Bidirectional parenthesis algorithm

Ayman Aldahleh, Gilead Almosnino, Peter Constable, Andrew Glass, Laurentiu Iancu, Dwayne Robinson, Murray Sargent, Robert Steen

1. Introduction

10

5 In its current form the UBA (Unicode Bidirectional Algorithm UAX #9) fails to correctly display instances of parentheses in cases where the boundaries of the parentheses have mixed directionality. A simple example is "a(b)" in an RTL paragraph:

(a(b

Under the UBA in its current form, users, developers, and localizers who wish to obtain the correct display form need to use invisible control characters (Ex: LRE, RLO, PDF) to alter the logical string so that UBA can interpret it correctly. In the simple case above, this could include the following options (not all of which are equally recommended):

[LRE] a (b) [PDF] [LRO] a (b) [PDF] a (b) [LRM]

15 This solution requires users to have detailed knowledge of the way the UBA works to correctly position appropriate invisible control characters. Further, such a solution is fragile since text may be edited or copied after the placement of marks, potentially leading to further problems with the display.

The problem of mismatched parentheses is very common, and end users routinely encounter difficulties. Rarely are users sufficiently informed about the UBA to solve the display problems themselves. On the

- 20 contrary, users may attempt to fix problems with visual ordering by changing the logical structure of their text in order to achieve the desired output. For example, in place of "a(b)" a user may type "(a(b" in order to achieve the desired display form in a RTL paragraph. Even for professional developers and localizers, the problems are time consuming on account of being common, and not always trivial to solve. For example, problems with mismatched parentheses accounted for almost 13% of the
- 25 bidirectional localization bugs addressed in Windows 7. Use of the parenthesis algorithm ensures both logical correctness and display fidelity for the text run in either RTL or LRT embedding direction.

Since 2007 Microsoft has shipped a version of the bidirectional parenthesis algorithm (BPA) in its Office products. This algorithm has been refined in the upcoming release of Windows 8. By implementing this parenthesis algorithm to display bidirectional text as a supplement to the UBA, users do not need to

30 resort to control characters to fix problems with the display of parentheses. This document provides

details on Microsoft's solution to the problem in its own terms, and in terms of the core rules of the UBA, and in terms of a higher level protocol. Our position is that the parenthesis algorithm described here, fixes a basic flaw in the current UBA, provides value to users, developers, and localizers, and does not cause regressions in existing documents that are themselves well-formed according to the UBA.

- 35 Therefore, Microsoft feels that it is appropriate to address these problems at the OS level i.e., in the implementation of the UBA, in order to benefit users, developers, and localizers. Given that there are multiple ways a parenthesis algorithm could be implemented, we feel it is important to develop a consensus on the solution and have this adopted by the UTC. This should be either a formal amendment to UAX #9 to include the proposed rule N0, or the creation of an annex that endorses the particular use
- 40

of higher level protocols described here.

2. Recap of the relevant part of the UBA

Parentheses and other impacted paired signs have the bidi category ON (other neutral), the resolution of which is treated by rules N1 and N2 in the UBA:

N1. A sequence of neutrals takes the direction of the surrounding strong text if the text on both sides has the same direction. European and Arabic numbers act as if they were R in terms of their influence on neutrals. Start-of-level-run (**sor**) and end-of-level-run (**eor**) are used at level run boundaries.

L	Ν	L	\rightarrow	L	L	L	
R	Ν	R	\rightarrow	R	R	R	
R	Ν	AN	\rightarrow	R	R	AN	
R	Ν	EN	\rightarrow	R	R	EN	
AN	Ν	R	\rightarrow	AN	R	R	
AN	Ν	AN	\rightarrow	AN	R	AN	
AN	Ν	EN	\rightarrow	AN	R	EN	
EN	Ν	R	\rightarrow	EN	R	R	
EN	Ν	AN	\rightarrow	EN	R	AN	
EN	Ν	EN	\rightarrow	EN	R	EN	

N2. Any remaining neutrals take the embedding direction.

 $N \rightarrow e$

The problem arises when the two paired signs are resolved differently by the above rules. For example,

45 in "a(b)", the opening parenthesis is resolved to L under N1, whereas the final one is resolved to R under N2:

Sample	TAB LRM	RLM LRE	RLE PD	DF LRO	RLE
a(b)					
RTL 🗸 Par	agraph Direction	ASCII Had	ck? Show Bio	il	
-					

Paragraph 1

Base Leve	l 1 = RTL expl	icit
-----------	----------------	------

Source				
Memory Position	0	1	2	3
Character	а	(b)
Bidi Class	Ŀ	ON	Ŀ	ON
Rules Applied		$\underline{N1} \rightarrow \underline{L}$		$\underline{N2} \rightarrow \underline{R}$
Resulting Level				T 1
	L2	L2	L2	ЦТ
Reordered				
Display Position	0	1	2	3
Memory Position	3	0	1	2
Character)	а	(b
	-			

Figure 1. Unicode bidi utility showing output of a(b) in a RTL paragraph

Note that the Unicode bidi utility does not do glyph mirroring. The final output would be (a(b as shown above.

Because there are two possible resolutions under N1, but only one for N2 the possible sequences that give rise to mismatched parentheses are:

A) *N1 and N1:* ...O(O...E)E... -OR- ...E(E...O)O... B) *N1 and N2:* ...O(O...O)E... -OR- ...E(O...O)O...

Where:

O = one or more strong types opposite to the embedding direction

55

50

E = one or more strong types of the embedding direction, or start/end of run

Extended complexity within the enclosed text can be ignored since only the neighbors to a paired sign will influence their resolution.

Any other neutral types adjacent to parentheses in a run may be ignored since their resolution is also determined by N1 and N2, and is therefore equal to the individual resolution of the paired punctuation

60

marks. For example, neutrals (N) in a sequence O N (N O N) E will be resolved in the same way as example B above.

3. Design

3.1. Goal

65

The goal of the parenthesis algorithm is to ensure that paired punctuation marks such as parentheses are always treated as a pair when applying the UBA so that they position and orient correctly, and content inside and outside the enclosed span does not cross the boundaries of the span. The resolution of the pair is intended to provide the most intuitive layout for the context.

3.2. Identification of paired punctuation marks

Paired punctuation marks are pairs of characters A and B, where A has general category

70 Open_Punctuation (gc = Ps), B has general category Close_Punctuation (gc = Pe), and A and B form a mirrored pair (Bidi_M = Y for both, and Bidi_Mirroring_Glyph of A is B). See <u>appendix</u> for a complete listing.

Because the bidi mirrored characters form a proper subset of the bidi neutrals (bc = ON), all paired punctuation marks are also bidi neutral. This definition ensures the inclusion of parenthesis-like marks

and the exclusion of quotation marks and presentation forms (e.g., —————). It also ensures that the marks of every pair are mirrored characters of each other. As of Unicode 6.1, the set of paired punctuation marks consists of 58 pairs of characters: 55 pairs of script Common, 1 of script Ogham, and 2 of script Tibetan.

3.3. Finding paired punctuation marks

80 Scan a paragraph from beginning to end looking for characters that meet the definition of paired punctuation marks as defined <u>above</u> (§ 3.2).

Examples of such Open_Punctuation and Close_Punctuation characters are the open parenthesis (U+0028) and close parenthesis (U+0029), respectively. For simplicity, we use the term open parenthesis for the first class of characters and close parenthesis for the second.

85 If an open parenthesis is found, push it onto a stack and continue the scan. If a close parenthesis is found, check if the stack is not empty and the close parenthesis is the other member of the mirrored pair for the character on the top of the stack. If so, pop the stack and continue the scan; else return failure. If the end of the paragraph is reached, return success if the stack is empty; else return failure. Success implies that all open and close parentheses, if any, in a paragraph are matched and nested 90 correctly.

3.4. Nesting

Paired punctuation marks must be correctly nested in order for the algorithm to run. Incorrectly nested, unbalanced, or mismatched pairs may cause inconsistency in the rules governing the resolution of the paired punctuation marks. Therefore, the BPA should not be applied in these cases. Standard resolution using N1 and N2 should proceed as normal.

95

Correct nesting requires the paired punctuation marks to be mirror characters of each other, to be at the same embedding level, and to have a lower or equal embedding level as the content they contain. A drop in the level of the content below the level of either paired punctuation mark would constitute an error in nesting, and therefore, the BPA should be abandoned.

100 These constraints only apply for the current paragraph.

3.5. Resolution of paired punctuation marks

The next task is to determine whether the paired punctuation marks should be made to match the adjacent context or the paragraph direction. For the purposes of assessing which direction to resolve paired marks, the following possibilities should be considered:

LTR		RTL		
$L(L)L \rightarrow L$	$L(N)L \rightarrow L$	$L(L)L \rightarrow L$	$L(N)L \rightarrow L$	
$L(L)R \rightarrow L$	$L(N)R \rightarrow L$	<mark>L(L)R → L</mark>	$L(N)R \rightarrow R$	
$R(L)L \rightarrow L$	$R(N)L \rightarrow L$	<mark>R(L)L → L</mark>	$R(N)L \rightarrow R$	
$R(L)R \rightarrow L$	$R(N)R \rightarrow R$	$R(L)R \rightarrow R$	$R(N)R \rightarrow R$	
$L(R)L \rightarrow L$		$L(R)L \rightarrow R$		
<mark>L(R)R → R</mark>	$L(LR)L \rightarrow L$	$L(R)R \rightarrow R$	$L(LR)L \rightarrow R$	
<mark>R(R)L → R</mark>	$L(LR)R \rightarrow L$	$R(R)L \rightarrow R$	$L(LR)R \rightarrow R$	
$R(R)R \rightarrow R$	$R(LR)R \rightarrow L$	$R(R)R \rightarrow R$	$R(LR)R \rightarrow R$	

105

110

The highlighted cases are ones which are currently failing under the existing UBA, and are fixed by the BPA.

Sequences with a neutral type outside the parenthesis or mixed with a strong type inside can be ignored since they will be equivalent to one of the above possibilities after resolution using N1 or N2. Similarly, sequences with mixed type content RL, RLR, LRL, etc. are functionally equivalent to the above types with enclosed LR.

Once the paired punctuation marks have been identified, they should be resolved to the embedding direction except in the following cases:

- The directionality of the enclosed content is opposite the embedding direction, and at least one neighbor has a bidi level opposite to the embedding direction O(O)E, E(O)O, or O(O)O.
- 115
- The enclosed content is neutral and both neighbors have a bidi level opposite to the embedding direction O(N)O. This is current behavior in the UBA. This is needed to ensure the preservation of existing behavior under the current UBA rule N1.

The rationale for following the embedding level in the normal case is that the text segment enclosed by the paired punctuation marks will conform to the progression of other text segments in the writing

120 direction. In the exception cases, the rationale to follow the opposite direction is based on context being established between the enclosed and adjacent segments with the same direction.

3.5.1. Examples

Based on an RTL paragraph:

1.	R(L)R	WERBEH (a) CIBARA
2.	R(L)L	book(s) CIBARA
3.	L(N)L	WERBEH hobby(-)horse CIBARA
4.	L(LR)R	WERBEH (CIBARA fabrikam) j. smith

125 Note that examples 1 and 3 resolve correctly under the current UBA, whereas examples 2 and 4 require the BPA to display correctly.

Based on an LTR paragraph:

5.	L(LR)R	j. smith (fabrikam CIBARA) WERBEH
----	--------	-----------------------------------

3.6. Bidirectional controls

130 3.6.1. Left-To-Right Override (U+202D) and Right-To-Left Override (U+202E)

Text containing an explicit directional override (LRO or RLO and PDF) around a sequence that includes paired punctuation marks is not affected by the BPA. This is because the directionality of the content enclosed by the override is already determined to be strong L or strong R (as appropriate) and no neutral ambiguity remains to be resolved.

135 3.6.2. Left-To-Right Embedding (U+202A) and Right-To-Left Embedding (U+202B) A span of text that includes explicit directional embedding controls (LRE or RLE and PDF) influences the BPA by updating the embedding direction.

3.6.3. Left-To-Right Mark (U+200E) and Right-To-Left Mark (U+200F)

Explicit directional marks (LRM or RLM) influence the directionality of adjacent neutrals as normal under
 the UBA; that is they behave like any other strong L or strong R. No special handling is needed in the BPA.
 This same is true for ARABIC LETTER MARK (U+061C), which has been accepted for encoding in a future version of the standard.

4. Solutions

There are two alternatives for implementing the BPA. Either a new rule should be introduced into the core algorithm immediately before rule N1 or the higher level protocol rules HL4 and HL5 should be used in conjunction with logic to segment text based on the occurrence of paired punctuation marks and insert appropriate directional marks (LRM, RLM) to achieve the desired result. Both solutions use the logic described <u>above</u> (§ 3.2) to identify paired punctuation marks that are properly nested.

4.1. Solution by updating the core UBA

150 Given that the use of paired punctuation marks such as parentheses is a normal document scenario, we feel that the resolution of paired punctuation marks should be addressed in the core algorithm. The appropriate place to evaluate the paired signs is before the resolution of neutral types, that is, before the application of N1. The solution may be phrased in terms of a new rule N0.

4.1.1. Proposed rule

*NO. Paired punctuation marks take the embedding direction if the enclosed text contains a strong type of the same direction. Else, if the enclosed text contains a strong type of the opposite direction and at least one external neighbor also has that direction the paired punctuation marks take the direction opposite the embedding direction.

155 This rule also requires the definition of paired punctuation marks state previously, and an additional qualification regarding the levels:

Paired punctuation marks are pairs of characters A and B, where A has general category Open_Punctuation (gc = Ps), B has general category Close_Punctuation (gc = Pe), and A and B form a mirrored pair (Bidi_M = Y for both, and Bidi_Mirroring_Glyph of A is B). This rule is applied to those paired punctuation marks that are correctly nested and occur at the same level without an intervening drop below their level.

4.1.2. Detailed example

For example (assuming RTL paragraph level):

1.	WERBEH (a) CIBARA							
	Logical sequence			0	1	2	3	4
R(L)R	Text run			ARABIC	(а)	HEBREW
	Bidi Class			R	ON	L	ON	R
	Rules Applied				N0->R		N0->R	
	Resulting Level			L1	L1	L2	L1	L1
2.							book	(s) CIBARA
	Logical sequence			0	1	2	3	4
R(L)L	Text run			ARABIC	book	(S)
	Bidi Class			R	L	ON	L	ON
	Rules Applied					N0->L		N0->L
	Resulting Level			L1	L2	L2	L2	L2
3.					WERBEH hobby(-)horse CIBA			
	Logical sequence	0	1	2	3	4	5	6
L(N)L	Text run	ARABIC	hobby	(-)	horse	HEBREW
	Bidi Class	R	L	ON	ON	ON	L	R
	Rules Applied			N1->L	N1->L	N1->L		
	Resulting Level	L1	L2	L2	L2	L2	L2	L1
4.					WERB	BEH (CIBARA	A fabrikar	n) j. smith
	Logical sequence	0	1	2	3	4	5	6
L(LR)R	Text run	j. smith	(fabrikam	Space	ARABIC)	HEBREW
	Bidi Class	L	ON	L	WS	R	ON	R
	Rules Applied		N0->R		N2->R		N0->R	
	Resulting Level	L2	L1	L2	L1	L1	L1	L1
5.	j. smith (fabrikam Cl	BARA) WER	BEH					
	Logical sequence	0	1	2	3	4	5	6
L(LR)R	Text run	j. smith	(fabrikam	Space	ARABIC)	HEBREW
	Bidi Class	L	ON	L	WS	R	ON	R
	Rules Applied		N0->L		N2->L		N0->L	
	Resulting Level	LO	LO	LO	LO	L1	LO	L1

160

See also additional <u>examples</u> later in this document.

4.2. Solution using rules for higher-level protocols

This approach may be used as a conformant solution under the current UBA since UAX #9 includes additional rules for Higher-Level Protocols that may be applied to structured text:

The following clauses are the only permissible ways for systems to apply higher-level protocols to the ordering of bidirectional text. Some of the clauses apply to segments of structured text. This refers to the situation where text is interpreted as being structured, whether with explicit markup such as XML or

HTML, or internally structured such as in a word processor or spreadsheet. In such a case, a segment is [a] span of text that is distinguished in some way by the structure.

In order to ensure consistent implementation the directional control marks LRM and RLM should be applied to paired punctuation marks according to logic described in this section.

4.2.1. Current rules

165

Properly nested paired punctuation marks may be used to identify segments of text to which the UBA may be applied. The appropriate rule is HL4:

HL4. Apply the Bidirectional Algorithm to segments

The Bidirectional Algorithm can be applied independently to one or more segments of structured text. For example, when displaying a document consisting of textual data and visible markup in an editor, a higher-level process can handle syntactic elements in the markup separately from the textual data. The segments are to be identified using the logic described above (§ 3.3).

170 Where necessary, directional control marks (RLM/LRM) should be inserted at the borders of segments in order to provide correct resolution using the UBA. The appropriate rule is HL5:

HL5. Provide artificial context.

Text can be processed by the Bidirectional Algorithm as if it were preceded by a character of a given type and/or followed by a character of a given type. This allows a piece of text that is extracted from a longer sequence of text to behave as it did in the larger context.

The determination of whether directional control marks should be inserted is based on the logic described <u>above</u> (§ 3.6). Once the appropriate marks have been inserted, segment can be processed using the UBA.

175 **4.2.2. Detailed example**

For example (assuming RTL paragraph level):

1.	WERBEH (a) CIBARA					
	Logical sequence	0	1	2	3	4
R(L)R	Text run	ARABIC	(а)	HEBREW
	Bidi Class	R	ON	L	ON	R
	Segment (HL4)	0	1	1	1	2
	Artificial context (HL5)		RLM()RLM	
	Rules applied		N2->R		N2->R	
	Resulting Level	L1	L1	L2	L1	L1
2.					book	s) CIBARA
	Logical sequence	0	1	2	3	4
R(L)L	Text run	ARABIC	book	(S)
	Bidi Class	R	L	ON	L	ON
	Segment (HL4)	0	0	1	1	1
	Artificial context (HL5)			LRM()LRM
	Rules applied			N1->L		N1->L
	Resulting Level	L1	L2	L2	L2	L2
3.	WERBEH hobby(-)horse CIBARA					

	Logical sequence	0	1	2	3	4	5	6
L(N)L	Text run	ARABIC	hobby	(-)	horse	HEBREW
	Bidi Class	R	L	ON	ON	ON	L	R
	Segment (HL4)	0	0	1	1	1	2	2
	Artificial context (HL5)			LRM()LRM		
	Rules applied			N1->L		N1->L		
	Resulting Level	L1	L2	L2	L2	L2	L2	L1
4.					WER	BEH (CIBAR	A fabrikaı	n) j. smith
	Logical sequence	0	1	2	3	4	5	6
L(LR)R	Text run	j. smith	(fabrikam	Space	ARABIC)	HEBREW
	Bidi Class	L	ON	L	WS	R	ON	R
	Segment (HL4)	0	1	1	1	1	1	2
	Artificial context (HL5)		RLM()RLM	
	Rules applied		N2->R		N2->R		N1->R	
	Resulting Level	L2	L1	L2	L1	L1	L1	L1
5.	j. smith (fabrikam CIBA	RA) WERBE	EH					
	Logical sequence	0	1	2	3	4	5	6
L(LR)R	Text run	j. smith	(fabrikam	Space	ARABIC)	HEBREW
	Bidi Class	L	ON	L	WS	R	ON	R
	Segment (HL4)	0	1	1	1	1	1	2
	Artificial context (HL5)		LRM()LRM	
	Rules applied		N1->L		N2->L		N2->L	
	Resulting Level	LO	LO	LO	LO	L1	LO	L1

See also additional <u>examples</u> given below.

5. Examples

Paragraph direction	Text	Output	
1. RTL	Text Files (*.txt)	Broken	(Text Files (*.txt
		Fixed	Text Files (*.txt)
2. RTL	WWW (World	Broken	מערכת (WWW (World Wide Web
	wide web) מערכת		מערכת WWW (World Wide Web)
3. RTL	Office 15 إعداد Technical)	Broken	إعداد (Office 15 (Technical Preview)
	Preview)	Fixed	إعداد (Technical Preview) اعداد
4. RTL	j. smith (fabrikam אַרְבִיָּת (الْعِرِيبَةُ	Broken	j. smith (fabrikam العربية) لاحدنتر
٦٢ (مغريبية-		Fixed	fabrikam) j. smith العربية) עברית
5. LTR	j. smith (fabrikam עררית (الع بية	Broken	j. smith (fabrikam العربية) لاحداد
	وسا الال و	Fixed	j. smith (fabrikam עברית (العربية

6. LTR	شركة) السيد محد R موز عين)الإدر اك		Microsoft Corp)) محمد السيد (شركة الإدراك(موزعين		
	Microsoft Corp))	Fixed	محمد السيد (شركة الإدراك(موزعين Microsoft Corp))		
7. LTR	מלא צבע [24bpp]	Broken	24] צבע מלא[24]		
		Fixed	צבע מלא [24bpp]		
8. LTR From: السيد محد Broken (الادر الك شركة)		Broken	(محمد السيد (سَركة الإدراك From:		
		Fixed	محمد السيد (شركة الإدراك) From: (شركة الإدراك)		

180 **6. Stability**

Because the BPA proposed here involves a heuristic which determines the level of paired punctuation marks based on the content of the text itself and does not alter the text in any way, well-formed new or existing text will display correctly under the BPA. This is true whether or not the text contains directional control marks. It is important to stress that current text which has used directional controls in order to

185 obtain correct display will continue to display correctly under the BPA. The main stability concern therefore is that text authored using the BPA may display imperfectly when rendered on a system which has not implemented the BPA. In such a case, the reader of that text is no worse off than they would have been prior to the development of the BPA.

The only other stability concern relates to the possibility of there being text which is deliberately
 malformed in order to work around the problem of mismatched paired punctuation marks under the
 UBA. An example would be a logical pair of nested parentheses which render as a sequence of
 parentheses under the UBA. The benefits of the BPA are expected to far outweigh the loss in stability of
 such sequences.

7. Alternative solutions considered and rejected

195 7.1. Inserting marks

200

One suggestion to address this problem is to have edit controls insert the appropriate directional controls automatically. A serious drawback to this suggestion is that the correct display of text with paired punctuation marks would depend on the source application supporting this behavior. This also requires these controls to have an awareness of the UBA in order to insert the correct marks when they may currently be relying on the OS to manage the display of bidirectional text. Given the number of different edit controls, the surface area for this approach is too great to be viable.

Having a tool that inserts the correct marks according to the proposed algorithm might be a useful tool to facilitate cross platform stability during the transition period. However, insertion of marks is not a stable or complete solution to the problem because text that has had marks inserted may be copied and

205 edited in contexts beyond the one in which the marks were applied, and thus, rather than correcting

problems, the presence of invisible directional control marks may introduce problems. For example, when the text for example 4 above (§ 4.2.2, § 5) is updated to include the RLM marks according to the procedure in section 4.2, the text renders correctly in an RTL paragraph:

fabrikam) j. smith العربية) لاحدار

However, when this text, including the marks, is put in an LRT context the text is distorted:

j. smith (fabrikam العربية) لاحداد

Only dynamic resolution of the parenthesis under the BPA is able to adapt correctly to changes in context required for resolution to the embedding direction.

8. Demo

An update to the CLDR Bidi Utility that illustrates the output from the algorithm is planned.

9. Conformance test data

Microsoft will provide conformance test data corresponding to sequences that will change under the BPA.

10. Appendix – List of paired punctuation marks

U+0028	U+0029	()	LEFT PARENTHESIS	RIGHT PARENTHESIS
U+005B	U+005D	[]	LEFT SQUARE BRACKET	RIGHT SQUARE BRACKET
U+007B	U+007D	{	}	LEFT CURLY BRACKET	RIGHT CURLY BRACKET
U+0F3A	U+0F3B	∕∞%	% ©	TIBETAN MARK GUG RTAGS GYON	TIBETAN MARK GUG RTAGS GYAS
U+0F3C	U+0F3D	ſ	ો	TIBETAN MARK ANG KHANG GYON	TIBETAN MARK ANG KHANG GYAS
U+169B	U+169C	≻	-<	OGHAM FEATHER MARK	OGHAM REVERSED FEATHER MARK
U+2045	U+2046	E]	LEFT SQUARE BRACKET WITH QUILL	RIGHT SQUARE BRACKET WITH QUILL
U+207D	U+207E	()	SUPERSCRIPT LEFT PARENTHESIS	SUPERSCRIPT RIGHT PARENTHESIS
U+208D	U+208E	()	SUBSCRIPT LEFT PARENTHESIS	SUBSCRIPT RIGHT PARENTHESIS
U+2329	U+232A	<	>	LEFT-POINTING ANGLE BRACKET	RIGHT-POINTING ANGLE BRACKET
U+2768	U+2769	()	MEDIUM LEFT PARENTHESIS ORNAMENT	MEDIUM RIGHT PARENTHESIS ORNAMENT
U+276A	U+276B	()	MEDIUM FLATTENED LEFT PARENTHESIS ORNAMENT	MEDIUM FLATTENED RIGHT PARENTHESIS ORNAMENT

U+276C	U+276D	<	>	MEDIUM LEFT-POINTING ANGLE BRACKET ORNAMENT	MEDIUM RIGHT-POINTING ANGLE BRACKET ORNAMENT
U+276E	U+276F	<	>	HEAVY LEFT-POINTING ANGLE QUOTATION MARK ORNAMENT	HEAVY RIGHT-POINTING ANGLE QUOTATION MARK ORNAMENT
U+2770	U+2771	<	>	HEAVY LEFT-POINTING ANGLE BRACKET ORNAMENT	HEAVY RIGHT-POINTING ANGLE BRACKET ORNAMENT
U+2772	U+2773	()	LIGHT LEFT TORTOISE SHELL BRACKET ORNAMENT	LIGHT RIGHT TORTOISE SHELL BRACKET ORNAMENT
U+2774	U+2775	{	}	MEDIUM LEFT CURLY BRACKET ORNAMENT	MEDIUM RIGHT CURLY BRACKET ORNAMENT
U+27C5	U+27C6	ໃ	ſ	LEFT S-SHAPED BAG DELIMITER	RIGHT S-SHAPED BAG DELIMITER
U+27E6	U+27E7	$[\![$]	MATHEMATICAL LEFT WHITE SQUARE BRACKET	MATHEMATICAL RIGHT WHITE SQUARE BRACKET
U+27E8	U+27E9	<	>	MATHEMATICAL LEFT ANGLE BRACKET	MATHEMATICAL RIGHT ANGLE BRACKET
U+27EA	U+27EB	«	»	MATHEMATICAL LEFT DOUBLE ANGLE BRACKET	MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET
U+27EC	U+27ED	[MATHEMATICAL LEFT WHITE TORTOISE SHELL BRACKET	MATHEMATICAL RIGHT WHITE TORTOISE SHELL BRACKET
U+27EE	U+27EF	()	MATHEMATICAL LEFT FLATTENED PARENTHESIS	MATHEMATICAL RIGHT FLATTENED PARENTHESIS
U+2983	U+2984	{	}	LEFT WHITE CURLY BRACKET	RIGHT WHITE CURLY BRACKET
U+2985	U+2986	(LEFT WHITE PARENTHESIS	RIGHT WHITE PARENTHESIS
U+2987	U+2988	(D	Z NOTATION LEFT IMAGE BRACKET	Z NOTATION RIGHT IMAGE BRACKET
U+2989	U+298A	1	Þ	Z NOTATION LEFT BINDING BRACKET	Z NOTATION RIGHT BINDING BRACKET
U+298B	U+298C	[]	LEFT SQUARE BRACKET WITH UNDERBAR	RIGHT SQUARE BRACKET WITH UNDERBAR
U+298D	U+2990	[]	LEFT SQUARE BRACKET WITH TICK IN TOP CORNER	RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER
U+298F	U+298E]	LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER	RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
U+2991	U+2992	ķ	è	LEFT ANGLE BRACKET WITH DOT	RIGHT ANGLE BRACKET WITH DOT
U+2993	U+2994	¢	≯	LEFT ARC LESS-THAN BRACKET	RIGHT ARC GREATER-THAN BRACKET
U+2995	U+2996	₩	€	DOUBLE LEFT ARC GREATER-THAN BRACKET	DOUBLE RIGHT ARC LESS- THAN BRACKET

U+2997	U+2998	[]	LEFT BLACK TORTOISE SHELL BRACKET	RIGHT BLACK TORTOISE SHELL BRACKET
U+29D8	U+29D9	}	ł	LEFT WIGGLY FENCE	RIGHT WIGGLY FENCE
۸ م م م		33	*	LEFT DOUBLE WIGGLY	RIGHT DOUBLE WIGGLY
U+ZJDA	0+2900	33	**	FENCE	FENCE
U+29FC	U+29FD	$\boldsymbol{\prec}$	γ	LEFT-POINTING CURVED	RIGHT-POINTING CURVED
11.2522	11.2522	, r	' 1		
U+ZEZZ	U+2E23	•	•		
U+2E24	U+2E25	L	J	BOTTOWILEFT HALF	
				LEFT SIDEWAYS U	
U+2E26	U+2E27	\subset		BRACKET	RIGHT SIDEWAYS U BRACKET
U+2E28	U+2E29	(())	LEFT DOUBLE PARENTHESIS	RIGHT DOUBLE PARENTHESIS
U+3008	U+3009	<	\rangle	LEFT ANGLE BRACKET	RIGHT ANGLE BRACKET
			, N	LEFT DOUBLE ANGLE	RIGHT DOUBLE ANGLE
U+300A	0+300B	«	//	BRACKET	BRACKET
U+300C	U+300D	Γ		LEFT CORNER BRACKET	RIGHT CORNER BRACKET
11+300F	11+300F	ſ	1	LEFT WHITE CORNER	RIGHT WHITE CORNER
0.3005	0.0001	U	2	BRACKET	BRACKET
U+3010	U+3011	ľ		REACKET	
		r		LEFT TORTOISE SHELL	RIGHT TORTOISE SHELL
U+3014	U+3015	Ĺ	J	BRACKET	BRACKET
11+3016	11+3017	17	7	LEFT WHITE LENTICULAR	RIGHT WHITE LENTICULAR
0.3010	0.301/	Ц	Д	BRACKET	BRACKET
U+3018	U+3019	ĺ]		
		г	п	LEFT WHITE SQUARE	RIGHT WHITE SQUARE
U+301A	U+301B	L	Ш	BRACKET	BRACKET
U+FE59	U+FE5A	()	SMALL LEFT PARENTHESIS	SMALL RIGHT PARENTHESIS
LI+EE5B	LI+EE5C	ſ	3	SMALL LEFT CURLY	SMALL RIGHT CURLY
OHLJD	UTLUC	ι	J	BRACKET	BRACKET
U+FE5D	U+FE5E	()	SMALL LEFT TORTOISE	SMALL RIGHT TORTOISE
				SHELL BRACKET	SHELL BRACKET
U+FF08	U+FF09	()	PARENTHESIS	PARENTHESIS
		Г	٦	FULLWIDTH LEFT SQUARE	FULLWIDTH RIGHT SQUARE
0+1130	0+1130	L		BRACKET	BRACKET
U+FF5B	U+FF5D	{	}	FULLWIDTH LEFT CURLY	FULLWIDTH RIGHT CURLY
		-		draune i FUI I WIDTH I FFT WHITF	drauke i FULLWIDTH RIGHT WHITF
U+FF5F	U+FF60	(())	PARENTHESIS	PARENTHESIS
U+FF62	U+FF63	Г	J	HALFWIDTH LEFT CORNER BRACKET	HALFWIDTH RIGHT CORNER BRACKET