sequence Sample Glyph

On the other hand, the same image as the fi ligature could conceivably also be
achieved by a sequence of two glyphs with the right shapes, as in the hypothetical
example shown in Figure 3. The choice of whether to use a single glyph or a
sequence of two is up to determined by the font containing the glyphs and the
rendering software.

Figure 3

Character Sequence Possible Glyph Sequence

Similarly, an accented character could be represented by a single glyph, or by
separate component glyphs positioned appropriately. In addition, any of the
accents can also be considered characters in their own right, in which case a
sequence of characters can also correspond to different possible glyph
representations:

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

6 of 23 10/23/2008 6:11 PM

Figure 4

Character Sequence Possible Glyph Sequences

In non-Latin scripts, the connection between glyphs and characters is at times
even less direct. Glyphs may be required to change their shape, position and width
depending on the surrounding glyphs. Such glyphs are called contextual forms.
For example, the Arabic character heh has the four contextual glyphs shown in
Figure 5.

Figure 5

Character Possible Contextual Glyphs, depending on context Shapes

In Arabic and other scripts, justification of text inside fixed margins is not done
justified by elongating the horizontal parts of certain glyphs, rather than by
expanding the spaces between words. Instead, certain glyphs are stretched by
elongating their horizontal parts. Ideally this is implemented by changing the
shape of the glyph depending on the desired width. On some systems, this
stretching is approximated by inserting extra connecting, dash-shaped glyphs
called kashidas, as shown in Figure 6. In such a case, a single character may
conceivably correspond to a whole sequence of kashidas + glyphs + kashidas.

Figure 6

Character Sequence of glyphs

In other cases, a single character must correspond to two glyphs, because those
two glyphs are positioned around other letters. See the Tamil characters in Figure
7 below. If one of those glyphs forms a ligature with other characters, then there
is a situation where what is a conceptual part of a character corresponds to visual
part of a glyph. If a character (or any part of it) corresponds to a glyph (or any part
of it), then one says that the character contributes to the glyph.

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

7 of 23 10/23/2008 6:11 PM

Figure 7

Character Split Glyphs

For the general case, The correspondence between glyphs and characters is
generally not one-to-one, and cannot be predicted from the text alone. Whether a
particular string of characters is rendered by a particular sequence of glyphs will
depend on the sophistication of the host operating system and the font. The
ordering of glyphs also does not necessarily correspond to the ordering of the
characters. In particular the right-to-left scripts like Arabic and Hebrew give rise
to complex reordering. See UAX #9: The Unicode Bidirectional Algorithm [Bidi].

2.3 Compatibility Characters

For historical reasons, abstract character repertoires may include many entities
that normally would not be considered appropriate members of an abstract
character repertoire. These so-called compatibility characters may include ligature
glyphs, contextual form glyphs, glyphs that vary by width, sequences of
characters, and adorned glyphs, such as circled numbers. Figure 8 lists some
examples in which these are encoded as single characters in Unicode. As with
glyphs, there are not necessarily one-to-one relationships between characters and
code points.

What an end-user thinks of as a single character (also called a grapheme cluster in
the context of Unicode) may in fact be represented by multiple code points;
conversely, a single code point may correspond to multiple characters. Here are
some examples:

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

8 of 23 10/23/2008 6:11 PM

Figure 8

Characters Code Points Notes
Arabic contextual form glyphs encoded
as compatibility characters in Unicode,
also known as presentation forms.
Ligature glyph encoded as compatibility
character in Unicode and several
character sets
A single code point representing a
sequence of three characters. (encoded
as compatibility character in Unicode
and several character sets).

The Devanagari syllable ksha
represented by three code points.

G-ring represented by two code points.

For more information on grapheme cluster boundaries see UAX# 29: Unicode Text
Boundaries Segmentation [Boundaries].

2.4 Subsets

Unlike most character repertoires, the synchronized repertoire of Unicode and
10646 is intended to be universal in coverage. Given the complexity of many
writing systems, in practice this implies that nearly all implementations will fully
support only some subset of the total repertoire, rather than all the characters.

Formal subset mechanisms are occasionally seen in implementations of some
Asian character sets, where for example, the distinction between “Level 1 JIS” and
“Level 2 JIS” support refers to particular parts of the repertoire of the JIS X 0208
kanji characters to be included in the implementation.

Subsetting is a major formal aspect of ISO/IEC 10646. The standard includes a set
of internal catalog numbers for named subsets, and further makes a distinction
between subsets that are fixed collections and those that are open collections,
defined by a range of code positions. Open collections are extended any time an
addition to the repertoire gets encoded in a code position between the range limits
defining the collection. When the last of its open code positions is filled, an open
collection automatically becomes a fixed collection.

The European Committee for Standardization (CEN) has defined several
multilingual European subsets of ISO/IEC 10646-1 (called MES-1, MES-2, MES-3A,
and MES-3B). MES-1 and MES-2 have been added as named fixed collections in
10646.

The Unicode Standard specifies neither predefined subsets nor a formal syntax for
their definition. It is left to each implementation to define and support the subset

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

9 of 23 10/23/2008 6:11 PM

of the universal repertoire that it wishes to interpret.

3 Coded Character Set (CCS)

A coded character set is defined to be a mapping from a set of abstract characters
to the set of nonnegative integers. This range of integers need not be contiguous.
In the Unicode Standard, the concept of the Unicode scalar value (cf.see definition
D76, in Chapter 3, "Conformance" of [Unicode]) explicitly defines such a
noncontiguous range of integers.

An abstract character is defined to be in a coded character set if the coded
character set maps from it to an integer. That integer is the code point to which
the abstract character has been assigned. That abstract character is then an
encoded character.

Coded character sets are the basic object that both ISO and vendor character
encoding committees produce. They relate a defined repertoire to nonnegative
integers, which then can be used unambiguously to refer to particular abstract
characters from the repertoire.

A coded character set may also be known as a character encoding, a coded
character repertoire, a character set definition, or a code page.

In the IBM CDRA architecture, CP (“code page”) values refer to coded character
sets. Note that this use of the term code page is quite precise and limited. It
should not be—but generally is—confused with the generic use of code page to
refer to character encoding schemes.

Examples of Coded Character Sets:

Name Repertoire
JIS X 0208 assigns pairs of integers known as kuten points
ISO/IEC 8859-1 ASCII plus Latin-1
ISO/IEC 8859-2 different repertoire than 8859-1, although both

use the same code space
Code Page 037 same repertoire as 8859-1; different integers

assigned to the same characters
Code Page 500 same repertoire as 8859-1 and Code Page 037;

different integers
The Unicode Standard,
Version 2.0

exactly the same repertoire and mapping

ISO/IEC 10646-1:1993
plus amendments 1-7
The Unicode Standard,
Version 3.0

exactly the same repertoire and mapping

ISO/IEC 10646-1:2000
The Unicode Standard,
Version 4.0

exactly the same repertoire and mapping

ISO/IEC 10646:2003

This document does not attempt to list all versions of the Unicode Standard. See

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

10 of 23 10/23/2008 6:11 PM

Versions of the Unicode Standard [Versions] for the complete list of versions and
for information how they match with particular versions and amendments of
10646.

3.1 Character Naming

SC2, the JTC1 subcommittee responsible for character coding, requires the
assignment of a unique character name for each abstract character in the
repertoire of its coded character sets. This practice is not generally followed in
vendor coded character sets or in the encodings produced by standards
committees outside SC2, in which any names provided for characters, are often
variable and annotative, rather than normative parts of the character encoding.

The main rationale for the SC2 practice of character naming was is to provide a
mechanism to unambiguously identify abstract characters across different
repertoires given different mappings to integers in different coded character sets.
Thus LATIN SMALL LETTER A WITH GRAVE would be the same abstract character, even though it
occurs in different repertoires and was is assigned different integers in different
coded character sets.

The IBM CDRA [CDRA], on the other hand, ensures character identity across
different coded character sets (or code pages) by assigning a catalogue number
known as a GCGID (graphic character glyphic identifier), to every abstract character
used in any of the repertoires accounted for by the CDRA. Abstract characters that
have the same GCGID in two different coded character sets are by definition the
same character. Other vendors have made use of similar internal identifier systems
for abstract characters.

The advent of Unicode/10646 has largely rendered such schemes obsolete. The
identity of abstract characters in all other coded character sets is increasingly
being defined by reference to Unicode/10646 itself. Part of the pressure to
include every “character” from every existing coded character set into the Unicode
Standard results from the desire by many to get rid of subsidiary mechanisms for
tracking bits and pieces, odds and ends that are not part of Unicode, and instead
just use the Unicode Standard as the universal catalog of characters.

3.2 Code Spaces

The range of nonnegative integers used for the to mapping of abstract characters
defines a related concept of code space. Traditional boundaries for types of code
spaces are closely tied to the encoding forms (see below), because the mappings
of abstract characters to nonnegative integers are done with particular encoding
forms in mind. Examples of significant code spaces are 0..7F, 0..FF, 0..FFFF,
0..10FFFF, 0..7FFFFFFF, 0..FFFFFFFF.

Code spaces can also have fairly elaborate structures, depending on whether the
range of integers is conceived of as contiguous, or whether particular ranges of
values are disallowed. Most complications result from considerations of the
encoding form for characters. When an encoding form specifies that the integers
that are
being encoded are to be serialized as sequences of bytes, there are often
constraints placed on the particular values that those bytes may have. Most

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

11 of 23 10/23/2008 6:11 PM

commonly such constraints disallow byte values corresponding to control
functions. In terms of code space, such constraints on byte values result in
multiple non-contiguous ranges of integers that are disallowed for mapping a
character repertoire. (See [Lunde] for two-dimensional diagrams of typical code
spaces for East Asian coded character sets implementing such constraints.)

Note: In ISO standards the term octet is used for an 8-bit byte. In this
document, the term byte is used consistently for an 8-bit byte only.

4 Character Encoding Form (CEF)

A character encoding form is a mapping from the set of integers used in a CCS to
the set of sequences of code units. A code unit is an integer occupying a specified
binary width in a computer architecture, such as an 8-bit byte. The encoding form
enables character representation as actual data in a computer. The sequences of
code units do not necessarily have the same length.

A character encoding form whose sequences are all of the same length is
known as fixed width.
A character encoding form whose sequences are not all of the same length is
known as variable width.

A character encoding form for a coded character set is defined to be a character
encoding form that maps all of the encoded characters for that coded character
set.

Note: In many cases, there is only one character encoding form for a given
coded character set. In some such cases only the character encoding form
has been specified. This leaves the coded character set implicitly defined,
based on an implicit relation between the code unit sequences and integers.

When interpreting a sequence of code units, there are three possibilities:

The sequence is illegal ill-formed. There are two variants of this:
In the first variant, The sequence is incomplete or otherwise fails to match
the specification of the encoding form. For example,

0xA3 is incomplete in CP950. Unless followed by another byte of the
right form, it is illegal ill-formed.
0xD800 is incomplete in UnicodeUTF-16. Unless followed by another
16-bit value of the right form, it is illegal ill-formed.
0xC0 is ill-formed in UTF-8. It cannot be the initial byte (or for that
matter, any byte) of a well-formed UTF-8 sequence.

For details on ill-formed sequences for UTF-8 and UTF-16, see Section 3.9,
Unicode Encoding Forms, in [Unicode].
In the second variant, the sequence is complete, but explicitly illegal. For
example,

0xFFFF is illegal in Unicode. This value can never occur in valid Unicode
text, and will never be assigned.

1.

The sequence represents a valid code point, but is unassigned. This sequence2.

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

12 of 23 10/23/2008 6:11 PM

may be given an assignment in some future, evolved version of the character
encoding. For suggestions on how to handle unassigned characters in
mapping, see [CharMapML]. For example,

0xA3 0xBF is unassigned in CP950, as of the year 1999.
0x0EDE is unassigned in Unicode, V3 5.0

The source sequence is assigned: it represents a valid encoded character.
There are twothree variants of this:
First is a standardtypical assigned character. For example,

0x0EDD is assigned in Unicode, V3 5.0
The second variant is a user-defined character. For example,

0xE000 is an assigned user-defined character whose semantic
interpretation is left to agreement between parties outside of the
context of the standard.

The third type is peculiar to the Unicode Standard: the noncharacter. This is a
kind of internal-use user-defined character, not intended for public
interchange. For example,

0xFFFF is an assigned noncharacter in Unicode 5.0

3.

The encoding form for a CCS may result in either fixed-width or variable-width
sequences of code units associated with abstract characters. The encoding form
may involve an arbitrary reversible mapping of the integers of the CCS to a set of
code unit sequences.

Encoding forms come in various types. Some of them are exclusive to the
Unicode/10646, whereas others represent general patterns that are repeated over
and over for hundreds of coded character sets. Some of the more important
examples of encoding forms follow.

Examples of fixed-width encoding forms:

Type Each character
encoded as

Notes

 7-bit a single 7-bit
quantity

example: ISO 646

 8-bit G0/G1 a single 8-bit
quantity

with constraints on use of C0 and C1
spaces

 8-bit a single 8-bit
quantity

with no constraints on use of C1 space

 8-bit EBCDIC a single 8-bit
quantity

with the EBCDIC conventions rather
than ASCII conventions

16-bit (UCS-2) a single 16-bit
quantity

within a code space of 0..FFFF

32-bit (UCS-4) a single 32-bit
quantity

within a code space 0..7FFFFFFF

32-bit (UTF-32) a single 32-bit
quantity

within a code space of 0..10FFFF

16-bit DBCS process
code

a single 16-bit
quantity

example: UNIX widechar
implementations of Asian CCS's

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

13 of 23 10/23/2008 6:11 PM

32-bit DBCS process
code

a single 32-bit
quantity

example: UNIX widechar
implementations of Asian CCS's

DBCS Host two 8-bit
quantities

following IBM host conventions

Examples of variable-width encoding forms:

Name Characters are encoded as Notes
UTF-8 a mix of one to four 8-bit code

units in Unicode
and one to six code units in
10646

used only with
Unicode/10646

UTF-16 a mix of one to two 16 bit code
units

used only with
Unicode/10646

The encoding form defines one of the fundamental aspects of an encoding: how
many code units are there for each character. The number of code units per
character is important to internationalized software. Formerly this was equivalent
to how many bytes each character was represented by. With the introduction by
Unicode and 10646 of wider code units for UCS-2, UTF-16, UCS-4, and UTF-32,
this is generalized to two pieces of information: a specification of the width of the
code unit, and the number of code units used to represent each character. The
UCS-2 encoding form, which is associated with ISO/IEC 10646 and can only
express characters in the BMP, is a fixed-width encoding form. In contrast, UTF-16
uses either one or two code units and is able to cover the entire code space of
Unicode.

UTF-8 provides a good example. In UTF-8, the fundamental code unit used for
representing character data is 8 bits wide (that is, a byte or octet). The width map
for UTF-8 is:

0x00..0x7F → 1 byte
0x80..0x7FF → 2 bytes
0x800..0xD7FF, 0xE000..0xFFFF → 3 bytes
0x10000 .. 0x10FFFF → 4 bytes

Examples of encoding forms as applied to particular coded character sets:

Name Encoding forms
JIS X 0208 generally transformed from the kuten notation to a 16-bit “JIS

code” encoding form, for example "nichi", 38 92 (kuten) →
0x467C JIS code

ISO 8859-1 has the 8-bit G0/G1 encoding form
CP 037 8-bit EBCDIC encoding form
CP 500 8-bit EBCDIC encoding form
US ASCII 7-bit encoding form
ISO 646 7-bit encoding form
Windows CP
1252

8-bit encoding form

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

14 of 23 10/23/2008 6:11 PM

Unicode 4.0,
5.0

UTF-16 (default), UTF-8, or UTF-32 encoding form

Unicode 3.0 either UTF-16 (default) or UTF-8 encoding form
Unicode 1.1 either UCS-2 (default) or UTF-8 encoding form
ISO/IEC
10646, :2003

depending on the declared implementation levels, may have
UCS-2, UCS-4, UTF-16, or UTF-8.

ISO/IEC
10646:2008

UTF-8, UTF-16, or UTF-32

Note: that Shift-JIS is not an encoding form. It is discussed in the next
section.

Note: The pending republication of ISO/IEC 10646 2nd Edition (ISO/IEC
10646:2008) has dropped implementation levels, and its use and discussion
of character encoding forms is closely aligned with Unicode 5.0.

5 Character Encoding Scheme (CES)

A character encoding scheme (CES) is a reversible transformation of sequences of
code units to sequences of bytes in one of three ways:

1. A simple CES uses a mapping of each code unit of a CEF into a unique
serialized byte sequence in order.

2. A compound CES uses two or more simple CESs, plus a mechanism to shift
between them. This mechanism includes bytes (for example single shifts,
SI/SO, or escape sequences) that are not part of any of the simple CESs, but
which are defined by the character encoding architecture and which may
require an external registry of particular values (such as for the ISO 2022
escape sequences).

The nature of a compound CES means there may be different sequences of
bytes corresponding to the same sequence of code units. While these
sequences are not unique, the original sequence of code units can be
recovered unambiguously from any of these.

3. A compressing CES maps a code unit sequence to a byte sequence while
minimizing the length of the byte sequence. Some compressing CESs are
designed to produce a unique sequence of bytes for each sequence of code
units, so that the compressed byte sequences can be compared for equality
or ordered by binary comparison. Other compressing CESs are merely
reversible.

Character encoding schemes are relevant to the issue of cross-platform persistent
data involving code units wider than a byte, where byte-swapping may be required
to put data into the byte polarity canonical which is used for a particular platform.
In particular:

Most fixed-width byte-oriented encoding forms have a trivial mapping into a
CES: each 7-bit or 8-bit quantity maps to a byte of the same value.
Most mixed-width byte-oriented encoding forms also simply serialize the

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

15 of 23 10/23/2008 6:11 PM

sequence of CC-data-elements to bytes.
UTF-8 follows this pattern, because it is already a byte-oriented
encoding form.
UTF-16 must specify byte-order for the byte serialization because it
involves 16-bit quantities. Byte order is the sole difference between
UTF-16BE, in which the two bytes of the 16-bit quantity are serialized in
big-endian order, and UTF-16LE, in which they are serialized in
little-endian order.

It is important not to confuse a Character Encoding Form (CEF) and a CES.

The CEF maps code points to code units, while the CES transforms sequences
of code units to byte sequences. (For a direct mapping from characters to
serialized bytes, see Section 6 Character Maps.)

1.

The CES must take into account the byte-order serialization of all code units
wider than a byte that are used in the CEF.

2.

Otherwise identical CESs may differ in other aspects, such as the number of
user-defined characters that are allowableed. (This applies in particular to
the IBM CDRA architecture, which may distinguish host CCSIDs based on
whether the set of UDC's is conformably convertible to the corresponding
code page or not.)

3.

Note that Some of the Unicode encoding schemes have the same labels as the
three Unicode encoding forms. When used unqualified without qualification, the
terms UTF-8, UTF-16, and UTF-32 are ambiguous between their sense as Unicode
encoding forms and as Unicode encoding schemes. For UTF-8, This ambiguity is
usually innocuous, for UTF-8 because the UTF-8 encoding scheme is trivially
derived from the byte sequences defined for the UTF-8 encoding form. However,
for UTF-16 and UTF-32, the ambiguity is more problematical. As encoding forms,
UTF-16 and UTF-32 refer to code units as they are accessed from memory via
16-bit or 32-bit data types; there is no associated byte orientation, and a BOM is
never used. (Viewing memory in a debugger or casting wider data types to byte
arrays is a byte serialization.).

As encoding schemes, UTF-16 and UTF-32 refer to serialized bytes, for example
the serialized bytes for streaming data or in files; they may have either byte
orientation, and a single BOM may be present at the start of the data. When the
usage of the abbreviated designators UTF-16 or UTF-32 might be misinterpreted,
and where a distinction between their use as referring to Unicode encoding forms
or to Unicode encoding schemes is important, the full terms should be used. For
example, use UTF-16 encoding form or UTF-16 encoding scheme. They may also
be abbreviated to UTF-16 CEF or UTF-16 CES, respectively.

Examples of Unicode Character Encoding Schemes:

The Unicode Standard has seven character encoding schemes: UTF-8,
UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE, and UTF-32LE.

UTF-8, UTF-16BE, UTF-16LE, UTF-32BE and UTF32-LE are simple CESs.

UTF-16 and UTF-32 are compound CESs, consisting of an single,
optional byte order mark at the start of the data followed by a simple

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

16 of 23 10/23/2008 6:11 PM

CES.

Name CEF CES
UTF-8 + simple
UTF-16 + compound
UTF-16BE simple
UTF-16LE simple
UTF-32 + compound
UTF-32BE simple
UTF-32LE simple

Unicode 1.1 had three character encoding schemes: UTF-8, UCS-2BE, and
UCS-2LE, although the latter two were not named that way at the time.

Examples of Non-Unicode Character Encoding Schemes:

ISO 2022-based charsets (ISO-2022-JP, ISO-2022-KR, etc.), which use
embedded escape sequences; these are compound CESs.
DBCS Shift (mix of one single-byte CCS, for example JIS X 0201 and a DBCS
CCS, for example based on JIS X0208, with a numeric shift of the integer
values), for example, Code Page 932 on Windows.
EUC (similar to the DBCS Shift encodings, with the application of different
numeric shift rules, and the introduction of single-shift bytes: 0x8E and
0x8F, that may introduce 3-byte and 4-byte sequences), for example, EUC-JP
or EUC-TW on UNIX.
IBM host mixed code pages for Asian character sets, which formally mix two
distinct CCS's with the SI/SO switching conventions, for example, CCSID
5035 on IBM Japanese host machines.

Examples of compressing Character Encoding Schemes:

BOCU-1, see Unicode Technical Note #6: BOCU-1: MIME-compatible Unicode
Compression. [BOCU]. BOCU-1 maps each input string to a unique
compressed string, but does not map each code unit to a unique series of
bytes.
Punycode, defined in [RFC3492], like BOCU-1, is unique only on a string
basis.
SCSU (and RCSU): see UTR #6: A Standard Compression Scheme for Unicode
[SCSU]. The input to SCSU and RCSU are is a stream of code units; the output
is a compressed stream of bytes. Because of compression heuristics, the
same input string may result in different byte sequences, but the schemes are
fully reversible.

5.1 Byte Order

Processor architectures differ in the way that multi-byte machine integers are
mapped to storage locations. Little Endian architectures put the least significant
byte at the lower address, while Big Endian architectures start with the most
significant byte.

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

17 of 23 10/23/2008 6:11 PM

This difference does not matter for operations on code units in memory, but the
byte order becomes important when code units are serialized to sequences of
bytes using a particular CES. In terms of reading a data stream, there are two types
of byte order: Same as or Opposite of the byte order of the processor reading the
data. In the former case, no special operation needs to be taken; in the latter case,
the data needs to be byte reversed before processing.

In terms of external designation of data streams, three types of byte orders can be
distinguished: Big Endian (BE), Little Endian (LE) and default or internally marked.

In Unicode, the character at code point U+FEFF is defined as the byte order mark,
while its byte-reversed counterpart, U+FFFE is a noncharacter (U+FFFE) in UTF-16
, or outside the code space (0xFFFE0000) for UTF-32. At the head of a data
stream, the presence of a byte order mark can therefore be used to unambiguously
signal the byte order of the code units.

6 Character Maps

The mapping from a sequence of members of an abstract character repertoire to a
serialized sequence of bytes is called a Character Map (CM). A simple character
map thus implicitly includes a CCS, a CEF, and a CES, mapping from abstract
characters to code units to bytes. A compound character map includes a
compound CES, and thus includes more than one CCS and CEF. In that case, the
abstract character repertoire for the character map is the union of the repertoires
covered by the coded character sets involved.

Unicode Technical Report #22: Character Mapping Markup Language [CharMapML]
defines an XML specification for representing the details of Character Maps. The
text also contains a detailed discussion of issues in mapping between character
sets.

Character Maps are the entities that get IANA charset [Charset] identifiers in the
IAB architecture. From the IANA charset point of view it is important that a
sequence of encoded characters be unambiguously mapped onto a sequence of
bytes by the charset. The charset must be specified in all instances, as in Internet
protocols, where textual content is treated as an ordered sequence of bytes, and
where the textual content must be reconstructible from that sequence of bytes.

In the IBM CDRA architecture, Character Maps are the entities that get CCSID
(coded character set identifier) values. A character map may also be known as a
charset, a character set, a code page (broadly construed), or a CHARMAP.

In many cases, the same name is used for both a character map and for a character
encoding scheme, such as UTF-16BE. Typically this is done for simple character
mappings when such usage is clear from context.

7 Transfer Encoding Syntax (TES)

A transfer encoding syntax is a reversible transform of encoded data which may
(or may not) include textual data represented in one or more character encoding
schemes.

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

18 of 23 10/23/2008 6:11 PM

Typically TESs are engineered to transform one byte stream into another, while
avoiding particular byte values that would confuse one or more Internet or other
transmission/storage protocols. Examples include base64, uuencode, BinHex, and
quoted-printable. While data transfer protocols often incorporate data
compressions to minimize the number of bits to be passed down a communication
channel, compression is usually handled outside the TES, for example by protocols
such as pkzip, gzip, or winzip.

The Internet Content-Transfer-Encoding tags “7bit” and “8bit” are special cases.
These are data width specifications which are relevant basically to mail protocols
and which appear to predate true TESs like quoted-printable. Encountering a “7bit”
tag does not imply any actual transform of data; it merely indicates that the
charset of the data can be represented in 7 bits, and will pass 7-bit channels—it
really indicates the encoding form. In contrast, quoted-printable actually converts
various characters (including some ASCII) to forms like “=2D” or “=20”, and should
be reversed on receipt to regenerate legible text in the designated character
encoding scheme.

8 Data Types and API Binding

Programming languages define specific data types for character data, using bytes
or multi-byte code units. For example, the char data type in Java or C# always uses
16-bit code units, while the size of the char and wchar_t data types in C and C++
are, within quite flexible constraints, implementation defined. In Java or C#, the
16-bit code units are by definition UTF-16 code units, while in C and C++, the
binding to a specific character set is again up to the implementation. In Java,
strings are an opaque data type, while in C (and at the lowest level also in C++)
they are represented as simple arrays of char or wchar_t.

The Java model supports portable programs, but external data in other encoding
forms must first be converted to UTF-16. The C/C++ model is intended to
support a byte serialized character set using the char data type, while supporting a
character set with a single code unit per character with the wchar_t data type.
These two character sets do not have to be the same, but the repertoire of the
larger set must include the smaller set to allow mapping from one data type into
the other. This allows implementations to support UTF-8 as the char data type and
UTF-32 as the wchar_t data type, for example. In such use, the char data type
corresponds to data that is serialized for storage and interchange, and the wchar_t
data type is used for internal processing. There is no guarantee that wchar_t
represent characters of a specific character set. However, a standard macro,
__STDC_ISO_10646__ can be used by an environment to designate that it supports
a specific version of 10646, indicated by year and month.

However, the definition of the term character in the ISO C and C++ standard does
not necessarily match the definition of abstract character in this model. Many
widely used libraries and operating systems define wchar_t to be UTF-16 code
units. Other APIs supporting UTF-16 are often simply defined in terms of arrays of
16-bit unsigned integers, but this makes certain features of the programming
language unavailable, such as string literals.

ISO/IEC TR 19769 extends the model used in ISO C and C++ by recommending

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

19 of 23 10/23/2008 6:11 PM

the use of two typedefs and a minimal extension to the support for character
literals and runtime library. The data types char16_t and char32_t are unsigned
integers designed to hold one code unit for UTF-16 or UTF-32 respectively. Like
wchar_t they can be used generically for any character set, but a predefined
macros __STDC_UTF_16__ and __STDC_UTF_32__ can be used to indicate that the
data type char16_t or char32_t holds code units that are in the respective Unicode
encoding form.

When character data types are passed as arguments in APIs, the byte order of the
platform is generally not relevant for code units. The same API can be compiled on
platforms with any byte polarity, and will simply expect character data (as for any
integral-based data) to be passed to the API in the byte polarity for that platform.
However, the size of the data type must correspond to the size of the code unit, or
the results can be unpredictable, as when a byte oriented strcpy is used on UTF-16
data which may contain embedded NUL bytes.

While there are many API functions that by design do not need are designed not to
care about which character set the code units correspond to (strlen or strcpy for
example), many other operations require information about the character and its
properties. As a result, portable programs may not be able to use the char or
wchar_t data types in C/C++.

8.1 Strings

A string data type is simply a sequence of code units. Thus a Unicode 8-bit string
is a sequence of 8-bit Unicode code units; a Unicode 16-bit string is a sequence of
16-bit code units; a Unicode 32-bit string is a sequence of 32-bit code units.

Depending on the programming environment, a Unicode string may or may not
also be required to be in the corresponding Unicode encoding form. For example,
strings in Java, C#, or ECMAScript are Unicode 16-bit strings, but are not
necessarily well-formed UTF-16 sequences. In normal processing, there are many
times where a string may be in a transient state that is not well-formed UTF-16.
Because strings are such a fundamental component of every program, it can be far
more efficient to postpone checking for well formedness.

However, whenever strings are specified to be in a particular Unicode encoding
for—even one with the same code unit size—the string must not violate the
requirements of that encoding form. For example, isolated surrogates in a Unicode
16-bit string are not allowed when that string is specified to be well-formed
UTF-16.

9 Definitions and Acronyms

This section briefly defines some of the common acronyms related to character
encoding and used in this text. More extensive definitions for some of these terms
can be found elsewhere in this document.

ACR Abstract Character Repertoire
API Application Programming Interface
ASCII American Standard Code for Information Interchange

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

20 of 23 10/23/2008 6:11 PM

BE Big-endian (most significant byte first)
BMP Basic Multilingual Plane, the first 65,536 characters of 10646
BOCU Byte Ordered Compression for Unicode
CCS Coded Character Set
CCSID Code Character Set Identifier
CDRA Character Data Representation Architecture from IBM
CEF Character Encoding Form
CEN European Committee for Standardization
CES Character Encoding Scheme
CM Character Map
CP Code Page
CS Character Set
DBCS Double-Byte Character Set
ECMA European Computer Manufacturers Association
EBCDICExtended Binary Coded Decimal Interchange Code
EUC Extended Unix Code
GCGID Graphic Character Set Glyphic Identifier
IAB Internet Architecture Board
IANA Internet Assigned Numbers Authority
IEC International Electrotechnical Commission
IETF Internet Engineering Taskforce
ISO International Organization for Standardization
JIS Japanese Industrial Standard
JTC1 Joint Technical Committee 1 (responsible for ISO/IEC IT Standards)
LE Little-endian (least significant byte first)
MBCS Multiple-Byte Character Set (1 to n bytes per code point)
MIME Multipurpose Internet Mail Extensions
RFC Request For Comments (term used for an Internet standard)
RCSU Reuters Compression Scheme for Unicode (precursor to SCSU)
SBCS Single-Byte Character Set
SCSU Standard Compression Scheme for Unicode
TES Transfer Encoding Syntax
UCS Universal Character Set; Universal Multiple-Octet Coded Character Set —

the repertoire and encoding represented by ISO/IEC 10646-1:1993 :2003
and its amendments.

UDC User-defined Character
UTF Unicode (or UCS) Transformation Format

References

[10646] ISO/IEC 10646 — Universal Multiple-Octet Coded Character
Set.
For availability see http://www.iso.org

[Bidi] Unicode Standard Annex #9: TheUnicode Bidirectional
Algorithm
http://www.unicode.org/reports/tr9/

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

21 of 23 10/23/2008 6:11 PM

[BOCU] Unicode Technical Note #6: BOCU-1: MIME-Compatible
Unicode Compression,
http://www.unicode.org/notes/tn6/

[Boundaries] Unicode Standard Annex #29: Unicode Text
BoundariesSegmentation,
http://www.unicode.org/reports/tr29/

[CDRA] Character Data Representation Architecture Reference and
Registry, IBM Corporation, Second Edition, December 1995.
IBM document SC09-2190-00
http://www.ibm.com/software/globalization/cdra/index.jsp

[CharMapML] Unicode Technical Report #22: Character Mapping Markup
Language (CharMapML),
http://www.unicode.org/reports/tr22/

[Charset] IANA charset assignments
http://www.iana.org/assignments/character-sets

[Charts] The online code charts can be found at
http://www.unicode.org/charts/ An index to characters
names with links to the corresponding chart is found at
http://www.unicode.org/charts/charindex.html

[FAQ] Unicode Frequently Asked Questions
http://www.unicode.org/faq/
For answers to common questions on technical issues.

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other
documents.

[Lunde] Lunde, Ken, CJKV Information Processing, O'Reilley, 1999,
ISBN 1-565-92224-7

[PropModel] Unicode Technical Report #23:The Unicode Character
Property Model,
http://www.unicode.org/reports/tr23/

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for
technical reports, and for a list of technical reports.

[RFC2130] The Report of the IAB Character Set Workshop held 29
February 1 March, 1996. C. Weider, et al., April 1997,
http://www.ietf.org/rfc/rfc2130.txt

[RFC2277] IETF Policy on Character Sets and Languages, H. Alvestrand,
January 1998,
http://www.ietf.org/rfc/rfc2277.txt (BCP 18)

[RFC3492] RFC 3492: Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA), A.
Costello, March 2003,
http://www.ietf.org/rfc/rfc3492.txt

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

22 of 23 10/23/2008 6:11 PM

[SCSU] Unicode Technical Standard #6: A Standard Compression
Scheme for Unicode,
http://www.unicode.org/reports/tr6/

[Stability] Unicode Character Encoding Stability Policiesy ,
http://www.unicode.org/policies/stability_policy.html

[UCD] Unicode Character Database.
http://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list
of its associated files

[Unicode] The Unicode Standard
For the latest version see:
http://www.unicode.org/versions/latest/.
For the last major version see: The Unicode Consortium. The
Unicode Standard, Version 5.0. (Boston, MA,
Addison-Wesley, 2007. ISBN 0-321-48091-0.) Or online
as: http://www.unicode.org/versions/Unicode5.0.0/

[Unicode5.0] The Unicode Consortium. The Unicode Standard, Version
5.0. ReadingBoston, MA, Addison-Wesley, 2007. ISBN
0-321-48091-0.

[Versions] Versions of the Unicode Standard
http://www.unicode.org/standard/versions/
For information on version numbering, and citing and
referencing the Unicode Standard, the Unicode Character
Database, and Unicode Technical Reports.

[W3CCharMod]Character Model for the World Wide Web 1.0: Fundamentals,
http://www.w3.org/TR/charmod

Acknowledgements

Thanks to Dr. Julie Allen for extensive copy-editing and many suggestions on how
to improve the readability, particularly of section 2.

Modifications

The following summarizes modifications from the previous versions of this
document.

Revision 6 [KW]

Updated title to Unicode Character Encoding Model.
Updated all references.
Reorganized Modifications section into bulleted lists, grouped by published
revisions, to follow current technical report style.
Updated for Unicode 5.0 and 5.1.
Updated numbered bullets 1 and 3 in Section 4 to reflect the updated model
regarding ill-formed sequences and the concept of noncharacters.
Removed claim that UTF-16 is the "default" CEF for Unicode 4.0.
Updated table of encoding forms to indicate that ISO/IEC 10646:2008 has
dropped implementation levels and is now closely aligned with Unicode 5.0.

UTR#17: Unicode Character Encoding Model http://www.unicode.org/reports/tr17/tr17-6.html

23 of 23 10/23/2008 6:11 PM

Added note about other stability implications in Section 2.1.
Updated "grapheme" to "grapheme cluster" in Section 2.3.
Minor editing throughout.

Revision 5 [AF]

Aligned the discussion of TES to more closely match common practice.
Improved the discussion of CES. Note: Versions 4 and 3.3 were proposed
updates that are superseded.
Edited the text for style and clarity throughout, labeled figures, changed
some lists to tables, applied copy edits.
Improved the discussion of CES.
Updated for Unicode 4.0.
Added subsections on Versioning, Byte Order and Strings.
Expanded the discussion on Data Types and APIs Binding.
Edited the text for style and clarity throughout.
Migrated to current TR format.

Revisions 3.3 and 4 being proposed updates, only changes between versions 3.2
and 5 are noted here.

Copyright © 1999-2008 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes
no expressed or implied warranty of any kind, and assumes no liability for errors or
omissions. No liability is assumed for incidental and consequential damages in connection
with or arising out of the use of the information or programs contained or accompanying this
technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

