
Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 1 of 12

Title: Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER
Revision: version 2
Source: Unicode Localization Interoperability Technical Committee
Contact name: Arle Lommel (arle.lommel@gmail.com)
Date: 2012-05-09

1.	 Summary
This document proposes the addition of two new characters to the Supplemental Punctuation block
of the Unicode Basic Multilingual Plane (2E00–2E7F).

The SENTENCE JOINER character is used to indicate that text should not be segmented at an apparent
Unicode Standard Annex #29 (UAX #29) sentence break point (e.g., after a full stop [.] that terminates an
abbreviation rather than a sentence). It provides a way for plain text to indicate proper sentence-level
segmentation in those cases where UAX #29 alone is insufficient.

Example: UAX #29 would segment the string “We saw Mr. Smith three nights ago” as two
segments—”We saw Mr.” and “Smith last night”—even though they are in fact one sentence.
Inclusion of the SENTENCE JOINER after “Mr.” and before “ Smith” would instruct a UAX #29-
compliant process to ignore the apparent break point.

The SENTENCE NON-JOINER character is used to indicate the existence of a sentence boundary in
instances where UAX #29 would normally not provide one. While instances were non-joining behavior is
required are likely to be considerably rarer than those where joining behavior is required, they are
needed in instances such as raw speech-to-text output, which lacks punctuation or in cases where
normal capitalization rules do not apply.

Example: UAX #29 would normally not segment the following string properly because of the
unusual capitalization in the second sentence: “Smart phone penetration rates are increasing
dramatically. iPhones usage now makes up over half of all mobile web traffic.” It could also be used
to indicate sentence boundaries in contexts where the punctuation or capitalization cues relied
upon by UAX #29 are unreliable (e.g., in raw output from speech-to-text systems).

These characters are primarily intended for use in conjunction with UAX #29: while UAX #29 defines
segmentation for Unicode text, by itself it is incomplete because it may generate false positives or (less
frequently) miss sentence boundaries and does not provide a way to indicate user-generated sentence
boundaries. These characters address this deficit for plain-text environments and also provide a way for
linguistic processes that provide sentence-level segmentation, whether based on UAX #29 or not, to
manually indicate their results in plain-text environments.

NB: The W3C’s I18n Core Working Group has requested that markup solutions be recommended for use in
XML documents and the characters proposed in this document be recommended for use in plain-text
environments only, similar to the recommendation for other Unicode control characters. Therefore, this
proposal recommends that markup-based formats implement appropriate markup for sentence-level
segmentation and that these characters be used for plain text.

2.	 Background
This proposal emerges from efforts of the Unicode Localization Interoperability (ULI) Committee to
provide standard resources to improve text segmentation on a per-language basis. Proper
segmentation of text is important for a number of critical text-processing functions such as:

rick@unicode.org
Text Box
L2/12-119R

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 2 of 12

• Content management and retrieval. Systems that reuse content suffer from decreased

efficiency when they are not able to serve up proper sentences due to segmentation errors.
• Content parsing for NLP purposes. Incorrect segmentation can lead to failure of processes that

assume grammatical input.
• Controlled authoring. If text is incorrectly segmented it can decrease the effectiveness of

controlled authoring systems.
• Text summarization. An aggregator of news streams might display the first sentence of articles

to aid readers in determining what content is relevant, but incorrect breaks (e.g., after an
abbreviation) result in users receiving ill-formed content.

• Translation. Modern computer-assisted translation systems work on “segments” (usually
sentences) as a basic unit. Inconsistency in sentence-level segmentation results in decreased
efficiency and failure to reuse previously translated assets.

Sentence boundaries are often determined using natural language processing (NLP) approach (e.g., a
UAX #29-based parser or a syntactic parser that analyzes the grammar of a text to determine
boundaries) or may be inserted manually or overridden by users (language- processing tools generally
include options to allow users to split or merge segments into sentences when the tools propose
incorrect boundaries). In most cases (and in agreement with UAX #29) sentence boundaries are found
through the use of regular expressions, generally—at least for Western languages—something like the
following (grossly simplified) example:

\w\p{P}*\.\p{P}*\s+\w\p{Lu}

(i.e., a word character optionally followed by punctuation characters followed by a period optionally
followed by punctuation characters followed by white space followed by an upper-case letter character)
(see UAX #29 for a more accurate and complete description). However, such segmentation rules will
generate false positive boundaries for most Western languages1 since boundary conditions may be
ambiguous, as in the following example:

Mrs. Smith and Mr. Jones ate lunch at Mme. Flaubert’s apartment.

In this case a simple UAX #29 processor would split the text inappropriately into four “sentences”:

Mrs. Smith and Mr. Jones ate lunch at Mme. Flaubert’s apartment.

This example exemplifies the major obstacle to automatic segmentation of text in most Western
languages: the full stop (.) character is semantically ambiguous: it may indicate the end of a sentence, a
decimal marker or digit separator (depending on the language), to mark the end of an acronym or
abbreviation, within initialisms (e.g., “U.S.S.R”), or as a separator in numerous technical usages (e.g.,
within IP addresses). While some of these uses are easily accounted for (e.g., the decimal usage),
abbreviations are particularly problematic since they can lead to the spurious recognition of apparent
sentence boundaries, as shown above.2 While UAX #29 describes general principles for dealing with full
stops, it does not address how to handle exceptions around abbreviations.

1 Determining sentence-level segmentation in languages not based on Western scripts is generally
easier than in Western languages because the punctuation used to end sentences is generally not
ambiguous. For example 。(U+3002) is used in Japanese unambiguously to end sentences and does
not share the semantic ambiguity of the Western full stop (U+002E). (By contrast, determining word-
level segmentation may be substantially more difficult in East Asian languages such as Thai, Chinese,
and Japanese.)
2 It should be noted that in some cases it may be desirable as well to segment on other characters not
addressed in UAX #29: for instance, some translation memory engines segment on semicolons (;).

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 3 of 12

It is in fact impossible to determine the location of sentence boundaries based on a finite set of regular
expressions without error since the same string may be ambiguous, e.g.,:

John brought the package to Mulholland Dr. Friday...

which will be segmented differently depending on the contexts in which it appears, e.g., consider the
following (where # shows sentence boundaries):

1. John brought the package to Mulholland Dr.# Friday was the deadline for delivery.# (two
sentences)

2. John brought the package to Mulholland Dr. Friday night when it was raining.# (one
sentence)

3. John brought the package to Mulholland Dr.# Friday night when it was raining he was happy.#
(two sentences)

While such ambiguous cases are likely to be relatively infrequent (and the two-sentence versions are
awkward), they do demonstrate the need for a way to indicate sentence boundaries within text (or
alternatively, to indicate that a potential segmentation point returned by UAX #29 or another method
should not be used). In fact, one common function in text translation environments is the ability to
merge or split segments of text when the processor makes a mistake.

2.1	 Addressing	 Sentence	 Segmentation	 Faults	
At present there are two common solutions to sentence-level segmentation faults, both of which may
be used in combination with each other: (1) systems may provide users with ways to manually correct
faults by joining or splitting sentence candidates; (2) in the translation and NLP environments it is
common to use a set of exceptions, generally regular expressions for instances in which segmentation
behavior should be suppressed. The latter approach is that taken by the Segmentation Rules eXchange
(SRX) standard,3 developed by the former Localization Industry Standards Association.

As ULI investigated the best ways to standardize segmentation data, the committee realized that there
is currently no purely Unicode mechanism to indicate overrides of default UAX #29 behavior. While
there are markup solutions, there is no standard XML-based solution and existing solutions are not
suitable for plain text. The lack of override characters mean that when multiple tools are required to
segment text (a common situation, especially in translation environments) there is no way to ensure
that manual overrides or corrections are recorded, leading to inconsistency and increased processing
burdens. This issue is especially crucial for standardized segmentation data being developed by ULI for
inclusion in CLDR.

One of the primary areas where sentence-level segmentation has an impact is in translation memory
reuse. Translation memory refers to a technology that stores aligned databases of texts (divided into
segments, usually understood to be sentences) and their translations to support the reuse of previously
translated texts. When different translation memory tools are used, or when users customize
segmentation routines, it can lead to inconsistent segmentation that leads to a loss of reuse of

3 Segmentation Rules eXchange is a standard developed by the now-defunct Localization Industry
Standards Association (LISA). SRX defines a syntax for describing regular expression-based
segmentation processes. SRX rulesets consist primarily of rules that describe no-break rules (exceptions
to UAX #29 where segmentation should be inhibited, e.g., after certain abbreviations) along with break
rules (which describe where to segment text). The latter allows the rules to describe rules beyond those
supported by UAX #29, such as breaking at semicolons, as mentioned above.

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 4 of 12

translation memory data. In some cases losses caused by segmentation differences and by
inconsistencies in how formatting codes are handled can lead to double-digit percentages of loss in
efficiency. If tools, however, could use the same sentence- level segmentation at all stages, much of this
loss could be eliminated.

As a result it is desirable for there to be a plain-text method for indicating the actual sentence
segmentation (automatic, manual, or a combination of the two) that was derived from or applied to a
given text so that other processes can operate on the same basis.

In English (and other European languages) abbreviated forms are particularly an issue for so- called
prefixing abbreviations, those that are likely to occur before a name (e.g., “Dr.” for Doctor or “Mr.” for
Mister). Other abbreviations are less likely to cause problems (e.g., “etc.”) but are often ambiguous when
followed by names or other capitalized items and thus may require manual correction. In German, by
contrast, there are likely to be more issues since nouns are normally given an initial capitalization, so
general-purpose abbreviations are more likely to create issues. For example, the German abbreviation
“z.B.” (zum Biespiel ‘for example’) is regularly followed by nouns, as in “Alltägliches - z.B. Zitronenduft im
Winter.”4 Thus the exact nature of the rules is likely to vary by language, even beyond the specific list of
abbreviations.

The general approach to solving the problem of false positives is to use exception lists, as described
above. However, these lists are by definition incomplete—language adds new abbreviations
regularly—and are subject field- and language- specific. Even in cases where exception lists are
complete, there will be ambiguous cases, such as “Dr.” (Doctor or Drive)—the first is unlikely to mark a
sentence boundary while the second, when followed by an uppercase generally will mark a sentence
boundary—or “No.” (a negative statement or a common abbreviation for number). While improved
regular expressions can address some cases, there is always a residuum which cannot be handled.

Since texts may be operated upon by a variety of tools (authoring, translation, publishing, content
management, etc.), it is desirable to preserve information on how text has been segmented into
sentences (or had its segmentation modified) so that the entire chain of tools can be aware of how text
was segmented. While there are markup-based solutions (e.g., encapsulation in XLIFF or TMX format),
these are not suitable for plain-text environments or any environment where markup is likely to be
ignored or misinterpreted.

By contrast, a plain-text character-based solution allows for the (optional) incorporation of
segmentation information into plain-text environments. This mechanism would allow for the
information to be included or passed along in any plain-text environment without the need for a
markup-based solution.

Research by the ULI committee has shown that the impact of segmentation differences can be quite
high for organizations dealing with information from heterogeneous sources. In many cases only careful
engineering solutions allow for interoperability, while a standard way to indicate sentence-level
segmentation could reduce the burden significantly.

3.	 Alternatives	 Considered	 and	 Rejected
The ULI committee considered a number of alternatives, as described below. These initially focused on
just the requirement for a SENTENCE NON-JOINER, although it was quickly realized that the joiner
character is considerably more important in the context of UAX #29. As a result, this proposal addresses
the need for a pair of characters.

4 Taken from a blog: http://majorahn.blogspot.com/2012/01/alltagliches-zb-zitronenduft-im-
winter.html.

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 5 of 12

3.1.	 Markup-‐Based	 Solutions
One solution considered was to mandate the use of markup for sentence boundaries. This solution was
rejected because markup-based solutions lack portability: if a process does not support the particular
markup solution, it will not be able to use it. If a tool or process does not support namespaces (either in
general or a particular namespace) it will not be able to use a markup-based solution. Non-XML
processes also would not be able to use a markup- based solution (e.g., a user of a non-XML-based
authoring tool could not indicate segmentation exceptions using a markup-based solution). This
solution was thus rejected as too limiting for general use, even though markup-based solutions may be
preferable in many instances.

(As noted previously, feedback from the W3C indicates that the UTC should recommend the use of XML
markup-based solutions within XML documents rather than character-based solutions.)

3.2.	 Extension	 of	 Existing	 Characters	
The ULI committee considered a number of existing characters that might serve the purpose. Ultimately
we rejected all of these for reasons noted below. However, in general, testing by Kevin Lenzo of Apple
indicated that any existing characters with similar semantics created a strong chance of breaking
existing processes. For example, Kevin tested WORD JOINER (U+2060), NO-BREAK SPACE (U+00A0), and
INVISIBLE SEPARATOR (U+2063) by modifying a UAX #29 parser. All of these characters created major
problems because of unintended side effects. In addition, even if UAX #29 were modified as appropriate,
using existing control-type characters would require testing in all possible contexts for many tools,
making the barrier to implement the new semantics very high and creating problems for older tools
interacting with new data. This approach would thus undermine stability in UAX #29.

3.2.1.	 Suggested	 for	 Non-‐Joiner	 Usage	

3.2.1.1.	 U+001F
This character has the advantage of occurring only rarely in plain-text environments and having a
legacy use as a separator. After discussion, this option was rejected because, as a control character, it
would be problematic for data entry and in plain-text environments where control characters are
rejected. In addition, because content creators cannot always anticipate every possible use of their
content or all details of tools that work with it, there is a strong possibility that text containing these
characters would end up rendered in an XML format (e.g., put into a CDATA section for transport),
where the use of a control character would render the file invalid. Even if the strong recommendation is
to use a markup-based solution for XML, we believe it would be inadvisable to use a control-range
character knowing that its inadvertent inclusion in an XML file would render the file invalid.

3.2.1.2	 U+2063
Mark Davis suggested that U+2063 (INVISIBLE SEPARATOR) be used to indicate sentence boundaries.
This suggestion is attractive because the semantics of U+2063 are largely compatible with the notion of
a sentence boundary marker and the character is out of the Unicode range that is problematic should
the character be included in text in an XML-based format (as noted in the previous section). Like
U+001F, however, it runs into the difficulty of what to do with native instances of the U+2063 that occur
in text. While these are likely to be quite rare, they would lead to confusion when they do occur. In
addition, testing by Apple indicated that this character created undesirable side effects in testing.

3.2.1.	 Use	 of	 ZWJ	 and	 ZWNJ	
ULI also considered extending the use of ZERO-WIDTH JOINER (ZWJ, U+200D) and ZERO-WIDTH NON-
JOINER (ZWNJ, U+200C) to serve as sentence joiners and non-joiners respectively. Superficially these are
a good match since they have appropriate semantics and the existing use (to control typographic
features of ligature formation) is in complementary distribution with the intended use as sentence
joiners and non-joiners (i.e., they are unlikely to occur in situations where the intended function would

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 6 of 12

be ambiguous). However, testing at Apple5 showed that using these characters would require
substantial modification of UAX #29 in ways that might have unpredictable results.

3.3.	 Use	 of	 Proprietary	 Strings
One alternative is to use a proprietary string to indicate a sentence boundary or a point where a
boundary should be suppressed. For example the string “#§#” or a similar sequence unlikely to appear
in actual texts could be inserted into the text as appropriate. This is the approach taken most often at
present in NLP applications where XML markup is not used (e.g., “#” is sometimes used to indicate
various types of segment boundaries).

Such usage has the advantage of being achievable using the current Unicode repertoire with no
extension of character semantics. It is problematic, however, in that the sequence will be interpreted
literally by processes unaware of its existence and that it must be stripped from the text prior to
publication, thus eliminating the possibility of reuse in any subsequent processes that may arise (for
example, search results would be unable to reference sentence boundaries when examining published
texts). In addition, many tool vendors would have to agree on a single string-based solution for the
advantages to be universally available, an unlikely scenario.

3.4.	 Conclusion
Based on ULI analysis and experimentation by Kevin Lenzo, we were unable to locate any characters
with existing semantics suitable for the required purpose where overloading their semantics would not
create undesirable behaviors that undermine the stability of Unicode, particularly UAX #29. It is our
contention that the addition of a pair of new characters represents the least disruptive solution to meet
the needs of CLDR and the various usages scenarios described.

4.	 New	 Characters	 and	 their	 Usage
This proposal is for the inclusion of two new characters in the Supplemental Punctuation block of the
Basic Multilingual Plane. Although these characters logically belong with characters like ZWNJ (U+200C)
and ZWJ (U+200D) in the General Punctuation block in terms of their function, there is more room in the
Supplemental Punctuation block. The characters are defined as follows

5 Kevin Lenzo described the testing procedure as follows:

The process was:

(1) Assume this character is used for the sentence non-break character.
(2) Insert it to the right of any punctuation, which would otherwise trigger a UAX 29-based sentence
break.
(3) Run the result through the current ICU sentence break iterator.
(4) Check if we got what we wanted.

In each of these either did not stop breaks from being inserted, due to existing expressions involving
FORMAT (and EXTEND) characters, which move the break to the right of these characters, rather than
suppress it.

As an alternative, an arbitrary character is chosen to be a placeholder for the no-break, and the sentence
break rules are modified to pass through any character to the left of the no-break character. When this is
done, and the character is used for the sentence non-break character in the process above, and the result
is as expected for the limited tests to-date.

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 7 of 12

1. SENTENCE JOINER: used to indicate that text should not be segmented at an apparent
 segmentation point or to indicate that two strings have been joined manually into one
sentence (e.g., in a translation process).

2. SENTENCE NON-JOINER: used to indicate the existence of a sentence boundary.

While these characters would normally be invisible in plain text, the following proposed glyphs could
be used in situations where visualization is desirable:

Character Abstract glyph Text-based glyph

SENTENCE NON-JOINER

SENTENCE JOINER

4.1.	 Usage	 Examples
The following are examples of tools or processes that might use these characters:

• The case that inspired this proposal is that of translation memory technology. This technology
divides text into segments that are compared against a database of previously translated
sentences to automate reuse of existing translations. Both the SENTENCE JOINER and
SENTENCE NON-JOINER would be used to allow texts to indicate where segmentation
corrections have been implemented and ensure that they are retained in subsequent processes.

• A web tool might extract the first sentence of an article to display in search results: if the tool
selects something other than the first sentence (e.g., a portion of a sentence), it will result in an
inconsistent user experience. In this case the SENTENCE JOINER would enable the tool to grab
the first sentence in its entirety.

• NLP researchers would benefit from having a standard way to indicate segment boundaries
using the SENTENCE NON-JOINER in place of ad hoc methods.

The SENTENCE JOINER would also serve the purpose in translation memory or other NLP environments
that use aligned texts of showing instances where one sentence in one language corresponds to more
than one in another language (e.g., one language says “She saw the man who had carried the package”
while another renders it more like “She saw the man. He had carried the package.”).

To show how both characters would work in tandem, the following examples, presented earlier, are
shown with [SJ] and [SNJ] to indicate the location of the proposed characters. (Note that in the cases of
these examples, it is highly likely that human intervention would be required to disambiguate them and
arrive at the appropriate sentence boundaries.)

1. John brought the package to Mulholland Dr. [SNJ]Friday was the deadline for delivery. (two
segments)

2. John brought the package to Mulholland Dr. [SJ]Friday night when it was raining. (one
segment)

3. John brought the package to Mulholland Dr. [SNJ]Friday night when it was raining he was
happy. (two segments)

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 8 of 12

Note that Examples 1 and 3 would both be segmented properly by UAX #29, so in many cases it would
be safe to omit the [SNJ] character. However, including it might be desirable as many processes that use
Segmentation Rules eXchange (SRX) to override the default UAX #29 behavior would treat “Dr. Friday”
as a name and thus would not separate the segments.

In Example 2, UAX #29 would incorrectly split the segment into two pieces, but having [SJ] in place
would override that behavior and tell the UAX #29-based processor not to split the segment, thus
maintaining the proper linguistic unit (a sentence).

In general we foresee two general ways these characters might be used:

1. As a supplement to UAX #29. The characters could be used to indicate overrides to UAX #29

results. [SJ] and [SNJ] would be used in instances where deviation from UAX #29 is needed, but
would otherwise leave the text alone. In this scenario, the characters can be seen as adjuncts to
UAX #29 that allow for manual control where needed.

2. As stand-alone segmentation markers. In this scenario a SENTENCE NON-JOINER would be
inserted at every point in the text where a sentence boundary is inserted by a process. In this
scenario no subsequent UAX #29 processing is required because the process that inserts the
characters is making a positive declaration about the location of all segment boundaries. This
usage would be particularly useful for interaction with any tools that do not implement UAX
#29.

Which scenario is used in any given instance is beyond the scope of this proposal and full process
interoperability around these characters would require the exchange of information about texts to be
processed.

4.1.1.	 Note	 on	 Placement	
Placement of the proposed characters would require some sensitivity. The joiner would generally be
placed immediately after the punctuation mark that triggers the problematic break behavior. The non-
joiner could be placed anywhere, but should generally be placed to the right of any white space that
follows the sentence it is intended to delimit (i.e., trailing white space belongs with the previous
sentence, not the following sentence).

4.2.	 Impact	 on	 Search
Use of these characters creates potential problems for search algorithms since “downstream” users (i.e.,
people who use text after the proposed characters have been inserted but who are not themselves
responsible for them) may not know the characters are in use (especially since the default would be to
treat them as invisibles). As a result users may find unexpected results (much as they might when
searching in text containing other invisible characters like U+200B [ZWS]). Note that both characters
should be found by the \s (the regular expression whitespace metacharacter), but inclusion in search
algorithms will take some time.

5.	 Impact	 on	 UAX	 #29
If the two proposed characters are accepted, section 5.1 (particularly Table 4) will need to be modified
to reflect these characters.

The text should be modified as follows:

Do not break after ambiguous terminators like period, if they are immediately followed by a number
or lowercase letter, if they are between uppercase letters, if the first following letter (optionally after
certain punctuation) is lowercase, if the first following character is a SENTENCE JOINER (possibly
following a space), or if they are followed by “continuation” punctuation such as comma, colon, or

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 9 of 12

semicolon. For example, a period may be an abbreviation or numeric period, and thus may not
mark the end of a sentence.

Modify rule SB4, as follows (so that SENTENCE NON-JOINER indicates a break under all conditions):

Sep | CR | LF SNJ ÷

Add a rule SB8b, as follows (to allow SEN-J to override normal break conditions):

(STerm | ATerm) Sp* × SEN-J × Sp*

In addition, the Sentence Break Property file (http://www.unicode.org/Public/UNIDATA/auxiliary/
SentenceBreakProperty.txt) will need to be modified to match the prose changes made above. (ULI will
require appropriate expert assistance in modifying this file.)

Section 6 of UAX #29 will also require modification to account for these characters, and ULI will need to
consult with a UAX #29 expert to make the appropriate changes.

NB: Because these character would typically be invisible and carry no formatting information, it is not
anticipated that they will impact any layout or formatting aspects of the Unicode standard or of plain
text in general.

6.	 Unicode	 Character	 Properties	

• ????;SENTENCE NON-JOINER;Cf;0;BN;;;;;N;;;;;
• ????;SENTENCE JOINER;Cf;0;BN;;;;;N;;;;;

7.	 Official	 Proposal	 Summary	 Form

A.	 Administrative	

1.	 Title
Proposal to encode 2E43 (SENTENCE NON-JOINER) and 2E44 (SENTENCE JOINER)

2.	 Requester’s	 name
Arle Lommel (on behalf of the Unicode Localization Interoperability committee)

3.	 Requester	 type	 (Member	 body/Liaison/Individual	 contribution)
Individual contribution (on behalf of Unicode committee)

4.	 Submission	 date
2012-05-09

5.	 Requester’s	 reference	 (if	 applicable)	

6.	 Choose	 one	 of	 the	 following:
• This is a complete proposal
• More information will be provided later ���

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 10 of 12

B.	 Technical	 –	 General	

1.	 Choose	 one	 of	 the	 following:	 	

1a.	 This	 proposal	 is	 for	 a	 new	 script	 (set	 of	 characters),	 Proposed	 name	 of	 script
No

1b.	 The	 proposal	 is	 for	 addition	 of	 character(s)	 to	 an	 existing	 block,	 Name	 of	 the	 existing	 block	
Yes. SUPPLEMENTARY PUNCTUATION

2.	 Number	 of	 characters	 in	 proposal
2 (two)

3.	 Proposed	 category
[Unknown]

4.	 Is	 a	 repertoire	 including	 character	 names	 provided?
Yes

4a.	 If	 YES,	 are	 the	 names	 in	 accordance	 with	 the	 “character	 naming	 guidelines”	 in	 Annex	 L	 of	 P&P	
document?	
Yes

4b.	 Are	 the	 character	 shapes	 attached	 in	 a	 legible	 form	 suitable	 for	 review?
Yes

5.	 Fonts	 related:

a.	 Who	 will	 provide	 the	 appropriate	 computerized	 font	 to	 the	 Project	 Editor	 of	 10646	 for	 publishing	 the	
standard?	
Arle Lommel

b.	 Identify	 the	 party	 granting	 a	 license	 for	 use	 of	 the	 font	 by	 the	 editors	 (include	 address,	 e-‐mail	 etc.)	
Arle Lommel (arle.lommel@gmail.com)

6a.	 Are	 references	 (to	 other	 character	 sets,	 dictionaries,	 descriptive	 texts	 etc.)	 provided?
No (not relevant)

6b.	 Are	 published	 examples	 of	 use	 (such	 as	 samples	 from	 newspapers,	 magazines,	 or	 other	 sources)	 of	
proposed	 characters	 attached?	
No (not relevant since these serve as control-type characters)

7.	 Does	 the	 proposal	 address	 other	 aspects	 of	 character	 data	 processing	 (if	 applicable)	 such	 as	 input,	
presentation,	 sorting,	 searching,	 indexing,	 transliteration	 etc.	 (if	 yes	 please	 enclose	 information)?	
Yes. These characters are proposed to assist in plain-text marking of sentence-level segment boundaries
and disambiguation of potential break points generated by UAX #29.

8.	 Submitters	 are	 invited	 to	 provide	 any	 additional	 information	 about	 Properties	 of	 the	 proposed	
Character(s)	 or	 Script	 that	 will	 assist	 in	 correct	 understanding	 of and	 correct	 linguistic	 processing	 of	 the	
proposed	 character(s)	 or	 script.
See the detailed proposal

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 11 of 12

C.	 Technical	 –	 Justification

1.	 Has	 this	 proposal	 for	 addition	 of	 character(s)	 been	 submitted	 before?	 If	 YES,	 explain.	
No

2a.	 Has	 contact	 been	 made	 to	 members	 of	 the	 user	 community	 (for	 example:	 National	 Body,	 user	
groups	 of	 the	 script	 or	 characters,	 other	 experts,	 etc.)?	
Yes

2b.	 If	 YES,	 with	 whom?
Members of the ULI committee

2c.	 If	 YES,	 available	 relevant	 documents
This proposal has been discussed and contributed to by the members of the ULI committee

3.	 Information	 on	 the	 user	 community	 for	 the	 proposed	 characters	 (for	 example:	 size,	 demographics,	
information	 technology	 use,	 or	 publishing	 use)	 is	 included?	
Users of automated translation tools, authoring tools, Internet search engines, content management
tools and any other text-processing tools that might need to indicate how they segment text.

4a.	 The	 context	 of	 use	 for	 the	 proposed	 characters	 (type	 of	 use;	 common	 or	 rare)
Unknown, but potentially common. These character address an emerging need in text processing and
will be required for ULI contributions to CLDR.

4b.	 Reference
See detailed proposal.

5a.	 Are	 the	 proposed	 characters	 in	 current	 use	 by	 the	 user	 community?
No. These represent a novel usage scenario needed to support ULI activities. There are markup- based
equivalents, but none are universally accepted or usable with plain-text environments. (Internal testing
with substitute characters has been carried out, however.)

5b.	 If	 YES,	 where?

6a.	 After	 giving	 due	 considerations	 to	 the	 principles	 in	 the	 P&P	 document	 must	 the	 proposed	 characters	
be	 entirely	 in	 the	 BMP?	
Yes.

6b.	 If	 YES,	 is	 a	 rationale	 provided?
There are only two characters and given that their function and behavior is similar to existing characters,
they should be encoded in the BMP with the analogous characters.

6c.	 If	 YES,	 reference	

7.	 Should	 the	 proposed	 characters	 be	 kept	 together	 in	 a	 contiguous	 range	 (rather than	 being	
scattered)?
Ideally, yes, as these provide a functional pair and keeping them adjacent would offer mnemonic value

8a.	 Can	 any	 of	 the	 proposed	 characters	 be	 considered	 a	 presentation	 form	 of	 an	 existing	 character	 or	
character	 sequence?	
No

Proposal to Encode SENTENCE JOINER and SENTENCE NON-JOINER, version 2 (2012-05-09)
Page 12 of 12

8b.	 If	 YES,	 is	 a	 rationale	 for	 its	 inclusion	 provided?

8c.	 If	 YES,	 reference

9a.	 Can	 any	 of	 the	 proposed	 characters	 be	 encoded	 using	 a	 composed	 character	 sequence	 of	 either	
existing	 characters	 or	 other	 proposed	 characters?	
No

9b.	 If	 YES,	 is	 a	 rationale	 for	 its	 inclusion	 provided?	

9c.	 If	 YES,	 reference

10a.	 Can	 any	 of	 the	 proposed	 character(s)	 be	 considered	 to	 be	 similar	 (in	 appearance	 or	 function)	 to	 an	
existing	 character?	
Yes

10b.	 If	 YES,	 is	 a	 rationale	 for	 its	 inclusion	 provided?
Yes

10c.	 If	 YES,	 reference
The similarity is to general classes of separators, but the specific semantics are distinct.

11a.	 Does	 the	 proposal	 include	 use	 of	 combining	 characters	 and/or	 use	 of	 composite	 sequences?	
No

11b.	 If	 YES,	 is	 a	 rationale	 for	 such	 use	 provided?	

11c.	 If	 YES,	 reference

11d.	 Is	 a	 list	 of	 composite	 sequences	 and	 their	 corresponding	 glyph	 images	 (graphic	 symbols)	 provided?

12a.	 Does	 the	 proposal	 contain	 characters	 with	 any	 special	 properties	 such	 as	 control	 function	 or	 similar	
semantics?	
Yes

12b.	 If	 YES,	 describe	 in	 detail	 (include	 attachment	 if	 necessary)
See above.

13a.	 Does	 the	 proposal	 contain	 any	 Ideographic	 compatibility	 character(s)?
No

13b.	 If	 YES,	 is	 the	 equivalent	 corresponding	 unified	 ideographic	 character(s)	 identified?	

13c.	 If	 YES,	 reference

8.	 Outstanding	 Issues
The following known issues need to be resolved prior to adoption of this proposal:

• The Unicode characters properties (Section 6) need to be verified. While we believe them to be
so, these characters are unusual enough that more eyes would help.

• Section 6 of UAX #29 and the Sentence Break Property file will both need to be modified to
allow for these characters. Successful modification will require assistance from expert parties.

