
To: UTC
From: CLDR-TC
Date: May 10, 2011
Subject: Embedding Level Mark

Draft (http://goo.gl/xNFJ0)

In CLDR we’ve realized that there are a number of instances where people want a format to
be composed of fields that flow in the paragraph direction. For example, people want date
formats that order one direction in a RTL environment, but in the opposite direction in a LTR
environment.

To solve that need, the CLDR-TC committee is recommending that the UTC add a new BIDI
ordering mark

U+XXXX Embedding Level Mark (ELM)

The semantics are the same as the LRM and RLM except that the character behaves as if
it were an LRM whenever the Bidi embedding level is L, and behaves as if it were an RLM
whenever the Bidi embedding level is R. A possible code point for XXX would be 2065, which is
a Default_Ignorable_Code_Point.

This can then be used as follows. Suppose, for example, that you have a neutral surrounded by
numbers: 12/34

This appears as 12/34 in either RTL or LTR environments. By inserting an ELM before the ‘/’, it
would appear as 12/34 in a LTR environment, and as 34/12 in a RTL environment.

The new character would have bidi class ON. There would be a new rule:

W0. Examine each embedding-level character (ELM) in the level run, and set the bidi type to L if
the level is even, and R if the level is odd.

Notes

1. It would have been preferable to define a new bidi class for this ELM behavior; it could
then be used as a bidi class override, which—in situations that permitted such overrides—
could achieve the ELM behavior without insertion of extra mark characters. However, per the
Unicode Character Encoding Stability Policy, “The Bidi_Class property values will not be further
subdivided.” [http://www.unicode.org/policies/stability_policy.html#Property_Value]

2. With this mark, as with LRM and RLM, it would be useful to provide a recommendation for
placement: When the mark is intended to modify the class of an otherwise-neutral character,
should the mark be placed before or after the character? The mark placement affects how the
neutral character interacts with other nearby characters per UAX#9 rules W5 and W4.

http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://goo.gl/xNFJ0
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Futility%2Fproperties.jsp%3Fa%3DDefault_Ignorable_Code_Point%23Default_Ignorable_Code_Point&sa=D&sntz=1&usg=AFQjCNG7Z65UwpGGa7o3x7EcXgVBpYQWIQ
rick@unicode.org
Text Box
L2/11-183

Relationship to other proposals

1. L2/11-005, “Proposal to encode an Arabic-Letter Mark (ALM),” Matitiahu Allouche, Mohamed
Mohie: The proposed ALM is like RLM but with class AL instead of R; and thus with a different
effect on the behavior of succeeding digits. It addresses a different set of problems than the
ELM, and seems quite useful in its own right as a separate character; there is no need to unify
that proposal with this one.

2. L2/10-200, “Tailoring the Unicode Bidi Algorithm,” Murray Sargent: This is a nice overview
of several different issues. The section “Internationalized Resource Identifiers” describes
issues and solutions that overlap with those addressed by this ELM proposal. Murray
notes that a strategy adopted by RichEdit for display of identified IRIs is to “force the
delimiters '#', '.', '/', ':', '?', '@', '[', ']' to follow the paragraph (or embedding) direction. … This
approach appears to be ideal. The only problem is that it’s not trivial to identify IRIs using
heuristics.”

Using the ELM adjacent to the separators might be a way to achieve the same result in a way
that is portable across applications, not all of which will necessarily perform the IRI identification
and direction-class forcing described in L2/10-200.

Feedback (an earlier version of this was sent to the bidi list on Apr 28):

1. From Mati Allouche (on bidi list):

I understand the need for such behavior. I don't like it being implemented by a character
with a special rule. As far as I know, that would be a first for the UBA.

The UBA is expressed in terms of bidi classes, not of characters. Even LRE, RLE, LRO,
RLO, PDF are treated as bidi classes, although they only include one character per
class and have very little chances to ever need to add other characters in these classes.

Therefore I suggest to create a new bidi class called for instance Embedding Level
Class (ELC) and have the new character ELM have the bidi class ELC.

One application of the ELC could be as follows. Instead of inserting an ELM in the
middle of 12/34, or around separators in IRIs, we could override the bidi class of
separators (the slash for 12/34; the dot, commercial at etc... for IRIs) when applying the
UBA to those special strings and avoid adding ELMs in the middle of the data.

Note that the bidi engine in ICU4C and ICU4J allows the user to override the bidi class
of any character.

2. From Murray Sargent (response to direct e-mail asking for comments):

(paraphrasing) Murray indicated that he thought the ELM was a good idea, and would be
easy to implement.

