
L2/12-107

UCA spec bugs
Author: Markus Scherer
Date: 2012-mar-15

3.7 Well-Formed Collation Element Tables
Point 2 says

All Level N weights in Level N-1 ignorables must be strictly less than all weights in Level
N-2 ignorables.

For example, secondaries in non-ignorables must be strictly less than those in primary
ignorables: Given collation elements [C, D, E] and [0, A, B], where C ≠ 0 and A ≠ 0,
Dmust be less than A.

This is a contradiction. For N=2, the condition statement says "secondary weights in primary
ignorables must be strictly less than all weights in non-ignorables" which is wrong and
contradicts the example.

The correct statement is "All Level N weights in Level N-2 ignorables must be strictly less than
all weights in Level N-1 ignorables."

Note from Ken Whistler: This contradiction has been an error all the way back to its introduction
in Version 9 of UCA (= UCD 3.1.0 with Corrigendum 3) nearly 10 years ago.

6.10.1 Collation Element Format & 6.10.2 Sample Code

a)
The CE layout has

● expansionsOffset
○ 12 bits = FFF
○ 20 bits = offset (allows for 1,048,576 items)

● contractionsOffset
○ 12 bits = FFE
○ 20 bits = offset (allows for 1,048,576 items)

but the sample code has

void processCE(int ce) {

 if (ce < 0xFFF00000) {

 output[outputPos++] = ce;

 } else if (ce >= 0xFFE00000) {

 copyExpansions(ce & 0x7FFFFF);

 } else {

 searchContractions(ce & 0x7FFFFF);

 }

}

which neither matches, nor works at all.
For the code to match the CE bits, it would have to be

void processCE(int ce) {

 if (ce < 0xFFE00000) {
 output[outputPos++] = ce;

 } else if (ce >= 0xFFF00000) {
 copyExpansions(ce & 0xFFFFFF);
 } else {

 searchContractions(ce & 0xFFFFFF);
 }

}

b)
void searchContractions(int offset)

● Does not handle discontiguous contractions. That should at least be noted.
● Skips or reads the backwardsOffset from input rather than from contractionMatches.
● Reads the length entry again as a cc character rather than skipping it.
● Has some code to do backwards matching but it only ever reads input[inputPos++].

Given that none of the rest of the sample code is prepared to work backwards, I suggest
removing all mentioning of the "forwards" flag and the getCollationElementStart()
function. (That one also does not take into account combining marks that might be
skipped.)

● Compares input chars and contraction chars as (short) which is a signed type. The
test "cc > goal" will fail if input is ≥ U+8000.

An improved version of searchContractions() might look like this:

void searchContractions(int offset) {

 offset++; // skip backwardsOffset

 int goal = input[inputPos++];

 int length = contractionMatches[offset];

 int limit = offset + 1 + length;

 for (int i = offset + 1; i < limit; ++i) {

 int cc = contractionMatches[i];

 if (cc > goal) { // definitely failed

 processCE(contractionCEs[offset]);

 break;

 } else if (cc == goal) { // found match

 processCE(contractionCEs[i]);

 break;

 }

 }

}

c)
The sample code does not work for supplementary code points, but I guess that is meant as an
exercise for the reader. It should be noted as such.

