
 Technical Reports

Draft

Unicode Technical Report #49

Editors Ken Whistler
Date 2011-07-12
This Version http://www.unicode.org/reports/tr49/tr49-2.html
Previous Version http://www.unicode.org/reports/tr49/tr49-1.html
Latest Version http://www.unicode.org/reports/tr49/
Revision 2
Summary

This document presents an approach to the categorization of Unicode
characters, and documents a data file that implementers can use for defining
Unicode character categories.

Status

This document is a draft document which may be updated, replaced, or
superseded by other documents at any time. Publication does not imply
endorsement by the Unicode Consortium. This is not a stable document; it is
inappropriate to cite this document as other than a work in progress.

A Unicode Technical Report (UTR) contains informative material.
Conformance to the Unicode Standard does not imply conformance to any
UTR. Other specifications, however, are free to make normative references
to a UTR.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document
is found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For
more information about versions of the Unicode Standard, see [Versions].

Contents

1 Introduction
2 Character Categories

2.1 Hierarchical Typology
2.2 Implementation by Annotation and Merging
2.2 Names for Categories

http://www.unicode.org/reports/tr49/tr49-2.html

1 of 9

rick@unicode.org
Text Box
L2/11-318

2.3 Display Labels for Categories
2.4 Informative Status of the Categories

3 Data Files
3.1 Maintenance of Data Files

References
Acknowledgements
Modifications

1 Introduction
One problem that has often been considered is how to extract good
"categories" for Unicode characters out of the Unicode names list. This goal is
occasioned, for example, by the need to develop new character picker
applications, which organize characters into groups that will make sense for
people searching for characters in graphic panes or other UI elements.

The problem is two-fold. First, the existing machine-readable data files in the
Unicode Character Database [UCD] do not provide a fine enough categorization
to meet the requirements of such applications. For example, the
General_Category property distinguishes letters from combining marks and
punctuation and symbols, but it doesn't drill down to the next level:
independent vowel letters versus consonants versus matras; or game symbols
versus map symbols versus zodiacal symbols versus dingbats, and so on.
Second, people who need that kind of finer detail of categorization have
generally been attempting to extract it by making use of the editorial
subheaders used in the printing of the Unicode names list, figuring that that
information is better than nothing and assuming that doing the finer-level
classification from scratch would be prohibitively complex.

However, the subheaders in the Unicode names list have always been editorial
content aimed primarily at structuring the code charts for display, and are not
particularly well-suited to a systematic categorization of Unicode characters in
any context more extensive than considering characters visually displayed one
chart at a time. Efforts to revise the subheaders to make them work better for
machine-extracted categorization of Unicode characters from the Unicode
names list are counterproductive. The subheaders would not work very well if
reorganized that way, and the net result would be a significant deterioration of
the editorial content of the code charts.

The existing subheaders also often group characters which other applications
might want to distinguish. For example, the header for the range
U+2600..U+260D is "Weather and astrological symbols". But we can do much
better, distinguishing more precisely those which are weather symbols, such as
U+2602 UMBRELLA, those which are astrological symbols, such as U+260A
ASCENDING NODE, and those which really are not either, such as U+2606
WHITE STAR.

What is needed to address the general problem is an approach that focuses on
the character category distinctions needed by such applications, without being
entangled with the editorial requirements for the Unicode names list
maintenance. This document presents such an approach, and documents the
resulting data file that implementers can use for defining further refining of

http://www.unicode.org/reports/tr49/tr49-2.html

2 of 9

Unicode character categories for particular applications.

2 Character Categories
This section describes the approach taken in this report for the provision of a
set of usable categories for Unicode characters.

2.1 Hierarchical Typology

The current scheme of categorization uses a hierarchical typology. Such a
scheme assumes that each category provided may itself be further subdivided
at another level into more subcategories. Each subcategorization is, in
principle, independent of the subcategorization of other categories. Thus, for
example, how one might want to subcategorize letters would typically be quite
distinct from how one might most usefully subcategorize punctuation marks.
This approach departs from the structure of partition properties for Unicode
characters, such as the General_Category property itself. A partition property
assumes a single dimension of semantic applicability, and then assigns every
character a single value within that dimension. Such a character property is
easy to implement, but as users of the General_Category property well know,
the drawback of such partitions for categorization is their rigidity and the
inability to deal with edge cases and nuances.

The approach to categorization taken here makes no assumption that any
particular level of the hierarchical subcategorization has any fixed significance.
A third-level subcategorization of a punctuation mark might involve rather
different salient distinctions than a third-level subcategorization of symbols,
for example. The typology basically starts with first-level categories roughly
based on the General_Category property, but then may diverge arbitrarily on a
category-by-category basis, depending on what is most useful for
distinguishing characters.

There is no assumption that all levels have to be specified for all characters.
Categories defined this way can be extensible based on what level of detail
people find useful to maintain for various characters. There is also no
assumption that there is actually a single correct solution for categorization.
The categorization may be modified and improved over time. Furthermore, it
should be expected that actual implementations will merely start with
categories in the data file and run with them, to provide whatever additional
changes or refinements are needed in their particular domain.

These general principles are illustrated in part by the following examples, for
several different major categories. For example, for letters:
Letter

Letter > Vowel

Letter > Vowel > Dependent (i.e. Indic matras)

Letter > Consonant > Dependent > Subjoined

For symbols:

http://www.unicode.org/reports/tr49/tr49-2.html

3 of 9

Symbol

Symbol > Graphic

Symbol > Technical

Symbol > Technical > Keyboard

Symbol > Arrow

Symbol > Arrow > Harpoon

Symbol > Arrow > Harpoon > Double

For punctuation marks:
Punctuation

Punctuation > Space

Punctuation > Quotation

Punctuation > Bracket

Punctuation > Bracket > CJK

Currently the categorization makes use of four levels of typology hierarchy,
but this approach could easily be extended to five (or more), if finer levels of
distinction for some groups of characters proves to be desirable. For example,
arrows could be further subcategorized based on their shapes and orientations.

2.2 Implementation by Annotation and Merging

2.2 Names for Categories

Note: The names currently in the data file are provisional. It is expected that
there will be further changes, corrections, and/or subdivisions proposed during
the review of the data.

Each label should have a name that is meaningful in isolation. E.g.
"Western Music", not "Western".
Labels should be the same (or nearly) only when they really mean the
same thing.
Labels that mean the same thing (or nearly) should be the same.
Labels should not be "empty"; that is, if a category further down the
hierarchy is given a label, an intermediate level should not be missing a
label. (This will simplify algorithmic processing of the categories in the
data file.)

Each level of hierachical categorization is given a conventional name, such as
"Letter" or "Symbol" for the highest level, or "Game", "Technical", "Weather",
"Astrological", and so for, for various sub-levels. As far as possible, such
names are drawn from actual practice in the Unicode Standard and in the UTC
committee practice in referring to various groups of characters.

There are no "empty" intermediate levels. Thus, for instance, if a name is given

http://www.unicode.org/reports/tr49/tr49-2.html

4 of 9

in the date file for a fourth level subcategorization for a particular character,
there will also always be explicit names given at the first, second, and third
level of categories for that character.

2.3 Display Labels for Categories

Because of the way the hierarchical categorization works, and the way in which
names are chosen for the subcategories, it is always possible to create unique
identifiers for each terminal subcategory in the hierarchy, simply by
concatenating the level names together. Thus, for example, one could have
identifiers such as "Letter_Consonant_Dependent_Subjoined" or
"Symbol_Technical_Keyboard". However, while unique, such identifiers are not
particularly felicitous as display labels for subcategories.

Certainly, implementers can apply whatever display labels make sense for their
particular context. However, to make the starting point somewhat easier,
suggested display labels are also supplied in a data file. A display label is
provided for each unique, hierarchical subcategory. The display labels are
created with the following principles in mind:

Each display label is meaningful in isolation.
Display labels are the same (or nearly) only when they really mean the
same thing.
As much as possible, display labels follow common English practice in
referring to identified groups of characters, to avoid creating new,
artificial terminology that would be difficult to translate.

Although these principles are generally adhered to, some of the categorial
distinctions between Unicode characters are rather technical in nature. Also,
there are many characters in the Unicode Standard for writing systems which
are mostly unfamiliar to the English-speaking world. In such cases, it is
occasionally unavoidable that technical terminology ends up in the list of
suggested display labels.

2.4 Informative Status of the Categories

The categories defined in the data file are informative, and may be changed or
augmented in the future. This distinguishes them from the General_Category
character property, which is normative and rather constrained in how it can be
changed.

The first key here is staying flexible, so that the classification can be extended
and modified easily in the future, as may prove suitable. Using an annotation
approach and then programmatic merging with UnicodeData.txt makes it very
easy to assign new subtypes or to change or subdivide ranges already assigned
to types and subtypes, without having to do extensive modification of files that
give explicit listings of values for each character.

The second key is corollary to the first: this must not turn into another
normative data file and/or normative set of property values. That is the trap
that has always afflicted the General_Category property and which makes it

http://www.unicode.org/reports/tr49/tr49-2.html

5 of 9

useless for this kind of finer-level categorization of Unicode characters.

3 Data Files
The basic categories data is available in a data file [Data] called Categories.txt.
That data file contains a listing of all Unicode characters other than CJK unified
ideographs and Hangul syllables, giving informative category values at up to
four levels of hierarchical assignment.

The data is formatted in tab-delimited fields, suitable for spreadsheet import.
Once in a spreadsheet, the data can easily be further manipulated to whatever
end an implementer needs.

The field values, along with a sample of the particular category values are
shown below.
Code GC Level1 Level2 Level3 Level4 Name

23CE So Symbol Technical Keyboard RETURN SYMBOL
...
2460 No Symbol Number Circled CIRCLED DIGIT ONE
...
25CB So Symbol Geometric WHITE CIRCLE
...
2602 So Symbol Weather UMBRELLA
...
260A So Symbol Astrological ASCENDING NODE
...
2660 So Symbol Game Playing card Suit BLACK SPADE SUIT
...
266D So Symbol Music Western Accidental MUSIC FLAT SIGN
...
2FBD So Ideograph Radical CJK Kangxi KANGXI RADICAL HAIR
...
A869 Lo Letter Consonant PHAGS-PA LETTER TTA
...

Note: For debugging and review, the current data file brackets each label, so
that the values, including spaces, are easier to see and compare. The brackets
are not part of the actual category values. So for example, an entry will
currently appear as follows:

2660 So [Symbol] [Game] [Playing card] [X] BLACK SPADE SUIT

Also for debugging and review purposes, empty values in unspecified fields are
listed as "[X]", rather than as a blank. These conventions are only temporary, to
assist review when viewing this data in browsers or editors, and are not
intended to be used in the actual data file in the future.

The display label data is is available in a data file [Data] called
CategoryLabels.txt. This data file contains two tab-delimited fields. The first
field contains a constructed identifier for each unique subcategory currently
defined in Categories.txt. The second field contains a suggested display label
for that subcategory. For example:

Subcategory Identifier Subcategory Display Label

http://www.unicode.org/reports/tr49/tr49-2.html

6 of 9

Letter_Consonant Consonant
...
Letter_Consonant_Dependent_Subjoined Subjoined Consonant
...
Symbol_Arrow_Harpoon Harpoon
...
Symbol_Game_Playing_card Playing Card Symbol
...
Symbol_Music_Western Western Musical Symbol
...
Symbol_Technical_Keyboard Keyboard Symbol

3.1 Maintenance of Data Files

The approach taken to maintaining this hierarchical typology reuses technology
which is currently designed for maintenance of the Unicode names list. In
particular, category assignments are treated as annotations over ranges of
characters. The annotation file can is then be maintained completely
independently of the detailed, character-by-character listing files that are part
of the UCD—most importantly, UnicodeData.txt. In this way, the annotation
information (and the associated development and refinement of categorial
assignments) can be is version-agnostic, and is not required to be updated in
lockstep with each version of the Unicode Standard.

The program that is used to maintain annotations for the Unicode names list
has been modified slightly, and is now used for an automated merger of
categorial annotations file with particular versions of the UnicodeData.txt file,
producing as output a structured data file containing categorial information
about all Unicode characters, with an explicit listing for each separate
character, including its code point and Unicode character name.

Currently, This merge omits CJK unified ideographs and Hangul syllables.
Categorial information about CJK unified ideographs is better handled by other
means, and in particular by the Unihan database. The 11,172 Hangul syllables
do not have useful categorial distinctions in the sense relevant to other Unicode
characters, so including all of them explicitly as part of a category listing would
simply be redundant and verbose.

The merged data is in a suitable format for direct import into a spreadsheet.
Once in a spreadsheet, the data can easily be further manipulated to whatever
end an implementer needs Section 3, Data File, for a specification of the format
in detail.

References
[Charts] The online code charts can be found at http://www.unicode.org

/charts/
An index to characters names with links to the corresponding chart
is found at: http://www.unicode.org/charts/charindex.html

[Data] Unicode character categories, for spreadsheet import:
http://www.unicode.org/reports/tr49/Categories.txt
Category display labels, for spreadsheet import:
http://www.unicode.org/reports/tr49/CategoryLabels.txt
For earlier versions of the data file see prior versions of this report.

http://www.unicode.org/reports/tr49/tr49-2.html

7 of 9

Note: Once this report is approved, the data files will move to a
versioned directory under http://www.unicode.org/Public
/categories/

[Errata] Updates and errata to the Unicode Standard, as well as other
technical standards developed by the Unicode Consortium can be
found at http://www.unicode.org/errata/

[Feedback]Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[FAQ] Unicode Frequently Asked Questions
http://www.unicode.org/faq/
For answers to common questions on technical issues.

[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other documents.

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for technical
reports, and for a list of technical reports.

[Stability] Unicode Character Encoding Stability Policy http://www.unicode.org
/policies/stability_policy.html

[UCD] Unicode Character Database, http://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list of its
associated files

[Unicode] The Unicode Standard
For the latest version see: http://www.unicode.org/versions/latest/

[UTC] The Unicode Technical Committee, see http://www.unicode.org
/consortium/utc.html for more information on procedures.

[UTR23] Unicode Technical Report #23: The Unicode Character Property
Model, http://www.unicode.org/reports/tr23/

[Versions] Versions of the Unicode Standard, http://www.unicode.org/standard
/versions/
For information on version numbering, and citing and referencing
the Unicode Standard, the Unicode Character Database, and Unicode
Technical Reports.

Acknowledgements
TBD

Modifications

Revision 2 [KW]

Restructuring of Section 2, to distinguish names for category levels from
display labels for each subcategory.
Introduction of new CategoryLabels.txt data file.
Further updates to data file based on feedback.
Minor editorial updates.
Updated to Draft status.

http://www.unicode.org/reports/tr49/tr49-2.html

8 of 9

Revision 1 [KW]

Data file updated to Unicode 6.0 and tweaked based on feedback.
Initial proposed Draft.

Copyright © 2011 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no
expressed or implied warranty of any kind, and assumes no liability for errors or omissions. No
liability is assumed for incidental and consequential damages in connection with or arising out of
the use of the information or programs contained or accompanying this technical report. The
Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

http://www.unicode.org/reports/tr49/tr49-2.html

9 of 9

