
Title: Proposal to encode SENTENCE SEPARATOR (NON-JOINER) and 
SENTENCE JOINER

Source: Unicode Localization Interoperability Technical Committee
Contact name: Arle Lommel (arle.lommel@gmail.com)
Date: 2012-05-05

1. Summary
This document proposes the addition of two new characters to the Supplemental Punctuation 
block of the Unicode Basic Multilingual Plane (2E00–2E7F). The SENTENCE SEPARATOR 
(or, alternately, SENTENCE NON-JOINER)1 character is used to indicate the existence of 
a sentence boundary. The SENTENCE JOINER is used to indicate that text should not be 
segmented at an apparent sentence break point or that two strings of text that would appear to 
be separate sentences should be treated as one for processing purposes (a common situation 
in translation processes). These characters may be used in conjunction with Unicode Standard 
Annex #29 (UAX #29): while UAX #29 defines segmentation for Unicode text, by itself it is 
incomplete because it may generate false positives or miss sentence boundaries and does 
not provide a way to indicate user-generated sentence boundaries. These characters address 
this deficit for plain-text environments and also provide a way for linguistic processes, whether 
based on UAX #29 or not, to manually indicate their results in plain-text environments.

2. Background
The division of text into linguistic units such as sentences is a key function/feature of many 
modern text-processing systems, particularly in the translation and localization industry. For 
example, a content authoring tool might store a database of previously written sentences 
and provide them to users, a translation memory system might store sentences and their 
translations for reuse (dramatically decreasing translation costs and time), or a content-
management system might serve up the first sentence of text to users as a content preview. 
The proposed characters provide a way to explicitly indicate sentence boundaries when 
UAX#29 alone is inadequate or where having a manual marker is required for text-processing 
purposes
 
NB: The W3C’s I18n Core Working Group has requested that markup solutions be 
recommended for use in XML documents and the characters proposed in this document be 
recommended for use in plain-text2 environments only, similar to the situation for Unicode bi-
directional control characters. Therefore, this proposal recommends that markup-based formats 
implement appropriate markup for sentence-level segmentation and that these characters be 

1 The term SEPARATOR is a more accurate description of the proposed semantics of this character, 
but, by analogy with other JOINER/NON-JOINER pairs, the name SENTENCE NON-JOINER may be 
preferable. If the UTC feels the latter name to be preferable, no objection will be raised.
2  Plain text is understood as “[c]omputer-encoded text that consists only of a sequence of code points 
from a given standard, with no other formatting or structural information. Plain text interchange is 
commonly used between computer systems that do not share higher-level protocols.” It is distinguished 
from rich text and markup formats.
 

1 of 13

http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
rick@unicode.org
Text Box
L2/12-119



used for plain text.
 
One of the primary areas where sentence-level segmentation has an impact is in translation 
memory reuse. Translation memory refers to a technology that stores aligned databases of 
texts (divided into segments, usually understood to be sentences) and their translations to 
support the reuse of previously translated texts. When different translation memory tools are 
used, or when users customize segmentation routines, it can lead to inconsistent segmentation 
that leads to a loss of reuse of translation memory data. In some cases losses caused by 
segmentation differences and by inconsistencies in how formatting codes are handled can lead 
to double-digit percentages of loss in efficiency. If tools, however, could use the same sentence-
level segmentation at all stages, much of this loss could be eliminated.
 
Sentence boundaries are often determined using natural language processing (NLP) approach 
(e.g., a UAX #29-based parser or a syntactic parser that analyzes the grammar of a text 
to determine boundaries) or may be inserted manually or overridden by users (language-
processing tools generally include options to allow users to split or merge segments into 
sentences when the tools propose incorrect boundaries). In most cases (and in agreement with 
UAX #29) sentence boundaries are found through the use of regular expressions, generally—at 
least for Western languages—something like the following grossly-simplified example:
 

 \w\p{P}*\.\p{P}*\s+\w\p{Lu}
 
(i.e., a word character optionally followed by punctuation characters followed by a period 
optionally followed by punctuation characters followed by white space followed by an upper-
case letter character) (see UAX #29 for a more accurate and complete description). However, 
such simple segmentation rules will generate false positive boundaries for most Western 
languages3 since boundary conditions may be ambiguous, as in the following example:
 

Mrs. Smith and Mr. Jones ate lunch at Mme. Flaubert’s apartment.
 

In this case a simple UAX #29 processor would split the text inappropriately into 
four “sentences”:

 
1. Mrs.
2. Smith and Mr.
3. Jones ate lunch at Mme.
4. Flaubert’s apartment.

 
It is in fact impossible to determine the location of sentence boundaries based on regular 

3 Determining sentence-level segmentation in languages not based on Western scripts is generally easier 
than in Western languages because the punctuation used to end sentences is generally not ambiguous. 
For example 。(U+3002) is used in Japanese unambiguously to end sentences and does not share the 
semantic ambiguity of the Western full stop (U+002E). (By contrast, determining  word-level segmentation 
may be substantially more difficult in East Asian languages such as Thai, Chinese, and Japanese.)

2 of 13



expressions without error since the same string may be ambiguous, e.g.,:
 

John brought the package to Mulholland Dr. Friday…
 
which will be segmented differently depending on the contexts in which it appears, e.g., 
consider the following (where # shows sentence boundaries):
 

1. John brought the package to Mulholland Dr.# Friday was the 
deadline for delivery.# (two sentences)

2. John brought the package to Mulholland Dr. Friday night when it 
was raining.# (one sentence)

3. John brought the package to Mulholland Dr.# Friday night when it 
was raining he was happy.# (two sentences)

 
While such ambiguous cases are likely to be relatively infrequent (and the two-sentence 
versions are awkward),4 they do demonstrate the need for a way to indicate sentence 
boundaries within text (or alternatively, to indicate that a potential segmentation point returned 
by UAX #29 or another method should not be used). In fact, one common function in text 
translation environments is the ability to merge or split segments of text when the processor 
makes a mistake.
 
As a result it is desirable for there to be a plain-text method for indicating the actual sentence 
segmentation (automatic, manual, or a combination of the two) that was derived from or applied 
to a given text so that other processes can operate on the same basis.
 
The major obstacle to automatic segmentation of text in most Western languages is that the 
full stop (.) character is semantically ambiguous: it may indicate the end of a sentence, a 
decimal marker or digit separator (depending on the language), to mark the end of an acronym 
or abbreviation, within initialisms (e.g., “U.S.S.R”), or as a separator in numerous technical 
usages (e.g., within IP addresses). While some of these uses are easily accounted for (e.g., the 
decimal usage), abbreviations are particularly problematic since they can lead to the spurious 
recognition of apparent sentence boundaries, as in the example shown above. (In addition, 
some segmentation engines may use additional characters to determine segmentation, such 
as a semicolon (;), which are not addressed by UAX #29.) While UAX #29 describes general 
principles for dealing with full stops, it does not address how to handle exceptions around 
abbreviations.
 
In English (and other European languages) abbreviated forms are particularly an issue for so-
called prefixing abbreviations, those that are likely to occur before a name (e.g., “Dr.” for Doctor 
or “Mr.” for Mister). Other abbreviations are less likely to cause problems (e.g., “etc.”) but are 
often ambiguous when followed by names or other capitalized items and thus may require 
manual correction. In German, by contrast, there are likely to be more issues since nouns 

4 And potentially difficult even for a human to understand without careful reading.

3 of 13



are normally given an initial capitalization, so general-purpose abbreviations are more likely 
to create issues. For example, the German abbreviation “z.B.” (zum Biespiel ‘for example’) is 
regularly followed by nouns, as in “Alltägliches - z.B. Zitronenduft im Winter”.5 Thus the exact 
nature of the rules is likely to vary by language, even beyond the specific list of abbreviations.
 
The general approach to solving the problem of false positives is to use exception lists, regular 
expressions that indicate points where text should not be segmented, the approach taken by 
the Segmentation Rules eXchange (SRX)6 standard, which builds on UAX #29 to allow for the 
exchange of information about how tools segmented text. However, these lists are by definition 
incomplete—language adds new abbreviations regularly—and are subject field- and language-
specific. Even in cases where exception lists are complete, there will be ambiguous cases, such 
as “Dr.” (Doctor or Drive)—the first is unlikely to mark a sentence boundary while the second, 
when followed by an uppercase generally will mark a sentence boundary—or “No.” (a negative 
statement or a common abbreviation for number). While improved regular expressions can 
address some cases, there is always a residuum which cannot be handled.
 
Since texts may be operated upon by a variety of tools (authoring, translation, publishing, 
content management, etc.), it is desirable to preserve information on how text has been 
segmented into sentences (or had its segmentation modified) so that the entire chain of tools 
can be aware of how text was segmented. While there are markup-based solutions (e.g., 
encapsulation in XLIFF or TMX format), these are not suitable for plain-text environments or any 
environment where markup is likely to be ignored or misinterpreted.
 
By contrast, a plain-text character-based solution allows for the (optional) incorporation of 
segmentation information into plain-text environments. This mechanism would allow for the 
information to be included or passed along in any plain-text environment without the need for a 
markup-based solution.
 
Research by the ULI committee has shown that the impact of segmentation differences can 
be quite high for organizations dealing with information from heterogeneous sources. In many 
cases only careful engineering solutions allow for interoperability, while a standard way to 
indicate sentence-level segmentation could reduce the burden significantly.
 

3. Alternatives Considered and Rejected
The ULI committee considered a number of alternatives, as described below. These initially 
focused on just the requirement for a sentence separator, but eventually moved to the idea of a 

5 Taken from a blog: http://majorahn.blogspot.com/2012/01/alltagliches-zb-zitronenduft-im-winter.html.

6 Segmentation Rules eXchange is a standard developed by the now-defunct Localization Industry 
Standards Association (LISA). SRX defines a syntax for describing regular expression-based 
segmentation processes. SRX rulesets consist primarily of rules that describe no-break rules (exceptions 
to UAX #29 where segmentation should be inhibited, e.g., after certain abbreviations) along with break 
rules (which describe where to segment text). The latter allows the rules to describe rules beyond those 
supported by UAX #29, such as breaking at semicolons, as mentioned above.

4 of 13



pair of characters.

3.1. Markup-Based Solutions
One solution considered was to mandate the use of markup for sentence boundaries. This 
solution was rejected because markup-based solutions lack portability: if a process does not 
support the particular markup solution, it will not be able to use it. If a tool or process does 
not support namespaces (either in general or a particular namespace) it will not be able to 
use a markup-based solution. Non-XML processes also would not be able to use a markup-
based solution (e.g., a user of a non-XML-based authoring tool could not indicate segmentation 
exceptions using a markup-based solution). This solution was thus rejected as too limiting for 
general use, even though markup-based solutions may be preferable in many instances.
 
(As noted previously, feedback from the W3C indicates that the UTC should recommend 
the use of XML markup-based solutions within XML documents rather than character-based 
solutions.)

3.2. Use of U+001F
One suggestion was to use U+001F (UNIT SEPARATOR ONE) to indicate a sentence 
boundary. This character has the advantage of occurring only rarely in plain-text environments 
and having a legacy use as a separator. After discussion, this option was rejected because, 
as a control character, it would be problematic for data entry and in plain-text environments 
where control characters are rejected. In addition, because content creators cannot always 
anticipate every possible use of their content or all details of tools that work with it, there is a 
strong possibility that text containing these characters would end up rendered in an XML format 
(e.g., put into a CDATA section for transport), where the use of a control character would render 
the file invalid. Even if the strong recommendation is to use a markup-based solution for XML, 
we believe it would be inadvisable to use a control-range character knowing that its inadvertent 
inclusion in an XML file would render the file invalid.

3.3. Use of U+2063
Mark Davis suggested that U+2063 (INVISIBLE SEPARATOR) be used to indicate sentence 
boundaries. This suggestion is attractive because the semantics of U+2063 are largely 
compatible with the notion of a sentence boundary marker and the character is out of the 
Unicode range that is problematic should the character be included in text in an XML-based 
format (as noted in the previous section). Like U+001F, however, it runs into the difficulty of 
what to do with native instances of the U+2063 that occur in text. While these are likely to be 
quite rare, they would lead to confusion when they do occur.

3.4. Use of Proprietary Strings
One alternative is to use a proprietary string to indicate a sentence boundary. For example the 
string “#§#” or a similar sequence unlikely to appear in actual texts could be inserted into the 
text as appropriate. This is the approach taken most often at present in NLP applications where 
XML markup is not used (e.g., “#” is sometimes used to indicate various types of segment 

5 of 13



boundaries).
 
Such usage has the advantage of being achievable using the current Unicode repertoire with 
no extension of character semantics. It is problematic, however, in that the sequence will be 
interpreted literally by processes unaware of its existence and that it must be stripped from the 
text prior to publication, thus eliminating the possibility of reuse in any subsequent processes 
that may arise (for example, search results would be unable to reference sentence boundaries 
when examining published texts). In addition, many tool vendors would have to agree on a 
single string-based solution for the advantages to be universally available, an unlikely scenario.

3.5. Additional Considerations
Since the time that the above options were considered and discarded, it also became 
apparent that two characters were needed, not just one: a SENTENCE SEPARATOR (the 
original proposal) and a SENTENCE JOINER used to indicate where apparent segmentation 
breaks should be overridden. Inclusion of the SENTENCE JOINER would allow UAX #29 
implementations to operate more accurately by allowing overrides (either generated manually or 
through automatic process) to be indicated in plain text and preserved. As a result any single-
character solution will be insufficient and dual-character solution using specialized characters 
appears to be a better solution.

4. New Characters and their Usage
This proposal is for the inclusion of two new characters in the Supplemental Punctuation block 
of the Basic Multilingual Plane. Although these characters logically belong with characters like 
ZWNJ (U+200C) and ZWJ (U+200D) in the General Punctuation block in terms of their function, 
there is more room in the Supplemental Punctuation block. The characters are defined as 
follows
 

1. SENTENCE SEPARATOR: used to indicate the existence of a setnence boundary.
2. SENTENCE JOINER: used to indicate that text should not be segmented at an apparent 

segmentation point or to indicate that two strings have been joined manually into one 
sentence (e.g., in a translation process).

 
While these characters would normally be invisible in plain text, the following proposed glyphs 
could be used in situations where visualization is desirable:
 

Character Abstract glyph Text-based glyph

SENTENCE SEPARATOR

SENTENCE JOINER

6 of 13



 

4.1. Usage Examples
The following are examples of tools or processes that might use these characters:
 

● The case that inspired this proposal is that of translation memory technology. This 
technology divides text into segments that are compared against a database of 
previously translated sentences to automate reuse of existing translations. Both the 
SENTENCE SEPARATOR and SENTENCE JOINER would be used to allow texts to 
indicate where segmentation corrections have been implemented and ensure that they 
are retained in subsequent processes.

● A web tool might extract the first sentence of an article to display in search results: if the 
tool selects something other than the first sentence (e.g., a portion of a sentence), it will 
result in an inconsistent user experience. In this case the SENTENCE JOINER would 
enable the tool to grab the first sentence in its entirety.

● An author memory tool that proposes sentences to its user must know what constitutes a 
sentence. If such a tool gets segmentation wrong, it will not be able to make appropriate 
suggestions to its user. In this case the SENTENCE SEPARATOR might be used to 
mark all boundaries in the tool’s database.

● NLP researchers would benefit from having a standard way to indicate segment 
boundaries using the SENTENCE SEPARATOR in place of ad hoc methods.

● The SENTENCE JOINER would also serve the purpose in translation memory or other 
NLP environments that use aligned texts of showing instances where one sentence in 
one language corresponds to more than one in another language (e.g., one language 
says “She saw the man who had carried the package” while another renders it more 
like “She saw the man. He had carried the package.”). 

 
To show how both characters would work in tandem, the following examples, presented earlier, 
are shown with [SEN-J] and [SEN-S] to indicate the location of the proposed characters. (Note 
that in the cases of these examples, it is highly likely that human intervention would be required 
to disambiguate them and arrive at the appropriate sentence boundaries.)
 

1. John brought the package to Mulholland Dr.[SEN-S] Friday was the 
deadline for delivery. (two segments)

2. John brought the package to Mulholland Dr.[SEN-J] Friday night 
when it was raining. (one segment)

3. John brought the package to Mulholland Dr.[SEN-S] Friday night 
when it was raining he was happy. (two segments)

 
Note that Examples 1 and 3 would both be segmented properly by UAX #29, so in many cases 
it would be safe to omit the [SEN-S] character. However, including it might be desirable as 
many processes that use Segmentation Rules eXchange (SRX) to override the default UAX #29 
behavior would treat “Dr. Friday” as a name and thus would not separate the segments.
 
In Example 2, UAX #29 would incorrectly split the segment into two pieces, but having [SEN-

7 of 13



J] in place would override that behavior and tell the UAX #29-based processor not to split the 
segment, thus maintaining the proper linguistic unit (a sentence).
 
In general we foresee two general ways these characters might be used:
 

1. As a supplement to UAX #29. The characters could be used to indicate overrides to 
UAX #29 results. [SEN-J] and [SEN-S] would be used in instances where deviation 
from UAX #29 is needed, but would otherwise leave the text alone. In this scenario, the 
characters can be seen as adjuncts to UAX #29 that allow for manual control where 
needed.

2. As stand-alone segmentation markers. In this scenario a SENTENCE SEPARATOR 
would be inserted at every point in the text where a sentence boundary is inserted by a 
process. In this scenario no subsequent UAX #29 processing is required because the 
process that inserts the characters is making a positive declaration about the location of 
all segment boundaries. This usage would be particularly useful for interaction with any 
tools that do not implement UAX #29.

 
Which scenario is used in any given instance is beyond the scope of this proposal and full 
process interoperability around these characters would require the exchange of information 
about texts to be processed.

4.2. Impact on Search
Use of these characters creates potential problems for search algorithms since “downstream” 
users (i.e., people who use text after the proposed characters have been inserted but who 
are not themselves responsible for them) may not know the characters are in use (especially 
since the default would be to treat them as invisibles). As a result users may find unexpected 
results (much as they might when searching in text containing other invisible characters like 
U+200B [ZWS]). Note that both characters should be found by the \s (the regular expression 
whitespace metacharacter), but inclusion in search algorithms will take some time.

5. Impact on UAX #29
If the two proposed characters are accepted, section 5.1 (particularly Table 4) will need to be 
modified to reflect these characters.
 
The text should be modified as follows:
 

Do not break after ambiguous terminators like period, if they are immediately followed 
by a number or lowercase letter, if they are between uppercase letters, if the first 
following letter (optionally after certain punctuation) is lowercase, if the first following 
character is a SENTENCE JOINER (possibly following a space), or if they are followed 
by “continuation” punctuation such as comma, colon, or semicolon. For example, a 
period may be an abbreviation or numeric period, and thus may not mark the end of a 
sentence.
 

Modify rule SB4, as follows (so that SEN-S indicates a break under all conditions):
 

8 of 13



Sep | CR | LF SEN-S ÷
 
Add a rule SB8b, as follows (to allow SEN-J to override normal break conditions):
 

(STerm | ATerm) Sp*  ×  SEN-J  ×  Sp*
 

In addition, the Sentence Break Property file (http://www.unicode.org/Public/UNIDATA/auxiliary/
SentenceBreakProperty.txt) will need to be modified to match the prose changes made above. 
(ULI will require appropriate expert assistance in modifying this file.)
 
Section 6 of UAX #29 will also require modification to account for these characters, and ULI will 
need to consult with a UAX #29 expert to make the appropriate changes.
 
NB: Because these character would typically be invisible and carry no formatting information, it 
is not anticipated that they will impact any layout or formatting aspects of the Unicode standard 
or of plain text in general.

6. Unicode Character Properties
????;SENTENCE SEPARATOR;Cf;0;SEN-S;;;;;N;;;;;
????;SENTENCE JOINER;Cf;0;SEN-J;;;;;N;;;;;

7. Official Proposal Summary Form
A. Administrative

1. Title
Proposal to encode 2E43 (SENTENCE SEPARATOR) and 2E44 (SENTENCE JOINER)

2. Requester’s name
Arle Lommel (on behalf of the Unicode Localization Interoperability committee)

3. Requester type (Member body/Liaison/Individual contribution)
Individual contribution (on behalf of Unicode committee)

4. Submission date
2012-??-??

5. Requester’s reference (if applicable)

6. Choose one of the following:
● This is a complete proposal
● More information will be provided later

B. Technical – General

1. Choose one of the following:

9 of 13



1a. This proposal is for a new script (set of characters), Proposed name of script
No

1b. The proposal is for addition of character(s) to an existing block, Name of the existing 
block
Yes. SUPPLEMENTARY PUNCTUATION

2. Number of characters in proposal
2 (two)

3. Proposed category
[Unknown]

4. Is a repertoire including character names provided?
Yes

4a. If YES, are the names in accordance with the “character naming guidelines” in Annex 
L of P&P document?
Yes

4b. Are the character shapes attached in a legible form suitable for review?
Yes

5. Fonts related:

a. Who will provide the appropriate computerized font to the Project Editor of 10646 for 
publishing the standard?
Arle Lommel

b. Identify the party granting a license for use of the font by the editors (include address, 
e-mail etc.)
Arle Lommel (arle.lommel@gmail.com)

6a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided?
No (not relevant)

6b. Are published examples of use (such as samples from newspapers, magazines, or 
other sources) of proposed characters attached?
No (not relevant since these serve as control-type characters)

7. Does the proposal address other aspects of character data processing 
(if applicable) such as input, presentation, sorting, searching, indexing, 
transliteration etc. (if yes please enclose information)?
Yes. These characters are proposed to assist in plain-text marking of (usually sentence-level) 
segment boundaries and disambiguation of potential break points generated by UAX #29.

8. Submitters are invited to provide any additional information about Properties 
of the proposed Character(s) or Script that will assist in correct understanding of 

10 of 13



and correct linguistic processing of the proposed character(s) orscript.
See the detailed proposal

C. Technical – Justification

1. Has this proposal for addition of character(s) been submitted before? If YES, 
explain.
No

2a. Has contact been made to members of the user community (for example: National 
Body, user groups of the script or characters, other experts, etc.)?
Yes

2b. If YES, with whom?
Members of the ULI committee

2c. If YES, available relevant documents
This proposal has been discussed and contributed to by the members of the ULI committee

3. Information on the user community for the proposed characters (for example: 
size, demographics, information technology use, or publishing use) is included?
Users of automated translation tools, authoring tools, Internet search engines, content 
management tools and any other text-processing tools that might need to indicate how they 
segment text.

4a. The context of use for the proposed characters (type of use; common or rare)
Unknown, but potentially common. These character address an emerging need in text processing.

4b. Reference
See detailed proposal.

5a. Are the proposed characters in current use by the user community?
No. These represent a novel usage scenario needed to support ULI activities. There are markup-
based equivalents, but none are universally accepted or usable with plain-text environments.

5b. If YES, where?

6a. After giving due considerations to the principles in the P&P document must 
the proposed characters be entirely in the BMP?
Yes.

6b. If YES, is a rationale provided?
There are only two characters and given that their function and behavior is similar to existing 
characters, they should be encoded in the BMP with the analogous characters.

6c. If YES, reference

7. Should the proposed characters be kept together in a contiguous range (rather 

11 of 13



than being scattered)?
Ideally, yes, as these provide a pair and keeping them adjacent would offer mnemonic value

8a. Can any of the proposed characters be considered a presentation form of an existing 
character or character sequence?
No

8b. If YES, is a rationale for its inclusion provided?

8c. If YES, reference

9a. Can any of the proposed characters be encoded using a composed character 
sequence of either existing characters or other proposed characters?
No

9b. If YES, is a rationale for its inclusion provided?

9c. If YES, reference

10a. Can any of the proposed character(s) be considered to be similar (in appearance or 
function) to an existing character?
Yes

10b. If YES, is a rationale for its inclusion provided?
Yes

10c. If YES, reference
The similarity is to general classes of separators, but the specific semantics are distinct.

11a. Does the proposal include use of combining characters and/or use of composite 
sequences?
No

11b. If YES, is a rationale for such use provided?

11c. If YES, reference

11d. Is a list of composite sequences and their corresponding glyph images (graphic 
symbols) provided?

12a. Does the proposal contain characters with any special properties such as control 
function or similar semantics?
Yes

12b. If YES, describe in detail (include attachment if necessary)
See above.

13a. Does the proposal contain any Ideographic compatibility character(s)?
No

12 of 13



13b. If YES, is the equivalent corresponding unified ideographic character(s) identified?

13c. If YES, reference
 

8. Outstanding Issues
The following known issues need to be resolved prior to adoption of this proposal:
 

1. The appropriate name, SEGMENTATION SEPARATOR or SEGMENTATION JOINER, 
will need to be selected for one of the characters.

2. The Unicode characters properties (Section 6) need to be verified. While we believe 
them to be so, these characters are unusual enough that more eyes would help.

3. Section 6 of UAX #29 and the Sentence Break Property file will both need to be modified 
to allow for these characters. Successful modification will require assistance from expert 
parties.

13 of 13




