
BIDI handling of Structured Text

Authors:

Tomer Mahlin - IBM bidi Competency Center

Matitiahu Allouche - IBM bidi architect

0. Terminology and Conventions

Structured text (a.k.a. complex expressions) - text having implied or inherent structure such as:
URL, file path, email, Java code, XML, regular expression, date/time stamp etc.
This term is abbreviated as STT.

The examples used in this proposal assume the following convention: Upper case letters denote
letters like Arabic and Hebrew which are to be read from right to left. Lower case letters denote

letters like Latin or Greek which are to be read from left to right. If not specified otherwise, the

examples are shown in display order.

1. The problem

 Display of bidirectional text on logical platforms (e.g., Windows) is governed by the Unicode

Bidirectional Algorithm (UBA). The UBA is used by presentation systems on those platforms and

provides satisfactory results for display of plain bidirectional text. However, not all bidirectional

text is plain text. There are cases in which bidirectional text has a predefined syntax or an internal

structure. Display of such text must follow this syntax. Unfortunately, the UBA is not aware of the

internal structure of bidirectional text and does not produce satisfactory results in such cases. As a

result the display of bidi text may become misleading or even incomprehensible

Important: The problem is with display only and background related processing is not affected.
However, the way the text is displayed on the screen makes it very hard to work with it (in the best
case).

2. What are the most common types of structured text a user can encounter?

The types of STT are broadly divided into two categories according to the level of the users.

Regular end user (types of STT encountered by almost every single end user)

• File path

• Email

• Regular expressions

• Date / time stamps

• Breadcrumb

• Messages with placeholders

• Concatenated text

Developer or advanced end user (types of STT encountered by advanced user e.g. programmer,
system administrator, business analyst etc.)

• Java code

• Markup languages (e.g. XML)

rick@unicode.org
Text Box
L2/11-312

• SQL query

• Mathematical formula

3. Examples of expected and default display for selected types of STT
1

STT

type

Logical order (memory

storage)

Expected display Actual display provided by UBA

File path

c:\FOLDERA\FOLDERB\FOLDERutc

c:\AREDLOF\BREDLOF\REDLOFutc

c:\REDLOF\BREDLOF\AREDLOFutc

Concatena
ted text

PROJECT(3) – DESCRIPTION utc

TCEJORP(3) - NOITPIRCSED utc

NOITPIRCSED - (3) TCEJORP utc

Messages
with
placehold
ers

‘*HELLO*’ – 6 matches in (*TOMER*)

'*OLLEH*' - 6 matches in (*REMOT*)

'*6 - '*OLLEH matches in (*REMOT*)

URL

http://www.a.com/FOLDERB/FOLDERutc

http://www.a.com/BREDLOF/REDLOFutc

http://www.a.com/REDLOF/BREDLOFutc

SQL
query

select ABC, DEFghi from

SCHEMA,TABLEabc

select CBA, FEDghi from

AMEHCS.ELBATabc
select FED, CBAghi from

ELBAT.AMEHCSabc

4. What solution would we like to have?

General approach is depicted on the diagram below:

1
 A comprehensive and detailed report on all widely used types of STT accompanied with a lot of illustrations

(showing the problem in real products) exist and can be provided upon request.

Current proposal focuses on CLDR (top of the pyramid above) layer. Any implementation of
CLDR display rules for STT (pertaining to the middle layer in the pyramid above - ICU, Dojo,
Eclipse etc.) should allow:

1. Preparation of string for display which will assure that its structure is preserved, This
entails development of flexible set of parsers which will analyze the structure of text and
will ensure proper order of tokens using available means (e.g. A) inject UCC (Unicode
Control Characters) when appropriate. B) Use HTML 5 new attribute – bdi etc.). The
framework should be extendable in order to allow adding new parsers (either custom or
built-in) in the future.

2. Taking into consideration user preferences (default rules for STT handling): Arabic vs.
Hebrew. Users in different geographies are accustomed to different rules for STT display.
For example math formulas are always displayed from left-to-right for Hebrew users, while
for Arabic users, they may be displayed from right-to-left.

3. Ability to leverage default rules for STT handling (defined in CLDR) and also customize
them.

This proposal and PRI 185 (http://www.unicode.org/review/pri185/)

This proposal addresses all types of structured text while PRI 185 focuses only on IRI type of
STT.

PRI 185 achieves proper display of STT by amending UBA itself including automatic
identification of STT. As opposed to that this proposal does not seek automatism. It provides
standard rules for expected display of STT. The display is assured by implementation of those
rules on different platforms and by leveraging this implementation in the software products. UBA
is not altered in any way.

 It seems that automatic identification of STT type in general is practically impossible taking into

consideration the following factors:

• STT can be nested (SQL query in Java code, message with file path replacing a placeholder
etc.)

• Automatic identification of language to which message belongs

• Automatic identification of syntax for concatenated text

Addressing problem of STT display on the text level only (e.g. UBA) does not seem possible
since information about factors affecting STT display (e.g. GUI direction, national preferences etc.)
is not present on that level and thus can not be taken into account.

5. Factors affecting the display of STT
2

 There are different types of factors that can affect the proper display of structured text. Some
types of STT, such as URLs or file paths, have a strong LTR directionality associated with them,
while others have different display semantics depending on the directionality of the underlying
GUI, or upon the content of the text itself. This is further complicated by the fact that the
culturally accepted preferences for proper display of STT differ, even between Hebrew and Arabic
users. Thus, we need to be able to define rules within CLDR to describe these factors and to be
able to use that data in order to format STT properly in a given context.

In the table below you will find illustrations for some of the factors affecting STT display:

Factor Illustrations Comments

GUI
direction

Breadcrumb runs
in the same
direction as the
overall GUI
direction. For a
mirrored GUI, it
runs from right to
left, while for not
mirrored GUI it
runs from left to
right.

Language
of message
content

Arabic / Hebrew
messages should
be displayed in
RTL direction
while English
messages should
be displayed in
LTR direction.

National
preference

Hebrew users
expect
mathematical
formulas to
always flow from
left to right while
Arabic users
under certain
conditions expect
them to flow
from right to left.

2
 A comprehensive and detailed report elaborating on all affecting factors and their impact on the expected STT

display exists and can be provided upon request.

6. How the solution will be used ?

Text level (e.g. ICU case)

 In most cases, developers using ICU will call an API similar to the following one:

 prepareForDisplay(inputText, STT_Type, additional_parameters)

This API will inject UCC (Unicode Control Characters) into inputText according to STT_Type
and additional_parameters and will return the result ready for display.

• inputText - structured text subject to display

• STT_Type: file path, URL, email, Java etc.

• additional_parameters - external parameters which might affect STT processing and which
are not directly available to ICU (e.g. GUI direction etc.)

The result string will be embedded by the caller into a graphical element to render it on the
screen.

ICU users will be able to either accept default STT rules (associated with locale and defined
originally in CLDR) or customize them (via convenient API allowing setting / getting values for
different aspects of such rules).

ICU users will be able to extend the list of parsers provided out of the box in order to address
additional types of STT.

ICU will allow removal of UCCs from the text.

One additional usage of this functionality is in serialization / formatting dates / time stamps

provided by ICU itself. A date / time stamp is considered structured text as well. To assure
backward compatibility, ICU should not inject UCCs into date / time stamps by default. However,
it can provide either a flag or an additional signature of the same function (responsible for date /
time stamps generation) which will prepare them for display (by injection of UCC appropriately).
This will assure proper display of date / time stamps generated by ICU. For example in Eclipse:

Widget level case (e.g. Dojo, Eclipse etc.)

At widget creation time, it should be possible to provide additional information about the type of

structured text to be displayed in the widget. The following code snippet illustrates this concept:

Widget myWidget = new Widget(STT_type,….);

• STT_Type: file path, URL, email, Java etc.

Using this information, the widget will assure proper display of structured text using various

means (e.g. UCC injection).

Important: Injection of UCC is just one of possible approaches suggested in the previous sub-
section. This is almost the only way to affect UBA work when what we have in hand is text only.
On the graphical library level (e.g. Dojo, SWT in Eclipse etc.) there might be more advanced
techniques for achieving the same goal: proper enforcement of specific tokens’ order on display
level. For example:

• In Dojo we can leverage new HTML 5 attribute - <bdi>

• In Eclipse we can leverage BidiSegmentListener

7. What will happen during the migration period?

The migration period is the time during which some agents (e.g. programs, products) do support
proper display of STT while others don’t. During that period, people will be using a mixture of old
and new applications. It is crucial to minimize the negative effects for interoperability of different
displays of STT during this transition period.

As a matter of fact, to a certain extent we are already in the middle of this transition period.
Different applications display the same STT differently. For example, MS Visual Studio based
RTC client does not properly display code including bidi characters while Eclipse based RTC
client (using Eclipse Java code editor) does. The same is true if we compare specific products /
technologies which already have support for STT (e.g. Eclipse, Dojo) with products / technologies
which don’t (e.g. Swing, Flash etc.)

Since the problem is with display only and since resolution of the problem occurs on the glass
without affecting text content, the presence of a solution on several agents has no impact on the
rest of the agents. The only obvious result is that in some environments the text will be properly
displayed while in others it won’t. Despite that we will still be able to successfully exchange data
between those agents without any effect on the data processing (e.g. Java code will compile in both
environments despite the fact that it is not properly displayed in one of them).

The current situation is unbearable – the STT including bidi characters is simply
incomprehensible due to distorted display. The only solution users have currently is to avoid usage
of bidi characters, which is not always possible. A standardized approach and consistent platform
level implementation seem to be a much preferable solution.

8. Proposed additions to CLDR

 The following schema is proposed for addition into CLDR, most likely as sub-elements under
the <layout> category. This structure defines the sets of rules in CLDR necessary to describe the
proper display behavior for various types of structured text:

<!-- Top level element is associated with STT type: email, xml, java ...-->
<!ELEMENT sttDisplay (guiDir?)>
<!ATTLIST sttDisplay type (filepath | sql | xml | java | regexp | mathexp |
email | message | datetimestamp | concatenatedtext | breadcrumb) #REQUIRED >

<!-- Next level element is associated with GUI direction (or mirroring mode). -->
<!ELEMENT guiDir (textCondition?)>
<!ATTLIST guiDir type (ltr | rtl) #REQUIRED >

<!-- Next level element is associated with text content dependencies (if relevant). -->

<!-- All attributes are optional since not for all types of STT there is a dependency on the text

content.-->
<!ELEMENT textCondition (sttDir, staticContextAlignment,
dynamicContextAlignment)>
<!ATTLIST textCondition messageLang (ar | he) #IMPLIED>
<!ATTLIST textCondition hasStrongRTLchars (yes | no) #IMPLIED>
<!ATTLIST textCondition hasArabicIndicDigits (yes | no) #IMPLIED>
<!ATTLIST textCondition hasArabicEuropeanDigits (yes | no) #IMPLIED>
<!ATTLIST textCondition firstStrongDirChar (none | ltr | rtl) #IMPLIED>
<!ATTLIST textCondition domainHasStrongRTLChar (none | yes) #IMPLIED>

<!-- On the lowest level we have only values derived from the conditions expressed by the higher

level elements -->
<!ELEMENT sttDir (#PCDATA)>
<!ELEMENT staticContextAlignment (#PCDATA)>
<!ELEMENT dynamicContextAlignment (#PCDATA)>

Sample data for various types of STT:

 a). STT with strong directionality, such as filepath, would have the following rules in root.xml:

<sttDisplay type="filepath">
 <guiDir type = "ltr">
 <textCondition>
 <sttDir>LTR</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
 <guiDir type = "rtl">
 <textCondition>
 <sttDir>LTR</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
</sttDisplay>

 b). The "message" type has some variations based on the content, but the rules remain constant
across locales, as follows:

root.xml:

<sttDisplay type="message">
 <guiDir type = "ltr">
 <textCondition>
 <sttDir>LTR</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 <textCondition messageLang="he">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 <textCondition messageLang="ar">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
 <guiDir type="rtl">
 <textCondition>
 <sttDir>LTR</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 <textCondition messageLang="he">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 <textCondition messageLang="ar">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
</sttDisplay>

 c). Rules for date and time stamps differ between Hebrew and Arabic, so we would have:

In he.xml:

<sttDisplay type="datetimestamp">
 <guiDir type = "ltr">
 <textCondition hasStrongRTLchars="yes">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 <textCondition hasArabicIndicDigits="yes">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 <textCondition hasStrongRTLchars="no" hasArabicIndicDigits="no">
 <sttDir>LTR</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
 <guiDir type = "rtl">
 <textCondition hasStrongRTLchars="yes">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 <textCondition hasArabicIndicDigits="yes">
 <sttDir>RTL</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 <textCondition hasStrongRTLchars="no" hasArabicIndicDigits="no">
 <sttDir>LTR</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
</sttDisplay>

The following rules in ar.xml (Arabic):

<sttDisplay type="datetimestamp">
 <guiDir type = "ltr">
 <textCondition>
 <sttDir>LTR</sttDir>
 <staticContextAlignment>LEFT</staticContextAlignment>
 <dynamicContextAlignment>LEFT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
 <guiDir type = "rtl">
 <textCondition>
 <sttDir>RTL</sttDir>
 <staticContextAlignment>RIGHT</staticContextAlignment>
 <dynamicContextAlignment>RIGHT</dynamicContextAlignment>
 </textCondition>
 </guiDir>
</sttDisplay>

