
 Technical Reports

Draft Unicode Technical Standard #46

UNICODE IDNA COMPATIBILITY PROCESSING
Version 5.2.0 (working draft 6a)
Authors Mark Davis (markdavis@google.com), Michel

Suignard
Date 2010-02-04
This Version http://www.unicode.org/reports/tr46/tr46-2.html
Previous
Version

http://www.unicode.org/reports/tr46/tr46-1.html

Latest
Version

http://www.unicode.org/reports/tr46/

Revision 2

Summary

This document provides a specification for processing that provides for
compatibility between older and newer versions of internationalized
domain names (IDN) for lookup in client software. It allows applications
such as browsers and emailers to be able to handle both the original
version of internationalized domain names (IDNA2003) and the newer
version (IDNA2008) compatibly, avoiding possible interoperability and
security problems.

Status

This is a draft document which may be updated, replaced, or superseded
by other documents at any time. Publication does not imply endorsement
by the Unicode Consortium. This is not a stable document; it is
inappropriate to cite this document as other than a work in progress.

Page 1 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

rick@unicode.org
Text Box
L2/10-024

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance
to any UTS.

Please submit corrigenda and other comments with the online reporting
form [Feedback]. Related information that is useful in understanding this
document is found in the References. For the latest version of the
Unicode Standard see [Unicode]. For a list of current Unicode Technical
Reports see [Reports]. For more information about versions of the
Unicode Standard, see [Versions].

Contents

1 Introduction
1.1 IDNA2003
1.2 IDNA2008
1.3 Security Considerations

2 Compatibility Processing
2.1 Display of Internationalized Domain Names
2.2 Registries
2.3 Notation

3 Conformance
4 Processing

4.1 Implementation Notes
5 IDNA Mapping Table
6 Validity Criteria
7 Mapping Table Derivation
8 IDNA Comparison
Acknowledgements
References
Modifications

1. Introduction

One of the great strengths of domain names is universality. With
http://Apple.com, you can get to Apple's website no matter where you are
in the world, and no matter which browser you are using. With
markdavis@google.com, you can send an email to an author of this
specification, no matter which country you are in, and no matter which
emailer you are using.

Page 2 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Initially, domain names were restricted to only handling ASCII characters.
This was a significant burden on people using other characters. Suppose,
for example, that the domain name system had been invented by Greeks,
and one could only use Greek characters in URLs. Rather than apple.com,
one would have to write something like αππλε.κομ. An English speaker
would not only have to be acquainted with Greek characters, but would
also have to pick those Greek letters that would correspond to the
desired English letters. One would have to guess at the spelling of
particular words, because there are not exact matches between scripts.

A large majority of the world’s population faced this situation until
recently, because their languages use non-ASCII characters.

1.1 IDNA2003

A system was introduced in 2003 for internationalized domain names
(IDN). This system is called Internationalizing Domain Names for
Applications, or IDNA for short. It consists of a series of RFCs collectively
known as IDNA2003 [IDNA2003]. This system allows non-ASCII Unicode
characters, which includes not only the characters needed for Latin-script
languages other than English (such as Å, Ħ, or Þ), but also different
scripts, such as Greek, Cyrillic, Tamil, or Korean.

The IDNA mechanism for allowing non-ASCII Unicode characters in
domain names involves applying the following steps to each label in the
domain name that contains Unicode characters:

Transforming (mapping) a Unicode string to remove case and other
variant differences.

1.

Checking the resulting mapped string for validity, according to
certain rules.

2.

Transforming the Unicode characters into a DNS-compatible ASCII
string using a specialized encoding called Punycode [RFC3492].

3.

For example, you can now type in http://Bücher.de into the address bar of
any modern browser, and you will go to a corresponding site, even
though the "ü" is not an ASCII character. This works because the IDN
resolves to the Punycode string which is actually stored by the DNS for

Page 3 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

that site. Similarly, when a browser interprets a web page containing a
link such as , the appropriate site is reached.
(In this document, when phrasing like "a browser interprets" is used, it
refers both to domain names parsed out of URLs entered in an address
bar and to those contained in links internal to HTML text.)

In this case, for the IDN Bücher.de, the Punycode value actually used for
the domain names on the wire is http://xn--bcher-kva.de. The Punycode
version is also typically transformed back into Unicode form for display.
The resulting display string will be a string which has already been
mapped according to the IDNA2003 rules. So in this example we end up
with a display string that has been casefolded to lowercase:

http://Bücher.de → http://xn--bcher-kva.de → http://bücher.de

1.2 IDNA2008

In early 2010, a new version of IDNA was approved. Like IDNA2003, this
version consists of a collection of RFCs and is called IDNA2008
[IDNA2008]. Despite the presence of "2008" in the name, it was actually
approved in 2010.

[Review Note: While approved (except for BIDI) at the time of this writing,
they have not yet been issued as RFCs.]

For the most common cases, the processing in IDNA2003 and IDNA2008
are identical. Both transform a Unicode domain name in a URL (like
http://öbb.at) to the Punycode version (like http://xn--bb-eka.at). However,
IDNA2008 does not maintain strict backwards compatibility with
IDNA2003.

The main differences between the two are:

Additions. Some IDNs are invalid in IDNA2003, but valid in
IDNA2008.

•

Subtractions. Some IDNs are valid in IDNA2003, but invalid in
IDNA2008.

•

Deviations. Some IDNs are valid in both, but resolve to different
destinations.

•

Page 4 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Unpredictable Changes. Some IDNs do not have predictable behavior
in applications implementing IDNA2008, due to the option of local
mappings, as explained below. They may fail, or may have any of
the above characteristics.

•

For more detail on the differences, see Section 8, IDNA Comparison.

1.3 Security Considerations

The cases of deviations and unpredictable changes introduced by the
differences between IDNA2008 and IDNA2003 may cause both
interoperability and security problems. They affect extremely common
characters, such as all uppercase characters, all half-width or full-width
characters (commonly used in Japan, China, and Korea), and certain other
characters like the German eszett (U+00DF ß LATIN SMALL LETTER SHARP
S) and Greek final sigma (U+03C2 ς GREEK SMALL LETTER FINAL SIGMA).

IDNA2003 requires a mapping phase, which maps http://ÖBB.at to
http://öbb.at, for example. Mapping typically involves mapping uppercase
characters to their lowercase pairs, but it also involves other types of
mappings between equivalent characters, such as mapping half-width
katakana characters to normal (full-width) katakana characters in
Japanese. The mapping phase in IDNA2003 was included to match the
insensitivity of ASCII domain names. Users are accustomed to having both
http://CNN.com and http://cnn.com work identically. They would not expect
the addition of an accent to change the casing behavior: they expect that
if http://Bruder.com is the same as http://bruder.com, then of course
http://Brüder.com is the same as http://brüder.com. In other scripts there
are variations in characters similar to case in this respect. The IDNA2003
mapping is based on data specified by Unicode; this mapping was later
formalized as the Unicode property [NFKC_CaseFold].

IDNA2008 does not require a mapping phase, but does permit one (called
"Local Mapping" or "Custom Mapping"). There are no limitations on what
the mapping can do to disallowed characters. Disallowed characters even
include ASCII uppercase characters, if they occur in an IDN label. For
more information on the permitted mappings, see the Protocol document
of [IDNA2008], Section 4.2 Permitted Character and Label Validation and

Page 5 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Section 5.2 Conversion to Unicode. An implementation of IDNA2008
which uses the option of Custom Mapping can, in principle, allow any
particular mapping. Such mappings can have unpredictable results
regarding the exact interpretation of the processed IDNs. For example,
the following mappings show cases where IDNs are mapped to what
would be considered completely different domain names by IDNA2003
rules:

[Review note: There will be a review of the final RFC numbers and titles
for all IDNA2008 documents and fixes as necessary.]

Map http://ÖBB.at to http://öbb.at1.
Map http://ÖBB.at to http://oebb.at2.
Map http://TÜRKIYE.com to http://türkiye.com3.
Map http://TÜRKIYE.com to http://türkıye.com4.

Note that there is a dotless i in the result of the mapping illustrated in
#4. This has the consequence that the mapped IDN resolves to a different
location than the mapped IDN in #3.

IDNA2008 does define a particular mapping. That mapping is not
normative, and does not attempt to be compatible with IDNA2003. For
more information, see the Mapping document in [IDNA2008].

[Review note: As of this time, the mapping document is not final. If the
IDNA2010 mapping document is issued, the document will describe why
it is not recommended, and that this document presents the
recommended alternative for mapping. Otherwise it will delete references
to that document.]

1.3.1 Deviations

There are a few situations where the strict application of IDNA2008 will
result in the resolution of IDNs to different IP addresses than in
IDNA2003, unless the registry or registrant takes special action. This
affects a relatively small number of characters, but these characters are
common in particular languages. Because of this common occurrence, a
significant number of strings for domain names are affected in those

Page 6 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

languages. This set of characters is referred to as "Deviations". There are
four of these, as shown in Table 1, Deviation Characters.

Char Example IDNA2003 Result IDNA2008 Result
ß

00DF

href="http://faß.de" http://fass.de
= http://fass.de

http://faß.de
= http://xn--fa-hia.de

ς
03C2

href="http://βόλος.com" http://βόλοσ.com
= http://xn--
nxasmq6b.com

http://βόλος.com
= http://xn--

nxasmm1c.com

ZWJ
200D

href="http://ශ්ර ◌ී.com" http://ශ්රී.com
= http://xn--
10cl1a0b.com

http://ශ්ර ◌ී.com
= http://xn--

10cl1a0b760p.com

ZWNJ
200C

href="http://نامه ای.com" http://نامهای.com
= http://xn--

mgba3gch31f.com

http://نامه ای.com
= http://xn--

mgba3gch31f060k.com

Table 1. Deviation Characters

For more information on the rationale for the occurrence of these
Deviations in IDNA2008, see the [IDN FAQ].

The differences in interpretation of Deviation characters results in the
potential for security exploits. Consider a scenario involving
http://www.sparkasse-gießen.de, a German IDN for "Gießen Savings and
Loan".

Alice's browser supports IDNA2003. Under those rules,
http://www.sparkasse-gießen.de is mapped to http://www.sparkasse-
giessen.de, which leads to a site with the IP address 01.23.45.67.

1.

She visits her friend Bob, and checks her bank statement on his
browser. His browser supports IDNA2008. Under those rules,
http://www.sparkasse-gießen.de is also valid, but converts to a
different Punycode domain name in http://www.xn--sparkasse-gieen-
2ib.de. This can lead to a different site with the IP address
101.123.145.167, a spoof site.

2.

Page 7 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Alice ends up at the phishing site, supplies her bank password, and
is her money is stolen. While the .DE registar (DENIC) might have a
policy about bundling all of the variants of ß together (so that they
all have the same owner) it is not required of registries. It is quite
unlikely that all registries will have or enforce such a bundling policy
in all such cases.

There are two Deviations of particular concern. IDNA2008 allows ZWJ and
ZWNJ characters in labels. By contrast these are removed by the mapping
in IDNA2003. In addition to this difference in mapping, these characters
represent a special security concern because they are normally invisible.
That is, the sequence "a<ZWJ>b" looks just like "ab". IDNA2008 provides
a special category called CONTEXTJ for ZWJ and ZWNJ, and only permits
them to occur in certain contexts: certain sequences of Arabic or Indic
characters. However, lookup applications are not required to check for
these contexts, so overall security is dependent on registries having
correct implementations. Moreover, those context restrictions do not
catch all cases where distinct domain names have visually confusable
appearances because of ZWJ and ZWNJ.

2 Unicode IDNA Compatibility Processing

To allow client-side applications to work around the incompatibilities
between IDNA2003 and IDNA2008 for lookup, this document provides a
Unicode algorithm for a standardized processing that allows conformant
implementations to minimize the security and interoperability problems
caused by the differences between IDNA2003 and IDNA2008. This
Unicode IDNA Compatibility Processing is structured according to
IDNA2003 principles, but extends those principles to Unicode 5.1 and
later. In so doing, it also incorporates the repertoire extensions provided
by IDNA2008.

The Unicode IDNA Compatibility Processing uses the standard Unicode
mapping, [NFKC_CaseFold], for the mapping described in this document.
As a result, the domain name in http://ÖBB.at is valid, and maps to
http://öbb.at. It also allows domain names as in http://√.com (which has an
associated web page), and are allowed in IDNA2003. Based on security
considerations, implementations may restrict or flag (in a UI) domain

Page 8 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

names that include symbols and punctuation. For more information, see
UTR#36: Unicode Security Considerations [UTR36].

The result of this Compatibility Processing is a series of labels, each
separated by U+002E (.) FULL STOP. For DNS lookup, the result of the
Compatibility Processing is transformed by Punycoding each label that
contains non-ASCII.

Using the Unicode IDNA Compatibility Processing to transform an IDN
into a form suitable for DNS lookup is comparable to the tactic of "try
IDNA2008 then try IDNA2003". However, this approach avoids a dual
lookup, which can be very problematic. It allows browsers and other
clients such as search engines to have a single processing step, without
having to maintain two different implementations and multiple tables. It
accounts for a number of edge cases that would cause problems, and
provides a stable definition with predictable results that will remain
absolutely backwards compatible in future versions of Unicode.

The Unicode IDNA Compatibility Processing does permit the IDNA2008
Subtractions (primarily symbols and punctuation). It also provides
alternate mappings for the four Deviation characters. This is to allow for
transition periods until the majority of major registries disallow the
Subtractions and support either bundling or blocking for the Deviation
characters that they support. Note that the term "registries" includes far
more than top-level registries, such as for .de or .com. For example,
.blogspot.com has more domain names registered than most top-level
registries. There may be different policies in place for a registry and any
of its subregistries. Thus there are millions of registries that have to be
considered in a transition strategy, not hundreds.

In lookup software, transitions may be fine-grained: for example, it may
be possible to transition to IDNA2008 Subtractions and/or Deviations
for .blogspot.com at a given point but not for .com, or vice versa. If .de
bundles or blocks the Deviation characters, then clients could transition
Deviations for .de, but not for (say) .blogspot.de. The discussion of such
transition strategies is outside of the scope of this document.

Page 9 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

For a demonstration of differences between IDNA2003, IDNA2008, and
the Unicode IDNA Compatibility Processing, see the [IDN_Demo]. For
more detail on the differences, see Section 8, IDNA Comparison.

[Review note: The referenced links to UTR36 et UTS39 (et #31, et al)
passim will be fixed.]

There are two slightly different compatibility mechanisms for dealing
with two separate tasks: IDNA domain name lookup and IDNA domain
name display. To this end, this document specifies two specific types of
processing: Lookup Processing and Display Processing.

Note that neither the Unicode IDNA Compatibility Processing nor
IDNA2008 address security problems associated with confusables (the so
-called "paypal.com" problem). IDNA2008 does disallow certain symbols
and punctuation characters that can be used for spoofing, such as spoofs
of the slash character ("/"). These are, however, an extremely small
fraction of the confusable characters used for spoofing. Moreover,
confusable characters themselves account for a small proportion of
fishing problems: most are cases like "secure-wellsfargo.com". For more
information, see [Bortzmeyer] and the [IDN FAQ].

This document is not directed at the registration of IDNs, although
registries may follow the specifications in this document, with additional
repertoire restrictions of their choosing, to support a transitional period.

It is strongly recommended that UTR#36: Unicode Security
Considerations [UTR36] and UTS#39: Unicode Security Mechanisms
[UTR39] be consulted for information on dealing with confusables, both
for client software and registries. In particular, [UTR39] provides
information that can be used to drastically reduce the number of
confusables when dealing with international domain names, much
beyond what IDNA2008 does. See the [DemoConf].

2.1 Display of Internationalized Domain Names

For IDNA2003 applications, it has been customary to display the
processed string to the user. This is helpful for security, because it
reduces the opportunity for visual confusability. Thus, for example,

Page 10 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

http://googIe.com (with a capital I in place of the L) is revealed as
http://googie.com. However, for the case of the Deviations, the distinction
between the original and processed form is especially important for
users. Thus in displaying domain names, it is recommended that the
Display Processing be applied. This is the same as Lookup Processing,
except that it excludes the deviations: ß, ς, and joiners.

Labels presented to a browser may or may not be in the display form
preferred by a target site; for more information see the [IDN FAQ]. This
specification defines a default display algorithm in Section 4, Processing.

Except for direct DNS lookup, the Display Processing should always be
used. That preserves the four deviation characters in the original string.
The Display Processing form is also used for support of Deviation
characters after a transitional period.

2.2 Registries

This specification is primarily targeted at applications doing Lookup
Processing for IDNs. There is, however, one strong recommendation for
registries: do not allow the registration of labels that are invalid
according to Lookup Processing. The registration of such a label would
not be found by browsers and search engines following Unicode IDNA
Compatibility Processing.

The label that is actually registered and inserted into a registry, is always
a label that has been processed. For example, http://xn--bcher-kva.de
which corresponds to http://bücher.de. However, it may be useful for a
registry to also ask for "unprocessed" labels as part of the registration
process, such as http://Bücher.de, so that they are aware of the registrant's
intent. However, such unprocessed labels must be handled carefully:

Storing the unprocessed label as the sequence of characters that the
registrant really wanted to apply for.

•

Processing the unprocessed label, and displaying the processed
label to the registrant for confirmation.

•

Proceeding with the regular registration process using only the
processed label.

•

Page 11 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

2.3 Notation

Sets of code points are defined using properties and the syntax of
UTS#18: Unicode Regular Expressions [UTS18]. For example, the set of
combining marks is represented by the syntax \p{gc=M}. An additional
syntactic notation beyond the syntax of UTS#18 is used here: the "+"
indicates the addition of elements to a set.

In this document, a label is a substring of a domain name. That substring
is bounded on both sides by either the start or the end of the string, or
any of the following characters, called label-separators:

U+002E (.) FULL STOP1.
U+FF0E (．) FULLWIDTH FULL STOP2.
U+3002 (。) IDEOGRAPHIC FULL STOP3.
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP4.

Many people use the terms "domain names" and "host names"
interchangeably. This document follows [RFC3490] in use of the term
"domain name".

[Review note: bundling and blocking will be explained here, and a
reference added on first use.]

3 Conformance

The requirements for conformance on implementations of the Unicode
IDNA Compatibility Processing algorithm are as follows:

C1 Given a version of Unicode and a Unicode String, a conformant
implementation of Lookup Processing shall replicate the results
given by applying the Lookup Processing algorithm specified by
Section 4, Processing.

C2 Given a version of Unicode and a Unicode String, a conformant
implementation of Display Processing shall replicate the results
given by applying the Display Processing algorithm specified by
Section 4, Processing.

Page 12 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

These specifications are logical ones, designed to be straightforward to
describe. An actual implementation is free to use different methods as
long the result is the same as the result specified by the logical
algorithm.

Any conformant implementation may also have tighter validity criteria
than those imposed by Section 6, Validity Criteria. For example, an
application could disallow or warn of domain name labels with certain
characteristics. For example:

labels with certain combinations of scripts (Safari)•
labels with characters outside of the user's specified languages (IE)•
labels with certain confusable characters (Firefox)•
labels that are detected by the Google Safe Browsing API
[SafeBrowsing]

•

labels that do not meet the validity requirements of IDNA2008,
including BIDI well-formedness

•

labels containing characters from Table 4. Candidate Characters for
Exclusion from Identifiers and Table 5. Recommended Scripts:
Limited Use from UAX#31, Unicode Identifier and Pattern Syntax
[UAX31]

•

labels that don't satisfy Restriction Level 3, Moderately Restrictive
from UTR#36: Unicode Security Considerations [UTR36]

•

For more information, see UTR#36: Unicode Security Considerations
[UTR36] and UTS#39: Unicode Security Mechanisms [UTR39].

4 Processing

The input to Unicode IDNA Compatibility Processing is a prospective
domain_name string expressed in Unicode. The domain name consists of
a sequence of labels with dot separators, such as "Bücher.de".

Note: For more information about the composition of a URL, see
Section 3.5 of [STD13].

The input domain_name string must have had all escaped Unicode code
points converted to Unicode code points. For example, U+5341 (十) CJK

Page 13 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

UNIFIED IDEOGRAPH-5341 could have been escaped as any of the
following:

十 an HTML numeric character reference (NCR)•
\u5341 a Javascript escapes •
%E5%8D%81 a URI/IRI %-escape•

The following steps, performed in order, successively alter the input
domain_name string and then output it as a converted Unicode string.
The output is a converted Unicode string, plus a flag to indicate whether
there was an error. Even if an error occurs, the conversion of the string is
performed as much as is possible.

For each code point in the domain_name string, lookup the status
value in Section 5, IDNA Mapping Table, and take the following
actions:

1.

disallowed: Record that there was an error.◦
ignored: Remove the code point from the string. This is
equivalent to mapping the code point to an empty string.

◦

mapped: Replace the code point in the string by the value for
the mapping in Section 5, IDNA Mapping Table.

◦

deviation: ◦
For Lookup Processing, replace the code point in the
string by the value for the mapping in Section 5, IDNA
Mapping Table.

■

For Display Processing, leave the code point unchanged in
the string.

■

valid: Leave the code point unchanged in the string.◦
Normalize the domain_name string to Unicode Normalization Form
C.

2.

For each label in the domain_name string 3.
If the label starts with "xn--", attempt to convert the rest of the
label to Unicode according to Punycode [RFC3492].

1.

If that conversion fails, record that there was an error.2.

Page 14 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

If that conversion succeeds, replace the original label in the
string by the results of the conversion.

3.

For each label in the domain_name string, verify that it meets the
validity criteria in Section 6, Validity Criteria. If any of the validity
criteria are not satisfied, record that there was an error.

4.

Any input domain_name string that does record that there was an error
in the application of these steps is valid according to this specification.
Conversely, if an input domain_name string causes an error, then that
input input domain_name string is not valid. The processing is
idempotent—reapplying the processing to the output will make no further
changes. For examples, see Table 2, Examples of Lookup Processing.

Implementations may make further modifications to the display string in
display to the user. For example, it is recommended that invalid
characters be replaced by a U+FFFD so as to make them visible to the
user. Similarly, labels that are invalid according to steps 3 or 4 may be
marked by the insertion of a U+FFFD or other visual device.

There are two types of processing: Lookup Processing and Display
Processing. These differ only in how the deviation code points in the
mapping table are handled. The result of Lookup processing can be
converted to a domain name string containing Punycode labels
("asciified").

Note: Some browsers allow also characters such as underscore ("_")
in domain names. Any such extension is outside of the scope of this
document.

For those familiar with [RFC3490], operations corresponding to ToASCII
and ToUnicode are implemented as follows.

ToASCII: •
Apply the Lookup Processing. This may record an error.◦
Break the result into labels at U+002E FULL STOP.◦
Convert each label with non-ASCII characters into Punycode
[RFC3492]. This may record an error. If any converted label
contains a U+002E FULL STOP, record an error.

◦

Page 15 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

If requested (an option in [RFC3490]), check that the result is a
valid DNS domain name (checking for length restrictions, etc.)
according to Domain names - concepts and facilities [STD13]
and [STD3]. This may record an error. Note that with the
provided mapping table, non-LDH ASCII characters will be
rejected regardless of whether this option is chosen.

◦

If an error was recorded, then the operation failed, and no DNS
lookup should be done.

◦

ToUnicode: •
Apply the Display Processing. Note that unlike RFC3490
ToASCII, this always signals whether or not there was an error.

◦

Like RFC3490, this will always produce a converted Unicode
string, even if there was an error.

◦

[Review note: These requirements are somewhat more strict in certain
ways than RFC3490 (or IDNA2008). For example, raw Punycode is always
validated, where RFC3490 will just pass on failed Punycode in ToUnicode,
and IDNA2008 doesn't require checking raw Punycode in lookup at all (a
sizable hole in its validity checking).]

Implementations are advised to apply additional tests to these labels such
as those described in UTR#36: Unicode Security Considerations [UTR36]
and UTS#39: Unicode Security Mechanisms [UTR39], and take appropriate
actions. For example, a label with mixed scripts or confusables may be
called out in the UI.

Input Step 1 Step
2

Step 3 Step
4

Comment

Bloß.de bloss.de = = valid maps uppercase and
eszett

u¨.com = ü.com = valid normalizes u + umlaut
xn--tda.com xn--

tda.com
= ü.com valid xn--tda = ü

Table 2. Examples of Lookup Processing

Page 16 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

xn--u-
ccb.com

= = u¨.com error xn--u-ccb = u +
umlaut

a⒈com error ⒈is disallowed
xn--a-
ecp.ru

xn--a-
ecp.ru

= a⒈.ru error xn--a-ecp = a⒈

xn--a.pt xn--a.pt = error invalid Punycode

日本語。ＪＰ 日本語.jp = = valid mapping full width
characters

☕.us = = = valid post Unicode 3.2
character

4.1 Implementation Notes

There are a number of optimizations can be applied to this processing.
These optimizations can improve performance, reduce table size, make
use of existing NFKC transform mechanisms, and so on. For example:

There is an NFC check in Section 6, Validity Criteria. However, it only
needs to be applied to labels that were converted from Punycode
into Unicode in Step 3.

•

A simple way to do much of the validity checking in Section 6,
Validity Criteria is to simply reapply Steps 1 and 2, and verify that
the result does not change.

•

Because the four label separators are all mapped to U+002E (.)
FULL STOP by Step 1, the parsing of labels in Steps 3 and 4 only
need to detect U+002E (.) FULL STOP, and not the other label
separators defined in IDNA [RFC3490].

•

5 IDNA Mapping Table

For each code point in Unicode, the IDNA Mapping Table provides a
status value. If this status value is mapped or deviation, the table also
supplies a mapping value for that code point. A table is provided for each
version of Unicode starting with Unicode 5.1, in versioned directories
under [IDNA-Table]. Each table for a version of the Unicode Standard will
always be backwards compatible with previous versions of the table: only

Page 17 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

characters with the status value disallowed may change in status or
mapping value.

A description of the derivation of these tables is provided in Section 7,
Mapping Table Derivation. As for derived properties in the Unicode
Character Database, the description of the derivation is informative. Only
the data in IDNA Mapping Table is normative for the application of this
specification.

The files use a semicolon-delimited format similar to those in the
Unicode Character Database. The first field is the code point; the second
field is the status value; and the third field is the mapping value. Code
points are expressed in hexadecimal. The status values are one of the
following five values: valid, disallowed, ignored, mapped, and deviation.

Example:

0000..002C ; disallowed # NULL..COMMA
002D ; valid # HYPHEN-MINUS
...
0041 ; mapped ; 0061 # LATIN CAPITAL LETTER A
...
00AD ; ignored # SOFT HYPHEN
...
00DF ; deviation ; 0073 0073 # LATIN SMALL LETTER SHARP S
...

6 Validity Criteria

Each of the following criteria must be satisfied for a label to be valid:

The label must contain at least one code point.1.
The label must not contain a U+002D HYPHEN-MINUS character in
both the third position and fourth positions.

2.

The label must neither begin nor end with a U+002D HYPHEN-
MINUS character.

3.

The label must be in Unicode Normalization Form NFC. 4.
The label must not contain a U+002E (.) FULL STOP.5.
Each code point in the label must only have certain status values
according to Section 5, IDNA Mapping Table:

6.

For Lookup Processing, each value must be valid.1.

Page 18 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

For Display Processing, each value must be either valid or
deviation.

2.

The label must not begin with a combining mark, that is:
General_Category=Mark.

7.

In addition, the label should meet the requirements for right-to-left
characters specified in the Bidi document of [IDNA2008], and for the
CONTEXTJ requirements in the Protocol document of [IDNA2008]. It is
strongly recommended that UTR#36: Unicode Security Considerations
[UTR36] and UTS#39: Unicode Security Mechanisms [UTR39] be consulted
for information on dealing with confusables, and for characters that
should be excluded from identifiers. Note that the recommended
exclusions are a superset of those in [IDNA2008].

Any particular application may have tighter validity criteria, as discussed
in Section 3, Conformance.

7 Mapping Table Derivation

The following describes the derivation of the mapping table. Step 1
defines a base mapping value; Steps 2-4 define three sets of characters.
These are all used in Step 5 to produce the mapping and status values for
the table. Step 5 also removes characters whose NFD form would be
invalid.

If a Unicode property were to change in a future version in a way that
would affect backwards compatibility, a grandfathering clause will be
added to maintain compatibility. For more information on compatibility,
see Section 5, IDNA Mapping Table.

Step 1: Produce a base mapping value

Map the following label separator characters to U+002E (.) FULL
STOP

1.

U+FF0E (．) FULLWIDTH FULL STOP◦
U+3002 (。) IDEOGRAPHIC FULL STOP◦
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP◦

Page 19 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Map each other character to its NFKC_CaseFold value
[NFKC_CaseFold].

2.

Step 2: Specify the base valid set

The base valid set is defined by the sequential list of additions and
subtractions in Table 3, Base Valid Set. This definition is based on the
principles of IDNA2003. When applied to the repertoire of Unicode 3.2
characters, this produces a set which is closely aligned with IDNA2003.

Formal Sets Descriptions
[\P{Changes_When_NFKC_Casefolded} Start with characters that are

NFKC Case folded (excluding
uppercase, for example).
Note that \P means the
inverse of \p, so these are
the characters that don't
change when individually
NFKC_CaseFolded.

- \p{c} - \p{z} Remove Control Characters
and Whitespace

- \p
{Block=Ideographic_Description_Characters}

Remove ideographic
description characters

- \p{ascii} Remove ASCII
+ [\u002D\u002Ea-zA-Z0-9] Add back all the valid ASCII,

plus
U+002E (.) FULL STOP

Table 3. Base Valid Set

Step 3: Specify the base exclusion set

The exclusion set consists of characters that have a different mapping in
IDNA2003 than the base mapping value specified in Step 1, or that are
disallowed in IDNA2003. For more information, see the [IDN FAQ]. For
this version, the exclusion set consists of the following:

Case Exclusions •

Page 20 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

U+04C0 (Ӏ) CYRILLIC LETTER PALOCHKA◦
U+10A0 (Ⴀ) GEORGIAN CAPITAL LETTER AN…U+10C5 (Ⴥ)
GEORGIAN CAPITAL LETTER HOE

◦

U+2132 (Ⅎ) TURNED CAPITAL F◦
U+2183 (☕) ROMAN NUMERAL REVERSED ONE HUNDRED◦

Normalization Exclusions (CJK Compatibility Characters) •
U+2F868, U+2F874, U+2F91F, U+2F95F, U+2F9BF◦

Default Ignorable Exclusions •
U+3164 () HANGUL FILLER◦
U+FFA0 () HALFWIDTH HANGUL FILLER◦
U+115F () HANGUL CHOSEONG FILLER◦
U+1160 () HANGUL JUNGSEONG FILLER◦
U+17B4 () KHMER VOWEL INHERENT AQ◦
U+17B5 () KHMER VOWEL INHERENT AA◦
U+1806 (᠆) MONGOLIAN TODO SOFT HYPHEN◦
U+FFFC () OBJECT REPLACEMENT CHARACTER◦
U+FFFD (�) REPLACEMENT CHARACTER ◦

Vietnamese Tone Marks •
U+0340 (̀) COMBINING GRAVE TONE MARK
U+0341 (́) COMBINING ACUTE TONE MARK

◦

Bidi Format characters •
U+200E () LEFT-TO-RIGHT MARK..U+202E () RIGHT-TO-
LEFT OVERRIDE

◦

Invisible operators •
U+2061 () FUNCTION APPLICATION..U+2063 () INVISIBLE
SEPARATOR

◦

Musical Symbols •
U+1D173 () MUSICAL SYMBOL BEGIN BEAM..U+1D17A ()
MUSICAL SYMBOL END PHRASE

◦

Format Characters (deprecated) •

Page 21 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

U+206A () INHIBIT SYMMETRIC SWAPPING..U+206F ()
NOMINAL DIGIT SHAPES

◦

Tags (deprecated) •
U+E0001 () LANGUAGE TAG◦
U+E0020 () TAG SPACE..U+E007F () CANCEL TAG◦

Step 4: Specify the deviation set

This is the set of characters that deviate between IDNA2003 and
IDNA2008.

U+200C () ZERO WIDTH NON-JOINER•
U+200D () ZERO WIDTH JOINER•
U+00DF (ß) LATIN SMALL LETTER SHARP S•
U+03C2 (ς) GREEK SMALL LETTER FINAL SIGMA•

Step 5: Produce the status and mapping values for the table

For each code point:

If the code point is in the deviation set 1.
the status is deviation and the mapping value is the base
mapping value for that code point

◦

Otherwise, if (a) the code point is in the base exclusion set, or if (b)
any code point in its base mapping value is not in the base valid set

2.

the status is disallowed and there is no mapping value in the
table

◦

Otherwise, if the base mapping value is an empty string 3.
the status is ignored and there is no mapping value in the table◦

Otherwise, if the base mapping value is the same as the code point 4.
the status is valid and there is no mapping value in the table◦

Otherwise, 5.
the status is mapped and the mapping value is the base
mapping value for that code point

◦

Page 22 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

After processing all code points, iterate through the valid set of
characters and remove any whose canonical decompositions (NFD) are
not wholy in the valid set. Recursively apply this action until there are no
removals. In Unicode 5.2, the set of characters so removed consist of the
following:

U+2260 (≠) NOT EQUAL TO•
U+226E (≮) NOT LESS-THAN•
U+226F (≯) NOT GREATER-THAN•

Note that characters such as U+2488 (⒈) DIGIT ONE FULL STOP are
disallowed by substep (2a).

8 IDNA Comparison

Table 4, IDNA Comparisons illustrates the differences between the three
specifications in terms of valid character repertoire. It omits the ASCII-
repertoire code points, all code points unassigned in Unicode 5.2, as well
as control characters, private-use characters, and surrogate code points.
It also includes labels separators that are valid or mapped. The table has
separate groupings for Unicode 3.2 (the only characters valid in
IDNA2003) and beyond. It also separates buckets where UTS46 and
IDNA2008 behave the same from those where they behave differently.

Each row in the table defines a bucket of code points that share a pattern
of behavior across the three specifications. The columns provide the
following information:

The Count column shows the number of characters in each bucket. •
The IDNA2003, UTS46, and IDNA2008 columns show the status of
the characters in each bucket for the respective specifications.

•

Deviations are modified in lookup processing, but not modified
in display processing; see Section 4, Processing.

◦

IDNA2003 allows unassigned code points in lookup but not
registration. These are in the section of the table marked
"Unicode v4.0-5.2", and marked as LookupValid.

◦

Page 23 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

IDNA2008 has several statuses. Characters that are
DISALLOWED or UNASSIGNED in IDNA2008 are marked as
Disallowed, while characters that are CONTEXTJ, CONTEXTO,
and PVALID are marked as Valid.

◦

The Comments and Samples column describes the nature of the
correlation between the specifications and provides illustrative
characters.

•

Count IDNA2003 UTS46 IDNA2008 Comments and Samples
Unicode v3.2 (IDNA2003 = UTS46 = IDNA2008)
86,676 Valid Valid Valid Valid in all three systems

U+00E0 (à) LATIN SMALL
LETTER A WITH GRAVE

433 Disallowed Disallowed DisallowedDisallowed in all three
systems
U+FF01 (！) FULLWIDTH
EXCLAMATION MARK

Unicode v3.2 (IDNA2003 ≠ UTS46 = IDNA2008)
48 Valid Disallowed DisallowedMappings changed after

v3.2
U+2132 (Ⅎ) TURNED
CAPITAL F

8 Mapped Disallowed DisallowedMappings changed after
v3.2
U+2F868 (㛼) CJK COMP.

Unicode v3.2 (IDNA2003 = UTS46 ≠ IDNA2008)
4,638 Mapped /

Ignored
Mapped /
Ignored

DisallowedCase and compatibility
variants, default ignorables
U+00C0 (À) LATIN
CAPITAL LETTER A WITH
GRAVE

3,254 Valid Valid DisallowedPunctuation, Symbols, etc.
U+2665 (♥) BLACK
HEART SUIT

Table 4. IDNA Comparisons

Page 24 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

4 Mapped /
Ignored

Mapped /
Ignored

Valid Deviations
U+200C () ZERO WIDTH
NON-JOINER
U+200D () ZERO WIDTH
JOINER
U+00DF (ß) LATIN SMALL
LETTER SHARP S
U+03C2 (ς) GREEK SMALL
LETTER FINAL SIGMA

Unicode v4.0-5.2 (UTS46 = IDNA2008)
9,705 LookupValid Valid Valid U+0221 (ȡ) LATIN SMALL

LETTER D WITH CURL
52 LookupValid Disallowed DisallowedU+0602 () ARABIC

FOOTNOTE MARKER
Unicode v4.0-5.2 (UTS46 ≠ IDNA2008)

1,592 LookupValid Valid DisallowedU+2615 (☕) HOT
BEVERAGE

791 LookupValid Mapped /
Ignored

DisallowedU+023A (Ⱥ) LATIN
CAPITAL LETTER A WITH
STROKE

A more detailed online listing of differences is found at [DemoIDNChars]
and [DemoIDN].

[Review Note: The rows with counts above will be numbered for
reference. An explanation of the differences and implications for
implementers will be added here. Recommendations: everyone should do
a/b. Avoid c/d : problematic even in 2003 because implementations
handled them differently. efg (mapping same), ...]

Acknowledgements

For their contributions of ideas or text to this specification, thanks to
Matitiahu Allouche, Peter Constable, Craig Cummings, Martin Dürst, Peter
Edberg, Deborah Goldsmith, Laurentiu Iancu, Gervase Markham, Simon
Montagu, Lisa Moore, Eric Muller, Murray Sargent, Markus Scherer,
Jungshik Shin, Shawn Steele, Erik van der Poel, Chris Weber, and Ken

Page 25 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Whistler. The specification builds upon [IDNA2008], developed in the IETF
Idnabis working group, especially contributions from Matitiahu Allouche,
Harald Alvestrand, Vint Cerf, Martin J. Dürst, Lisa Dusseault, Patrik
Fältström, Paul Hoffman, Cary Karp, John Klensin, and Peter Resnick, and
also upon [IDNA2003], authored by Marc Blanchet, Adam Costello, Patrik
Fältström, and Paul Hoffman.

References

References not listed here may be found in
http://www.unicode.org/reports/tr41/#UAX41.

[Bortzmeyer] http://www.bortzmeyer.org/idn-et-phishing.html
(machine translated at
http://translate.google.com/translate?u=http%3A%2F%
2Fwww.bortzmeyer.org%2Fidn-et-phishing.html)

[DemoConf] http://unicode.org/cldr/utility/confusables.jsp

[DemoIDN] http://unicode.org/cldr/utility/idna.jsp

[DemoIDNChars] http://unicode.org/cldr/utility/list-unicodeset.jsp?
a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}
&abb=on&g=uts46+idna+idna2008

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[IDNA2003] The IDNA2003 specification is defined by a cluster of
IETF RFCs:

IDNA [RFC3490]•
Nameprep [RFC3491]•
Punycode [RFC3492]•
Stringprep [RFC3454].•

[IDNA2008] The draft IDNA2008 specification is defined by a
cluster of IETF RFCs:

Internationalized Domain Names for Applications
(IDNA): Definitions and

•

Page 26 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Document Framework -
http://tools.ietf.org/html/draft-ietf-idnabis-defs
Internationalized Domain Names in Applications
(IDNA): Protocol - http://tools.ietf.org/html/draft
-ietf-idnabis-protocol

•

The Unicode code points and IDNA -
http://tools.ietf.org/html/draft-ietf-idnabis-
tables

•

Right-to-left scripts for IDNA -
http://tools.ietf.org/html/draft-ietf-idnabis-bidi

•

There are also two informative documents:

Internationalized Domain Names for Applications
(IDNA): Background, Explanation, and Rationale -
http://tools.ietf.org/html/draft-ietf-idnabis-
rationale

•

Mapping Characters in IDNA -
http://tools.ietf.org/html/draft-ietf-idnabis-
mappings

•

For more information, see
http://tools.ietf.org/id/idnabis.

[Review Note: Once IDNA2008 is final, and the final
formal titles and RFC numbers will be used in
references in the text.]

[IDNA-Table] http://www.unicode.org/Public/idna

[IDN-Demo] http://unicode.org/cldr/utility/idna.jsp

[IDN-FAQ] http://www.unicode.org/faq/idn.html

[NFKC_CaseFold] The Unicode property specified in [UAX44], and
defined by the data in DerivedNormalizationProps.txt
(search for "NFKC_CaseFold").

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/

Page 27 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

For information on the status and development
process for technical reports, and for a list of technical
reports.

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of
Internationalized Strings ("stringprep")", RFC 3454,
December 2002.
http://ietf.org/rfc/rfc3454.txt

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello,
"Internationalizing Domain Names in Applications
(IDNA)", RFC 3490, March 2003.
http://ietf.org/rfc/rfc3490.txt

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN)", RFC
3491, March 2003.
http://ietf.org/rfc/rfc3491.txt

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of
Unicode for Internationalized Domain Names in
Applications (IDNA)", RFC 3492, March 2003.
http://ietf.org/rfc/rfc3492.txt

[SafeBrowsing] http://code.google.com/apis/safebrowsing/

[STD3]
Braden, R., "Requirements for Internet Hosts --
Communication Layers", STD 3, RFC 1122, and
"Requirements for Internet Hosts -- Application and
Support", STD 3, RFC 1123, October 1989.
http://www.rfc-editor.org/std/std3.txt

[STD13]
Mockapetris, P., "Domain names - concepts and
facilities", STD 13, RFC 1034 and "Domain names -
implementation and specification", STD 13, RFC 1035,
November 1987.
http://www.rfc-editor.org/std/std13.txt

Page 28 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

[Unicode] The Unicode Standard
For the latest version see:
http://www.unicode.org/versions/latest/.

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For details on the precise contents of each version of
the Unicode Standard, and how to cite them.

Modifications

The following summarizes modifications from the previous revisions of
this document.

Revision 2

Draft 6•
Made modifications resulting from UTC discussion.•
Made it clear that Subtraction and Deviation support is transitional.•
Some other rewording after the approval of IDNA2008. Final
wording will await assignment of RFC numbers.

•

Added explanation of correspondances to ToASCII and ToUnicode.•
Modified the error handling to make it more flexible, and always
produce a (determinant) converted string.

•

Added some open issues.•
Draft 5 and previous•
Draft UTS posted for public review•
Incorporated Editorial Committee modifications•
Changed title•
Major restructuring as result of UTC discussion.•
Added notation section, draft data file•
Made it clear that applications can choose to have tighter validity
criteria.

•

Renumbered sections•
Fixed references.•

Page 29 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

Added comparison table of IDNA2003, UTS46, and IDNA2008 in
Section 8

•

Radical simplification as directed by the UTC.•

Revision 1

Proposed Draft UTS posted for public review.•
Fixed a number of typos and problems pointed out by Marcos
(mostly not noted in the text).

•

Added draft security and FAQ sections.•
Replaced the introduction, and shortened the document overall; with
theNFKC_CaseFolded property, the mapping is considerably simpler.

•

Added specifications for the Hybrid and Compatibility
implementations, including the two Modes, based on the additional
material from the UTC in early 2008.

•

Removed the Hybrid variant, and added a discussion of tactics for
deviations.

•

Copyright © 2008-2010 Unicode, Inc. All Rights Reserved. The Unicode Consortium
makes no expressed or implied warranty of any kind, and assumes no liability for errors
or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in
some jurisdictions.

Page 30 of 30UTS#46 Unicode IDNA Compatibility Processing (IDNA46)

2/4/2010file://C:\L2-Doc\Incoming\10024-tr46-2-draft6.html

