
Proposed Update Unicode Standard Annex #31

UNICODE IDENTIFIER AND PATTERN SYNTAX

Summary

This annex describes specifications for recommended defaults for the use of Unicode in
the definitions of identifiers and in pattern-based syntax. It also supplies guidelines for
use of normalization with identifiers.

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published online as a separate document. The Unicode Standard
may require conformance to normative content in a Unicode Standard Annex, if so
specified in the Conformance chapter of that version of the Unicode Standard. The
version number of a UAX document corresponds to the version of the Unicode
Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode
Standard Annex #41, “Common References for Unicode Standard Annexes.” For the
latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode
Technical Reports, see [Reports]. For more information about versions of the Unicode
Standard, see [Versions]. For any errata which may apply to this annex, see [Errata].

Contents

1 Introduction

 Technical Reports

Version Unicode 5.2.0 draft 3
Authors Mark Davis (markdavis@google.com)
Date 2009-03-27
This Version http://www.unicode.org/reports/tr31/tr31-10.html
Previous
Version

http://www.unicode.org/reports/tr31/tr31-9.html

Latest
Version

http://www.unicode.org/reports/tr31/

Revision 10

rick@unicode.org
Text Box
L2/09-131

1.1 Conformance
2 Default Identifier Syntax

2.1 Combining Marks
2.2 Modifier Letters
2.3 Layout and Format Control Characters
2.4 Specific Character Adjustments
2.5 Backward Compatibility

3 Alternative Identifier Syntax
4 Pattern Syntax
5 Normalization and Case

5.1 NFKC Modifications
Acknowledgments
References
Modifications

1 Introduction

A common task facing an implementer of the Unicode Standard is the provision of a
parsing and/or lexing engine for identifiers, such as programming language variables or
domain names. To assist in the standard treatment of identifiers in Unicode character-
based parsers and lexical analyzers, a set of specifications is provided here as a
recommended default for the definition of identifier syntax.

These guidelines follow the typical pattern of identifier syntax rules in common
programming languages, by defining an ID_Start class and an ID_Continue class and
using a simple BNF rule for identifiers based on those classes; however, the composition
of those classes is more complex and contains additional types of characters, due to the
universal scope of the Unicode Standard.

This annex also provides guidelines for the user of normalization and case insensitivity
with identifiers, expanding on a section that was originally in Unicode Standard Annex
#15, “Unicode Normalization Forms” [UAX15].

The specification in this annex provides a definition of identifiers that is guaranteed to be
backward compatible with each successive release of Unicode, but also allows any
appropriate new Unicode characters to become available in identifiers. In addition,
Unicode character properties for stable pattern syntax are provided. The resulting pattern
syntax is backward compatible and forward compatible over future versions of the
Unicode Standard. These properties can either be used alone or in conjunction with the
identifier characters.

Figure 1 shows the disjoint categories of code points defined in this annex. (The sizes of
the boxes are not to scale.):

Figure 1. Code Point Categories for Identifier Parsing

ID_Start
Characters

Pattern_Syntax
Characters

The set consisting of the union of ID_Start and ID Nonstart characters is known as
Identifier Characters and has the property ID_Continue. The ID Nonstart set is defined as
the set difference ID_Continue minus ID_Start. While lexical rules are traditionally
expressed in terms of the latter, the discussion here is simplified by referring to disjoint
categories.

Stability. There are certain features that developers can depend on for stability:

 Identifier characters, Pattern_Syntax characters, and Pattern_White_Space are
disjoint: they will never overlap.

 The Identifier characters are always a superset of the ID_Start characters.
 The Pattern_Syntax characters and Pattern_White_Space characters are

immutable and will not change over successive versions of Unicode.
 The ID_Start and ID Nonstart characters may grow over time, either by the addition

of new characters provided in a future version of Unicode or (in rare cases) by the
addition of characters that were in Other. However, neither will ever decrease.

In successive versions of Unicode, the only allowed changes of characters from one of
the above classes to another are those listed with a + sign in Table 1.

Table 1. Permitted Changes in Future Versions

The Unicode Consortium has formally adopted a stability policy on identifiers. For more
information, see [Stability].

Programming Languages. Each programming language standard has its own identifier
syntax; different programming languages have different conventions for the use of
certain characters such as $, @, #, and _ in identifiers. To extend such a syntax to cover
the full behavior of a Unicode implementation, implementers may combine those specific
rules with the syntax and properties provided here.

ID
Nonstart

Characters

Pattern_White_Space
Characters

Unassigned Code Points

Other Assigned

Code Points

 ID_Start ID Nonstart Other Assigned
Unassigned + + +
Other Assigned + +
ID Nonstart +

Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties,
with the addition of “$”. By addition or subtraction of a small set of language specific
characters, a programming language standard can easily track a growing repertoire of
Unicode characters in a compatible way. See also Section 2.5, Backward Compatibility.

Similarly, each programming language can define its own whitespace characters or
syntax characters relative to the Unicode Pattern_White_Space or Pattern_Syntax
characters, with some specified set of additions or subtractions.

Systems that want to extend identifiers so as to encompass words used in natural
languages, or narrow identifiers for security may do so as described in Section 2.3,
Layout and Format Control Characters, Section 2.4, Specific Character Adjustments,
and Section 5, Normalization and Case.

To preserve the disjoint nature of the categories illustrated in Figure 1, any character
added to one of the categories must be subtracted from the others.

Note: In many cases there are important security implications that may require
additional constraints on identifiers. For more information, see [UTR36].

1.1 Conformance

The following describes the possible ways that an implementation can claim
conformance to this specification.

2 Default Identifier Syntax

The formal syntax provided here captures the general intent that an identifier consists of
a string of characters beginning with a letter or an ideograph, and following with any

UAX31-C1. An implementation claiming conformance to this specification at
any Level shall identify the version of this specification and the
version of the Unicode Standard.

UAX31-C2. An implementation claiming conformance to Level 1 of this
specification shall describe which of the following it observes:

 R1 Default Identifiers
 R1a Restricted Format Characters
 R1b Stable Identifiers
 R2 Alternative Identifiers
 R3 Pattern_White_Space and Pattern_Syntax Characters
 R4 Equivalent Normalized Identifiers
 R5 Equivalent Case-Insensitive Identifiers
 R6 Filtered Normalized Identifiers
 R7 Filtered Case-Insensitive Identifiers

number of letters, ideographs, digits, or underscores. It provides a definition of identifiers
that is guaranteed to be backward compatible with each successive release of Unicode,
but also adds any appropriate new Unicode characters.

D1. Default Identifier Syntax

<identifier> := <ID_Start> <ID_Continue>*

Identifiers are defined by the sets of lexical classes defined as properties in the Unicode
Character Database. These properties are shown in Table 2.

Table 2. Lexical Classes for Identifiers

The innovations in the identifier syntax to cover the Unicode Standard include the
following:

 Incorporation of proper handling of combining marks.

Properties Alternates General Description of Coverage
ID_Start XID_Start Characters having the Unicode General_Category of

uppercase letters (Lu), lowercase letters (Ll), titlecase
letters (Lt), modifier letters (Lm), other letters (Lo),
letter numbers (Lu), minus Pattern_Syntax and
Pattern_White_Space code points, plus stability
extensions. Note that “other letters” includes
ideographs.

In set notation, this is [[:L:][:Nl:]--[:Pattern_Syntax:]--
[:Pattern_White_Space:]] plus stability extensions.

ID_Continue XID_Continue All of the above, plus characters having the Unicode
General_Category of nonspacing marks (Mn), spacing
combining marks (Mc), decimal number (Nd),
connector punctuations (Pc), plus stability
extensions, minus Pattern_Syntax and
Pattern_White_Space code points.

In set notation, this is [[:L:][:Nl:][:Mn:][:Mc:][:Nd:]
[:Pc:]--[:Pattern_Syntax:]--[:Pattern_White_Space:]]
plus stability extensions.

These are also known simply as Identifier Characters,
because they are a superset of the ID_Start
characters.

 Allowance for layout and format control characters, which should be ignored when
parsing identifiers.

 The XID_Start and XID_Continue properties are improved lexical classes that
incorporate the changes described in Section 5.1, NFKC Modifications. They are
recommended for most purposes, especially for security, over the original ID_Start
and ID_Continue properties.

2.1 Combining Marks

Combining marks are accounted for in identifier syntax: a composed character sequence
consisting of a base character followed by any number of combining marks is valid in an
identifier. Combining marks are required in the representation of many languages, and
the conformance rules in Chapter 3, Conformance, of [Unicode] require the interpretation
of canonical-equivalent character sequences. The simplest way to do this is to require (or
transform) identifiers into the NFC format; see Section 5, Normalization and Case.

Enclosing combining marks (such as U+20DD..U+20E0) are excluded from the definition
of the lexical class ID_Continue, because the composite characters that result from their
composition with letters are themselves not normally considered valid constituents of
these identifiers.

2.2 Modifier Letters

Modifier letters (General_Category=Lm) are also included in the definition of the syntax
classes for identifiers. Modifier letters are often part of natural language orthographies
and are useful for making word-like identifiers in formal languages. On the other hand,
modifier symbols (General_Category=Sk), which are seldom a part of language
orthographies, are excluded from identifiers. For more discussion of modifier letters and
their functioning, see [Unicode].

Implementations that tailor identifier syntax for special purposes may wish to take special
note of modifier letters, as in some cases modifier letters have appearances, such as
raised commas, which may be confused with common syntax characters such as
quotation marks.

2.3 Layout and Format Control Characters

Certain Unicode characters are known as Default_Ignorable_Code_Points. These
include variation selectors and control-like characters used to control joining behavior,
bidirectional ordering control, and alternative formats for display (having the
General_Category value of Cf).The recommendation is to not permit them in identifiers
except in special cases, listed below. The use of default-ignorable characters in
identifiers is problematical because the effects they represent are normally just stylistic or
otherwise out of scope for identifiers. It is also possible to misapply these characters
such that users can create strings that look the same but actually contain different
characters, which can create security problems. In such environments, identifiers should
also be limited to characters that are case-folded and normalized with NFKC. For more
information, see Section 5, Normalization and Case and UTR# 36: Unicode Security
Considerations [UTR36].

For these reasons these characters are normally excluded from Unicode identifiers.
However, visible distinctions created by certain format characters (particularly the
Join_Control characters) are necessary and make necessary distinctions in certain

languages. A blanket exclusion of these characters makes it impossible to create
identifiers based on certain words or phrases in those languages. Identifier systems that
attempt to provide more natural representations of terms in modern, customary use
should consider allowing these characters, but limited to particular contexts where they
are necessary.

Note: The term modern customary usage includes characters that are in common use in
newspapers, journals, lay publications; on street signs; in commercial signage; and as
part of common geographic names and company names, and so on. It does not include
technical or academic usage such as in mathematical expressions, using archaic scripts
or words, or pedagogical use (such as illustration of half-forms or joining forms in
isolation).

The goals for such a restriction of format characters to particular contexts are to:

 Allow the use of these characters where required in normal text
 Exclude as many cases as possible where no visible distinction results
 Be simple enough to be easily implemented with standard mechanisms such as

regular expressions

Thus for such circumstances, an implementation may choose to allow the following
Join_Control characters, but only in very limited contexts as specified in A1, A2, and B
below:

U+200C ZERO WIDTH NON-JOINER [ZWNJ]
U+200D ZERO WIDTH JOINER [ZWJ]

Implementations may further restrict the contexts in which these characters may be
used. For more information, see UTR# 36: Unicode Security Considerations [UTR36].

Performance. Parsing identifiers can be a performance-sensitive task. However, these
characters are quite rare in practice, thus the regular expressions (or equivalent
processing) only rarely would need to be invoked. Thus these tests should not add any
significant performance cost overall.

Comparison. Typically the identifiers with and without these characters should not
compare as equivalent. However, in certain language-specific cases, such as in Sinhala,
they should compare as equivalent. See Section 2.4, Specific Character Adjustments.

The characters and their contexts are given by conditions A1, A2, and B below. There
are two global conditions as well:

Script Restriction. In each of the following cases, the specified sequence must
only consist of characters from a single script (after ignoring Common and Inherited
script characters).

Normalization. In each of the following cases, the specified sequence must be in
NFC format. (To test an identifier that is not required to be in NFC, first transform
into NFC format and then test the condition.)

A1. Allow ZWNJ in the following context:

Breaking a cursive connection. That is, in the context based on the Arabic Shaping
property, consisting of:

 A Left-Joining character, followed by zero or more Transparent characters, followed
by a ZWNJ, followed by zero or more Transparent characters, followed by a Right-
Joining character

 This corresponds to the following regular expression (in Perl-style syntax): /$L $T*
ZWNJ $T* $R/
where:

$T = [:Joining_Type=Transparent:]
$R = [[:Joining_Type=Dual_Joining:][:Joining_Type=Right_Joining:]]
$L = [[:Joining_Type=Dual_Joining:][:Joining_Type=Left_Joining:]]

Example: For example, consider Farsi <Noon, Alef, Meem, Heh, Alef, Farsi Yeh>.
Without a ZWNJ, it translates to "names", as shown in the first row; with a ZWNJ
between Heh and Alef, it means "a letter". , as shown in the second row of Figure
2 illustrates this.

Figure 2. Farsi Example with ZWNJ

A2. Allow ZWNJ in the following context:

In a conjunct context. That is, a sequence of the form:

 A Letter, followed by a Virama, followed by a ZWNJ, followed by an Letter
 This corresponds to the following regular expression (in Perl-style syntax): /$L $V

ZWNJ/
where:

$L = [:General_Category=Letter:]
$V = [:Canonical_Combining_Class=Virama:]

Example: For example, the Malayalam word for eyewitness is shown in Figure 3. The
form without the ZWNJ in the second row is incorrect in this case.

Figure 3. Malayalam Example with ZWNJ

B. Allow ZWJ in the following context:

In a conjunct context. That is, a sequence of the form:

 A Letter, followed by a Virama, followed by a ZWJ
 This corresponds to the following regular expression (in Perl-style syntax): /$L $V

ZWJ/
where:

$L = [:General_Category=Letter:]
$V = [:Canonical_Combining_Class=Virama:]

Example: For example, the Sinhalaese word for the country 'Sri Lanka' is shown in A in
the first row of Figure 4, which uses both a space character and a ZWJ. Removing the
space gives results in the text in B in shown in the second row of Figure 4, which is still
readable legible, but removing the ZWJ completely modifies the appearance of the 'Sri'
cluster and gives results in the unacceptable text appearance shown in C in the third
row of Figure 4.

Figure 4. Sinhala Example with ZWJ

2.4 Specific Character Adjustments

Specific identifier syntaxes can be treated as tailorings (or profiles) of the generic syntax
based on character properties. For example, SQL identifiers allow an underscore as an
identifier continue, but not as an identifier start; C identifiers allow an underscore as

either an identifier continue or an identifier start. Specific languages may also want to
exclude the characters that have a Decomposition_Type other than Canonical or None,
or to exclude some subset of those, such as those with a Decomposition_Type equal to
Font.

There are circumstances in which identifiers are expected to more fully encompass
words or phrases used in natural languages. In these cases, a profile should consider
whether the characters in Table 3 should be allowed in identifiers, and perhaps others,
depending on the languages in question. In some environments even spaces are allowed
in identifiers, such as in SQL: SELECT * FROM Employee Pension.

Table 3. Candidate Characters for Inclusion in Identifiers

* The characters marked with an asterisk in Table 3 are Join_Control characters, are
discussed in Section 2.3, Layout and Format Control Characters.

In identifiers that allow for unnormalized characters, the compatibility equivalents of
these the characters listed in Table 3 may also be appropriate. For more information on
characters that may occur in words, see Section 4, Word Boundaries, in [UAX29].

Some characters are not in modern customary use, and thus implementations may want
to exclude them from identifiers. These are historic and obsolete scripts, scripts used
mostly liturgically, and regional scripts used only in very small communities or with very
limited current usage. The set of characters in Table 4 provides candidates of these, plus
some inappropriate technical blocks. This is the recommendation as of Unicode 5.2; as
new scripts or blocks are added to future versions of Unicode, they may be added to this
list.

Review list for Unicode 5.2

Table 4. Candidate Characters for Exclusion from Identifiers

0027 (') APOSTROPHE
002D (-) HYPHEN-MINUS
002E (.) FULL STOP
003A (:) COLON
00B7 (·) MIDDLE DOT
058A (֊) ARMENIAN HYPHEN
05F3 (׳) HEBREW PUNCTUATION GERESH
05F4 (״) HEBREW PUNCTUATION GERSHAYIM
200C (�) ZERO WIDTH NON-JOINER*
200D (�) ZERO WIDTH JOINER*
2010 (‐) HYPHEN
2019 (’) RIGHT SINGLE QUOTATION MARK
2027 (‧) HYPHENATION POINT
30A0 (=) KATAKANA-HIRAGANA DOUBLE HYPHEN

Property Notation Description
[:script=Bugi:] Buginese
[:script=Buhd:] Buhid
[:script=Cari:] Carian
[:script=Copt:] Coptic

This is the recommendation as of Unicode 5.1; as new scripts or blocks are added to
future versions of Unicode, they may be added to this list.

For comparison, the other scripts (listed in Table 5) are recommended for use in
identifiers. They are in widespread current use, or are regional scripts with large
communities of users, or have significant revival efforts. This is the recommendation as
of Unicode 5.2; as new scripts are added to future versions of Unicode, they may be
added to this list.

Review list for Unicode 5.2

[:script=Cprt:] Cypriot
[:script=Dsrt:] Deseret
[:script=Glag:] Glagolitic
[:script=Goth:] Gothic
[:script=Hano:] Hanunoo
[:script=Ital:] Old_Italic
[:script=Khar:] Kharoshthi
[:script=Linb:] Linear_B
[:script=Lyci:] Lycian
[:script=Lydi:] Lydian
[:script=Ogam:] Ogham
[:script=Osma:] Osmanya
[:script=Phag:] Phags_Pa
[:script=Phnx:] Phoenician
[:script=Rjng:] Rejang
[:script=Runr:] Runic
[:script=Shaw:] Shavian
[:script=Sund:] Sundanese
[:script=Sylo:] Syloti_Nagri
[:script=Syrc:] Syriac
[:script=Tagb:] Tagbanwa
[:script=Tglg:] Tagalog
[:script=Ugar:] Ugaritic
[:script=Xpeo:] Old_Persian
[:script=Xsux:] Cuneiform
[:block=Combining_Diacritical_Marks_for_Symbols:]
[:block=Musical_Symbols:]
[:block=Ancient_Greek_Musical_Notation:]
[:block=Phaistos_Disc:]

Table 5. Recommended Scripts

Property Notation Description
[:script=Zyyy:] Common
[:script=Qaai:] Inherited
[:script=Arab:] Arabic
[:script=Armn:] Armenian
[:script=Bali:] Balinese
[:script=Beng:] Bengali
[:script=Bopo:] Bopomofo
[:script=Cans:] Canadian_Aboriginal
[:script=Cham:] Cham
[:script=Cher:] Cherokee
[:script=Cyrl:] Cyrillic
[:script=Deva:] Devanagari
[:script=Ethi:] Ethiopic
[:script=Geor:] Georgian
[:script=Grek:] Greek
[:script=Gujr:] Gujarati
[:script=Guru:] Gurmukhi
[:script=Hani:] Han
[:script=Hang:] Hangul
[:script=Hebr:] Hebrew
[:script=Hira:] Hiragana
[:script=Knda:] Kannada
[:script=Kana:] Katakana
[:script=Kali:] Kayah_Li
[:script=Khmr:] Khmer
[:script=Laoo:] Lao
[:script=Latn:] Latin
[:script=Lepc:] Lepcha
[:script=Limb:] Limbu
[:script=Mlym:] Malayalam
[:script=Mong:] Mongolian
[:script=Mymr:] Myanmar
[:script=Talu:]

This is the recommendation as of Unicode 5.1; as new scripts are added to future
versions of Unicode, they may be added to this list.

There are a few special cases. The Common and Inherited script values [[:script=Zyyy:]
[:script=Qaai:]] are used widely with other scripts, rather than being scripts per se. The
Unknown script [:script=Zzzz:] is used for Unassigned characters. Braille [:script=Brai:]
consists only of symbols, and Katakana_Or_Hiragana [:script=Hrkt:] is empty (used
historically in Unicode, but no longer.) With respect to the scripts Balinese, Cham, Ol
Chiki, Vai, Kayah Li, and Saurashtra, there may be large communities of people
speaking an associated language, but the script itself is not not in widespread use.
However, there are significant revival efforts. Bopomofo is used primarily in education.

For programming language identifiers, normalization and case have a number of
important implications. For a discussion of these issues, see Section 5, Normalization
and Case.

2.5 Backward Compatibility

Unicode General_Category values are kept as stable as possible, but they can change
across versions of the Unicode Standard. The bulk of the characters having a given
value are determined by other properties, and the coverage expands in the future
according to the assignment of those properties. In addition, the Other_ID_Start property
adds a small list of characters that qualified as ID_Start characters in some previous
version of Unicode solely on the basis of their General_Category properties, but that no
longer qualify in the current version. These are called grandfathered characters. This list
consists of four characters:

U+2118 (℘) SCRIPT CAPITAL P
U+212E (℮) ESTIMATED MARK

New_Tai_Lue
[:script=Nkoo:] Nko
[:script=Olck:] Ol_Chiki
[:script=Orya:] Oriya
[:script=Saur:] Saurashtra
[:script=Sinh:] Sinhala
[:script=Tale:] Tai_Le
[:script=Taml:] Tamil
[:script=Telu:] Telugu
[:script=Thaa:] Thaana
[:script=Thai:] Thai
[:script=Tibt:] Tibetan
[:script=Tfng:] Tifinagh
[:script=Vaii:] Vai
[:script=Yiii:] Yi

U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

Similarly, the Other_ID_Continue property adds a small list of characters that qualified as
ID_Continue characters in some previous version of Unicode solely on the basis of their
General_Category properties, but that no longer qualify in the current version, or
exceptional characters. This list consists of eleven characters:

U+00B7 (·) MIDDLE DOT
U+0387 (·) GREEK ANO TELEIA

The Other_ID_Start and Other_ID_Continue properties are thus designed to ensure that
the Unicode identifier specification is backward compatible. Any sequence of characters
that qualified as an identifier in some version of Unicode will continue to qualify as an
identifier in future versions.

If a specification tailors the Unicode recommendations for identifiers, then this technique
can also be used to maintain backwards compatibility across versions.

3 Alternative Identifier Syntax

The disadvantage of working with the lexical classes defined previously is the storage

R1 Default Identifiers
 To meet this requirement, an implementation shall use definition D1 and

the properties ID_Start and ID_Continue (or XID_Start and XID_Continue) to
determine whether a string is an identifier.

Alternatively, it shall declare that it uses a profile and define that profile
with a precise specification of the characters that are added to or removed
from the above properties and/or provide a list of additional constraints on
identifiers.

R1a Restricted Format Characters
 To meet this requirement, an implementation shall define a profile for R1

which allows format characters as described in Section 2.3, Layout and
Format Control Characters. An implementation may further restrict the
context for ZWJ or ZWNJ, such as by limiting the scripts, if a clear
specification for such a further restriction is supplied.

R1b Stable Identifiers
 To meet this requirement, an implementation shall guarantee that

identifiers are stable across versions of the Unicode Standard: that is, once
a string qualifies as an identifier, it does so in all future versions. (The
typical mechanism used to achieve this is by using grandfathered
characters.)

space needed for the detailed definitions, plus the fact that with each new version of the
Unicode Standard new characters are added, which an existing parser would not be able
to recognize. In other words, the recommendations based on that table are not upwardly
compatible.

This problem can be addressed by turning the question around. Instead of defining the
set of code points that are allowed, define a small, fixed set of code points that are
reserved for syntactic use and allow everything else (including unassigned code points)
as part of an identifier. All parsers written to this specification would behave the same
way for all versions of the Unicode Standard, because the classification of code points is
fixed forever.

The drawback of this method is that it allows “nonsense” to be part of identifiers because
the concerns of lexical classification and of human intelligibility are separated. Human
intelligibility can, however, be addressed by other means, such as usage guidelines that
encourage a restriction to meaningful terms for identifiers. For an example of such
guidelines, see the XML 1.1 specification by the W3C [XML1.1].

By increasing the set of disallowed characters, a reasonably intuitive recommendation for
identifiers can be achieved. This approach uses the full specification of identifier classes,
as of a particular version of the Unicode Standard, and permanently disallows any
characters not recommended in that version for inclusion in identifiers. All code points
unassigned as of that version would be allowed in identifiers, so that any future additions
to the standard would already be accounted for. This approach ensures both upwardly
compatible identifier stability and a reasonable division of characters into those that do
and do not make human sense as part of identifiers.

With or without such fine-tuning, such a compromise approach still incurs the expense of
implementing large lists of code points. While they no longer change over time, it is a
matter of choice whether the benefit of enforcing somewhat word-like identifiers justifies
their cost.

Alternatively, one can use the properties described below and allow all sequences of
characters to be identifiers that are neither Pattern_Syntax nor Pattern_White_Space.
This has the advantage of simplicity and small tables, but allows many more “unnatural”
identifiers.

R2 Alternative Identifiers
 To meet this requirement, an implementation shall define identifiers to be

any non-empty string of characters that contains no character having any of
the following property values:

 Pattern_White_Space=True
 Pattern_Syntax=True
 General_Category=Private_Use, Surrogate, or Control
 Noncharacter_Code_Point=True

Alternatively, it shall declare that it uses a profile and define that profile with
a precise specification of the characters that are added to or removed from

In its profile, a specification can define identifiers to be more in accordance with the
Unicode identifier definitions at the time the profile is adopted, while still allowing for strict
immutability. For example, an implementation adopting a profile after a particular version
of Unicode is released (such as Unicode 5.0) could define the profile as follows:

1. All characters satisfying R1 Default Identifiers according to Unicode 5.0
2. Plus all code points unassigned in Unicode 5.0 that do not have the property values

specified in R2 Alternative Identifiers.

This technique allows identifiers to have a more natural format—excluding symbols and
punctuation already defined—yet also providing for absolute code point immutability.

Specifications should also include guidelines and recommendations for those creating
new identifiers. Although R2 Alternative Identifiers permits a wide range of characters, as
a best practice identifiers should be in the format NFKC, without using any unassigned
characters. For more information on NFKC, see Unicode Standard Annex #15, “Unicode
Normalization Forms” [UAX15].

4 Pattern Syntax

There are many circumstances where software interprets patterns that are a mixture of
literal characters, whitespace, and syntax characters. Examples include regular
expressions, Java collation rules, Excel or ICU number formats, and many others. In the
past, regular expressions and other formal languages have been forced to use clumsy
combinations of ASCII characters for their syntax. As Unicode becomes ubiquitous,
some of these will start to use non-ASCII characters for their syntax: first as more
readable optional alternatives, then eventually as the standard syntax.

For forward and backward compatibility, it is advantageous to have a fixed set of
whitespace and syntax code points for use in patterns. This follows the
recommendations that the Unicode Consortium has made regarding completely stable
identifiers, and the practice that is seen in XML 1.1 [XML1.1]. (In particular, the Unicode
Consortium is committed to not allocating characters suitable for identifiers in the range
U+2190..U+2BFF, which is being used by XML 1.1.)

With a fixed set of whitespace and syntax code points, a pattern language can then have
a policy requiring all possible syntax characters (even ones currently unused) to be
quoted if they are literals. Using this policy preserves the freedom to extend the syntax in
the future by using those characters. Past patterns on future systems will always work;
future patterns on past systems will signal an error instead of silently producing the
wrong results. Consider the following scenario, for example.

Example 1:

In version 1.0 of program X, '≈' is a reserved syntax character; that is, it does not
perform an operation, and it needs to be quoted. In this example, '\' quotes the next
character; that is, it causes it to be treated as a literal instead of a syntax character.
In version 2.0 of program X, '≈' is given a real meaning—for example, “uppercase
the subsequent characters”.

the sets of code points defined by these properties.

 The pattern abc...\≈...xyz works on both versions 1.0 and 2.0, and refers to
the literal character because it is quoted in both cases.

 The pattern abc...≈...xyz works on version 2.0 and uppercases the following
characters. On version 1.0, the engine (rightfully) has no idea what to do with
≈. Rather than silently fail (by ignoring ≈ or turning it into a literal), it has the
opportunity to signal an error.

As of [Unicode4.1], two Unicode character properties can be used for are defined to
provide for stable syntax: Pattern_White_Space and Pattern_Syntax. Particular pattern
languages may, of course, override these recommendations, (for example, by adding or
removing other characters for compatibility in with ASCII) usage.

For stability, the values of these properties are absolutely invariant, not changing with
successive versions of Unicode. Of course, this does not limit the ability of the Unicode
Standard to add encode more symbol or whitespace characters, but the syntax and
whitespace characters code points recommended for use in patterns will not change.

When generating rules or patterns, all whitespace and syntax code points that are to be
literals require quoting, using whatever quoting mechanism is available. For readability, it
is recommended practice to quote or escape all literal whitespace and default ignorable
code points as well.

Example 2:

Consider the following example, where the items in angle brackets indicate literal
characters:

a<SPACE>b => x<ZERO WIDTH SPACE>y + z;

Because <SPACE> is a Pattern_White_Space character, it requires quoting.
Because <ZERO WIDTH SPACE> is a default ignorable character, it should also be
quoted for readability. So if in this example, if \uXXXX is used for hex expression a
code point literal, but is resolved before quoting, and if single quotes are used for
quoting, this example might be expressed as:

'a\u0020b' => 'x\u200By' + z;

R3 Pattern_White_Space and Pattern_Syntax Characters
 To meet this requirement, an implementation shall use Pattern_White_Space

characters as all and only those characters interpreted as whitespace in
parsing, and shall use Pattern_Syntax characters as all and only those
characters with syntactic use.

Alternatively, it shall declare that it uses a profile and define that profile with
a precise specification of the characters that are added to or removed from
the sets of code points defined by these properties.

 All characters other than those defined by except those that have these

5 Normalization and Case

This section discusses issues that must be taken into account when considering
normalization and case folding of identifiers in programming languages or scripting
languages. Using normalization avoids many problems where apparently identical
identifiers are not treated equivalently. Such problems can appear both during
compilation and during linking—in particular across different programming languages. To
avoid such problems, programming languages can normalize identifiers before storing or
comparing them. Generally if the programming language has case-sensitive identifiers,
then Normalization Form C is appropriate; whereas, if the programming language has
case-insensitive identifiers, then Normalization Form KC is more appropriate.

Implementations that take normalization and case into account have two choices: to treat
variants as equivalent, or to disallow variants.

properties are available for use as identifiers or literals.

R4 Equivalent Normalized Identifiers
 To meet this requirement, an implementation shall specify the Normalization

Form and shall provide a precise specification of the characters that are
excluded from normalization, if any. If the Normalization Form is NFKC, the
implementation shall apply the modifications in Section 5.1, NFKC
Modifications, given by the properties XID_Start and XID_Continue. Except
for identifiers containing excluded characters, any two identifiers that have
the same Normalization Form shall be treated as equivalent by the
implementation.

R5 Equivalent Case-Insensitive Identifiers
 To meet this requirement, an implementation shall specify either simple or

full case folding, and adhere to the Unicode specification for that folding.
Any two identifiers that have the same case-folded form shall be treated as
equivalent by the implementation.

R6 Filtered Normalized Identifiers
 To meet this requirement, an implementation shall specify the Normalization

Form and shall provide a precise specification of the characters that are
excluded from normalization, if any. If the Normalization Form is NFKC, the
implementation shall apply the modifications in Section 5.1, NFKC
Modifications, given by the properties XID_Start and XID_Continue. Except
for identifiers containing excluded characters, no identifiers are allowed that
are not in the specified Normalization Form.

R7 Filtered Case-Insensitive Identifiers
 To meet this requirement, an implementation shall specify either simple or

full case folding, and adhere to the Unicode specification for that folding.
Except for identifiers containing excluded characters, no identifiers are

For R6, this involves removing from identifiers any characters in the set
[:NFKC_QuickCheck=No:] (or equivalently, removing [:^isNFKC:]). For R7, this involves
removing from identifiers any characters in the set [:^isCaseFolded:].

Note: In mathematically oriented programming languages that make distinctive use
of the Mathematical Alphanumeric Symbols, such as U+1D400 MATHEMATICAL BOLD

CAPITAL A, an application of NFKC must filter characters to exclude characters with
the property value Decomposition_Type=Font. For related information, see
Unicode Technical Report #30, “Character Foldings.”

5.1 NFKC Modifications

Where programming languages are using NFKC to fold differences between characters,
they need the following modifications of the identifier syntax from the Unicode Standard
to deal with the idiosyncrasies of a small number of characters. These modifications are
reflected in the XID_Start and XID_Continue properties.

1. Characters that behave like combining marks. Certain characters are not
formally combining characters, although they behave in most respects as if they
were. In most cases, the mismatch does not cause a problem, but when these
characters have compatibility decompositions, they can cause identifiers not to be
closed under Normalization Form KC. In particular, the following four characters
are included in XID_Continue and not XID_Start:

U+0E33 THAI CHARACTER SARA AM
U+0EB3 LAO VOWEL SIGN AM
U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK
U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

2. Irregularly decomposing characters. U+037A GREEK YPOGEGRAMMENI and certain
Arabic presentation forms have irregular compatibility decompositions and are
excluded from both XID_Start and XID_Continue. It is recommended that all Arabic
presentation forms be excluded from identifiers in any event, although only a few of
them must be excluded for normalization to guarantee identifier closure.

With these amendments to the identifier syntax, all identifiers are closed under all four
Normalization Forms. Identifiers are also closed under case operations (with one
exception). This means that for any string S:

With these amendments to the identifier syntax, all identifiers are closed under all four
Normalization Forms. This means that for any string S, the implications shown in Figure
5 hold.

Figure 5. Normalization Closure

allowed that are not in the specified Normalization Form.

isIdentifier(S) implies

isIdentifier(toNFD(S))
isIdentifier(toNFC(S))
isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S))

Normalization Closure

isIdentifier(toLowercase(S))
isIdentifier(toUppercase(S))
isIdentifier(toFoldedcase(S))

Case Closure

Identifiers are also closed under case operations. For any string S (with exceptions
involving a single character), the implications shown in Figure 6 hold.

Figure 6. Case Closure

The one exception for casing is U+0345 COMBINING GREEK YPOGEGRAMMENI. In the very
unusual case that U+0345 is at the start of S, U+0345 is not in XID_Start, but its
uppercase and case-folded versions are. In practice, this is not a problem because of the
way normalization is used with identifiers.

The reverse implication is not true in the case of compatibility equivalence: isIdentifier
(toNFC(S)) does not imply isIdentifier(S). There are many characters for which the
reverse implication is not true, since there are many character counting as symbols or
non-decimal numbers—and thus outside of identifiers—whose compatibility equivalents
are letters or decimal numbers and thus in identifiers. Some examples are: shown in
Table 6.

Table 6. Compatibility Equivalents to Letters or Decimal Numbers

If an implementation needs to ensure both directions for compatibility equivalence of
identifiers, then these characters would be need to be tailored so as to be added to
identifiers.

For canonical equivalence the implication is true in both directions. isIdentifier(toNFC
(S)) if and only if isIdentifier(S).

There were two exceptions before Unicode 5.1, as shown in Table 7.

Table 7. Canonical Equivalence Exceptions Prior to Unicode 5.1

isIdentifier(S) →
isIdentifier(toNFD(S))
isIdentifier(toNFC(S))
isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S))

isIdentifier(S) →
isIdentifier(toLowercase(S))
isIdentifier(toUppercase(S))
isIdentifier(toFoldedcase(S))

Code Points GC Samples Names
2070 No (⁰) SUPERSCRIPT ZERO

20A8 Sc (₨) RUPEE SIGN

2116 So (№) NUMERO SIGN

2120..2122 So (℠..™) SERVICE MARK..TRADE MARK SIGN

2460..2473 No (①..⑳) CIRCLED DIGIT ONE..CIRCLED NUMBER TWENTY

3300..33A6 So (㌀..㎦) SQUARE APAATO..SQUARE KM CUBED

isIdentifier(toNFC(S))=True isIdentifier(S)=False Different in:

If an implementation needed to ensure full canonical equivalence of identifiers, then
these characters had to be tailored to have the same value, so that either both isIdentifier
(S) and isIdentifier(toNFC(S)) are true, or so that both values are false.

Those programming languages with case-insensitive identifiers should use the case
foldings described in Section 3.13, Default Case Algorithms, of [Unicode] to produce a
case-insensitive normalized form.

When source text is parsed for identifiers, the folding of distinctions (using case mapping
or NFKC) must be delayed until after parsing has located the identifiers. Thus such
folding of distinctions should not be applied to string literals or to comments in program
source text.

The Unicode Character Database (UCD) provides support for handling case folding with
normalization: the property FC_NFKC_Closure can be used in case folding, so that a
case folding of an NFKC string is itself normalized. These properties, and the files
containing them, are described in the UCD documentation [UCD].

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained the text of
this annex.

Thanks to Eric Muller, Asmus Freytag, Julie Allen, Kenneth Whistler, and Martin Duerst
for feedback on this annex.

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 10

 Proposed Update for Unicode 5.2.0
 Updated caption style for figures and tables. [KW]
 Added table captions and centered Tables 6 and 7 in Section 5.1. [KW]
 Split the unnumbered identifier closure table in Section 5.1 into two Figures and

adjusted the surrounding text for clarity. [KW]
 Removed borders around images, and redrew Figures 2, 3, 4 for clarity [RM]
 Updated explanatory text for Figure 4. [KW]
 Minor editorial cleanup. [JA & KW]

U+02B9 (ʹ) MODIFIER LETTER PRIME U+0374 (ʹ) GREEK NUMERAL SIGN XID and ID
U+00B7 (·) MIDDLE DOT U+0387 (·) GREEK ANO TELEIA XID alone

Revision 9

 Updated for Unicode 5.1.0.
 Fixed Table 2 to exclude Pattern_Syntax and Pattern_White_Space explicitly.
 Added note under R2 Alternative Identifiers
 Removed surrogates, private-use, and control from R2, added notes.
 Noted restrictions on ZWJ/ZWNJ are as applied to NFC.
 Added Section 2.2 Modifier Letters and renumbered sections.
 Added Table 5, to show other scripts.
 Noted that both Tables will require updating with successive versions of Unicode,

as new scripts are added.
 Broadened the discussion of Layout Controls to include other Default Ignorables in

2.3 Layout and Format Control Characters.
 Minor reformatting of tables and figures, and addition of captions to tables.
 Added descriptions of scripts in Table 4, Candidate Characters for Exclusion from

Identifiers.
 Added sentence about further restrictions to R1a.
 Added line pointing to UTR36 for information about further restrictions.
 Added to discussion of canonical equivalence of identifiers.
 Added filtered identifiers and rules.
 Added format character discussion and rules.

Revision 8 being a proposed update, only changes between revisions 9 and 7 are noted
here.

Revision 7

 Introduced the term profile.
 Added note on profiles of identifiers for natural language in Section 2.3 Specific

Character Adjustments
 Minor editing for clarity in 2 Default Identifier Syntax
 Added note on spaces in identifiers (eg in SQL)

Revision 6 being a proposed update, only changes between revisions 7 and 5 are noted
here.

Revision 5

 Removed section 4.1, because the two properties have been accepted for Unicode
4.1.

 Expanded introduction
 Adding information about stability, and tailoring for identifiers.
 Added the list of characters in Other_ID_Continue .
 Changed <identifier_continue> and <identifier_start> to just use the property

names, to avoid confusion.
 Included XID_Start and XID_Continue in R1 and elsewhere.

 Added reference to UTR #36, and the phrase “or a list of additional constraints on
identifiers” to R1.

 Changed “Coverage” to “General Description of Coverage,” because the UCD
value are definitive.

 Added clarifications in 2.4
 Revamped 2.2 Layout and Format Control Characters
 Minor editing

Revision 3

 Made draft UAX
 Incorporated Annex 7 from UAX #15
 Added Other_ID_Continue for Unicode 4.1
 Added conformance clauses
 Changed <identifier_extend> to <identifier_continue> to better match the property

name.
 Some additional edits.

Revision 2

 Modified Pattern_White_Space to remove compatibility characters
 Added example explaining use of Pattern_White_Space

Revision 1

 First version: incorporated section from Unicode 4.0 on Identifiers plus new section
on patterns.

Copyright © 2000-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

