

1

Bidirectional parenthesis algorithm

Ayman Aldahleh, Gilead Almosnino, Peter Constable, Andrew Glass, Laurentiu

Iancu, Dwayne Robinson, Murray Sargent, Robert Steen

1. Introduction
In its current form the UBA (Unicode Bidirectional Algorithm UAX #9) fails to correctly display instances 5

of parentheses in cases where the boundaries of the parentheses have mixed directionality. A simple

example is “a(b)” in an RTL paragraph:

(a(b

Under the UBA in its current form, users, developers, and localizers who wish to obtain the correct

display form need to use invisible control characters (Ex: LRE, RLO, PDF) to alter the logical string so that

UBA can interpret it correctly. In the simple case above, this could include the following options (not all 10

of which are equally recommended):

[LRE] a (b) [PDF]

[LRO] a (b) [PDF]

a (b) [LRM]

This solution requires users to have detailed knowledge of the way the UBA works to correctly position 15

appropriate invisible control characters. Further, such a solution is fragile since text may be edited or

copied after the placement of marks, potentially leading to further problems with the display.

The problem of mismatched parentheses is very common, and end users routinely encounter difficulties.

Rarely are users sufficiently informed about the UBA to solve the display problems themselves. On the

contrary, users may attempt to fix problems with visual ordering by changing the logical structure of 20

their text in order to achieve the desired output. For example, in place of “a(b)” a user may type “(a(b”

in order to achieve the desired display form in a RTL paragraph. Even for professional developers and

localizers, the problems are time consuming on account of being common, and not always trivial to

solve. For example, problems with mismatched parentheses accounted for almost 13% of the

bidirectional localization bugs addressed in Windows 7. Use of the parenthesis algorithm ensures both 25

logical correctness and display fidelity for the text run in either RTL or LRT embedding direction.

Since 2007 Microsoft has shipped a version of the bidirectional parenthesis algorithm (BPA) in its Office

products. This algorithm has been refined in the upcoming release of Windows 8. By implementing this

parenthesis algorithm to display bidirectional text as a supplement to the UBA, users do not need to

resort to control characters to fix problems with the display of parentheses. This document provides 30

rick@unicode.org
Text Box
L2/12-173R

2

details on Microsoft’s solution to the problem in its own terms, and in terms of the core rules of the UBA,

and in terms of a higher level protocol. Our position is that the parenthesis algorithm described here,

fixes a basic flaw in the current UBA, provides value to users, developers, and localizers, and does not

cause regressions in existing documents that are themselves well-formed according to the UBA.

Therefore, Microsoft feels that it is appropriate to address these problems at the OS level – i.e., in the 35

implementation of the UBA, in order to benefit users, developers, and localizers. Given that there are

multiple ways a parenthesis algorithm could be implemented, we feel it is important to develop a

consensus on the solution and have this adopted by the UTC. This should be either a formal amendment

to UAX #9 to include the proposed rule N0, or the creation of an annex that endorses the particular use

of higher level protocols described here. 40

2. Recap of the relevant part of the UBA
Parentheses and other impacted paired signs have the bidi category ON (other neutral), the resolution

of which is treated by rules N1 and N2 in the UBA:

N1. A sequence of neutrals takes the direction of the surrounding strong text if the text on both sides has
the same direction. European and Arabic numbers act as if they were R in terms of their influence on
neutrals. Start-of-level-run (sor) and end-of-level-run (eor) are used at level run boundaries.

 L N L → L L L

 R N R → R R R

 R N AN → R R AN

 R N EN → R R EN

AN N R → AN R R

AN N AN → AN R AN

AN N EN → AN R EN

EN N R → EN R R

EN N AN → EN R AN

EN N EN → EN R EN

N2. Any remaining neutrals take the embedding direction.

N → e

The problem arises when the two paired signs are resolved differently by the above rules. For example,

in “a(b)”, the opening parenthesis is resolved to L under N1, whereas the final one is resolved to R under 45

N2:

3

Figure 1. Unicode bidi utility showing output of a(b) in a RTL paragraph

Note that the Unicode bidi utility does not do glyph mirroring. The final output would be (a(b as shown

above.

Because there are two possible resolutions under N1, but only one for N2 the possible sequences that

give rise to mismatched parentheses are: 50

A) N1 and N1: …O(O…E)E… -OR- …E(E…O)O…

B) N1 and N2: …O(O…O)E… -OR- …E(O…O)O…

Where:

O = one or more strong types opposite to the embedding direction

E = one or more strong types of the embedding direction, or start/end of run 55

Extended complexity within the enclosed text can be ignored since only the neighbors to a paired sign

will influence their resolution.

http://unicode.org/cldr/utility/bidi.jsp?a=a%28b%29&p=RTL

4

Any other neutral types adjacent to parentheses in a run may be ignored since their resolution is also

determined by N1 and N2, and is therefore equal to the individual resolution of the paired punctuation

marks. For example, neutrals (N) in a sequence O N (N O N) E will be resolved in the same way as 60

example B above.

3. Design

3.1. Goal

The goal of the parenthesis algorithm is to ensure that paired punctuation marks such as parentheses

are always treated as a pair when applying the UBA so that they position and orient correctly, and 65

content inside and outside the enclosed span does not cross the boundaries of the span. The resolution

of the pair is intended to provide the most intuitive layout for the context.

3.2. Identification of paired punctuation marks

Paired punctuation marks are pairs of characters A and B, where A has general category

Open_Punctuation (gc = Ps), B has general category Close_Punctuation (gc = Pe), and A and B form a 70

mirrored pair (Bidi_M = Y for both, and Bidi_Mirroring_Glyph of A is B). See appendix for a complete

listing.

Because the bidi mirrored characters form a proper subset of the bidi neutrals (bc = ON), all paired

punctuation marks are also bidi neutral. This definition ensures the inclusion of parenthesis-like marks

and the exclusion of quotation marks and presentation forms (e.g., ︵︶︷︸︹︺). It also ensures that 75

the marks of every pair are mirrored characters of each other. As of Unicode 6.1, the set of paired

punctuation marks consists of 58 pairs of characters: 55 pairs of script Common, 1 of script Ogham, and

2 of script Tibetan.

3.3. Finding paired punctuation marks

Scan a paragraph from beginning to end looking for characters that meet the definition of paired 80

punctuation marks as defined above (§ 3.2).

Examples of such Open_Punctuation and Close_Punctuation characters are the open parenthesis

(U+0028) and close parenthesis (U+0029), respectively. For simplicity, we use the term open parenthesis

for the first class of characters and close parenthesis for the second.

If an open parenthesis is found, push it onto a stack and continue the scan. If a close parenthesis is 85

found, check if the stack is not empty and the close parenthesis is the other member of the mirrored

pair for the character on the top of the stack. If so, pop the stack and continue the scan; else return

failure. If the end of the paragraph is reached, return success if the stack is empty; else return failure.

Success implies that all open and close parentheses, if any, in a paragraph are matched and nested

correctly. 90

5

3.4. Nesting

Paired punctuation marks must be correctly nested in order for the algorithm to run. Incorrectly nested,

unbalanced, or mismatched pairs may cause inconsistency in the rules governing the resolution of the

paired punctuation marks. Therefore, the BPA should not be applied in these cases. Standard resolution

using N1 and N2 should proceed as normal. 95

Correct nesting requires the paired punctuation marks to be mirror characters of each other, to be at

the same embedding level, and to have a lower or equal embedding level as the content they contain. A

drop in the level of the content below the level of either paired punctuation mark would constitute an

error in nesting, and therefore, the BPA should be abandoned.

These constraints only apply for the current paragraph. 100

3.5. Resolution of paired punctuation marks

The next task is to determine whether the paired punctuation marks should be made to match the

adjacent context or the paragraph direction. For the purposes of assessing which direction to resolve

paired marks, the following possibilities should be considered:

6

LTR RTL

L(L)L L

L(L)R L

R(L)L L

R(L)R L

L(R)L L

L(R)R R

R(R)L R

R(R)R R

L(N)L L

L(N)R L

R(N)L L

R(N)R R

L(LR)L L

L(LR)R L

R(LR)R L

L(L)L L

L(L)R L

R(L)L L

R(L)R R

L(R)L R

L(R)R R

R(R)L R

R(R)R R

L(N)L L

L(N)R R

R(N)L R

R(N)R R

L(LR)L R

L(LR)R R

R(LR)R R

The highlighted cases are ones which are currently failing under the existing 105

UBA, and are fixed by the BPA.

Sequences with a neutral type outside the parenthesis or mixed with a strong type inside can be ignored

since they will be equivalent to one of the above possibilities after resolution using N1 or N2. Similarly,

sequences with mixed type content RL, RLR, LRL, etc. are functionally equivalent to the above types with

enclosed LR. 110

Once the paired punctuation marks have been identified, they should be resolved to the embedding

direction except in the following cases:

 The directionality of the enclosed content is opposite the embedding direction, and at least one

neighbor has a bidi level opposite to the embedding direction O(O)E, E(O)O, or O(O)O.

 The enclosed content is neutral and both neighbors have a bidi level opposite to the embedding 115

direction O(N)O. This is current behavior in the UBA. This is needed to ensure the preservation

of existing behavior under the current UBA rule N1.

The rationale for following the embedding level in the normal case is that the text segment enclosed by

the paired punctuation marks will conform to the progression of other text segments in the writing

direction. In the exception cases, the rationale to follow the opposite direction is based on context being 120

established between the enclosed and adjacent segments with the same direction.

3.5.1. Examples

Based on an RTL paragraph:

1. R(L)R WERBEH (a) CIBARA

2. R(L)L book(s) CIBARA

3. L(N)L WERBEH hobby(-)horse CIBARA

4. L(LR)R WERBEH (CIBARA fabrikam) j. smith

Note that examples 1 and 3 resolve correctly under the current UBA, whereas examples 2 and 4 require 125

the BPA to display correctly.

Based on an LTR paragraph:

5. L(LR)R j. smith (fabrikam CIBARA) WERBEH

7

3.6. Bidirectional controls

3.6.1. Left-To-Right Override (U+202D) and Right-To-Left Override (U+202E) 130

Text containing an explicit directional override (LRO or RLO and PDF) around a sequence that includes

paired punctuation marks is not affected by the BPA. This is because the directionality of the content

enclosed by the override is already determined to be strong L or strong R (as appropriate) and no

neutral ambiguity remains to be resolved.

3.6.2. Left-To-Right Embedding (U+202A) and Right-To-Left Embedding (U+202B) 135

A span of text that includes explicit directional embedding controls (LRE or RLE and PDF) influences the

BPA by updating the embedding direction.

3.6.3. Left-To-Right Mark (U+200E) and Right-To-Left Mark (U+200F)

Explicit directional marks (LRM or RLM) influence the directionality of adjacent neutrals as normal under

the UBA; that is they behave like any other strong L or strong R. No special handling is needed in the BPA. 140

This same is true for ARABIC LETTER MARK (U+061C), which has been accepted for encoding in a future

version of the standard.

4. Solutions
There are two alternatives for implementing the BPA. Either a new rule should be introduced into the

core algorithm immediately before rule N1 or the higher level protocol rules HL4 and HL5 should be 145

used in conjunction with logic to segment text based on the occurrence of paired punctuation marks and

insert appropriate directional marks (LRM, RLM) to achieve the desired result. Both solutions use the

logic described above (§ 3.2) to identify paired punctuation marks that are properly nested.

4.1. Solution by updating the core UBA

Given that the use of paired punctuation marks such as parentheses is a normal document scenario, we 150

feel that the resolution of paired punctuation marks should be addressed in the core algorithm. The

appropriate place to evaluate the paired signs is before the resolution of neutral types, that is, before

the application of N1. The solution may be phrased in terms of a new rule N0.

4.1.1. Proposed rule

*N0. Paired punctuation marks take the embedding direction if the enclosed text contains a strong type
of the same direction. Else, if the enclosed text contains a strong type of the opposite direction and at
least one external neighbor also has that direction the paired punctuation marks take the direction
opposite the embedding direction.

This rule also requires the definition of paired punctuation marks state previously, and an additional 155

qualification regarding the levels:

Paired punctuation marks are pairs of characters A and B, where A has general category
Open_Punctuation (gc = Ps), B has general category Close_Punctuation (gc = Pe), and A and B form a
mirrored pair (Bidi_M = Y for both, and Bidi_Mirroring_Glyph of A is B).

8

This rule is applied to those paired punctuation marks that are correctly nested and occur at the same
level without an intervening drop below their level.

4.1.2. Detailed example

For example (assuming RTL paragraph level):

1.

R(L)R

WERBEH (a) CIBARA

Logical sequence 0 1 2 3 4

Text run ARABIC (a) HEBREW

Bidi Class R ON L ON R

Rules Applied N0->R N0->R

Resulting Level L1 L1 L2 L1 L1

2.

R(L)L

book(s) CIBARA

Logical sequence 0 1 2 3 4

Text run ARABIC book (s)

Bidi Class R L ON L ON

Rules Applied N0->L N0->L

Resulting Level L1 L2 L2 L2 L2

3.

L(N)L

WERBEH hobby(-)horse CIBARA

Logical sequence 0 1 2 3 4 5 6

Text run ARABIC hobby (-) horse HEBREW

Bidi Class R L ON ON ON L R

Rules Applied N1->L N1->L N1->L

Resulting Level L1 L2 L2 L2 L2 L2 L1

4.

L(LR)R

WERBEH (CIBARA fabrikam) j. smith

Logical sequence 0 1 2 3 4 5 6

Text run j. smith (fabrikam Space ARABIC) HEBREW

Bidi Class L ON L WS R ON R

Rules Applied N0->R N2->R N0->R

Resulting Level L2 L1 L2 L1 L1 L1 L1

5.

L(LR)R

j. smith (fabrikam CIBARA) WERBEH

Logical sequence 0 1 2 3 4 5 6

Text run j. smith (fabrikam Space ARABIC) HEBREW

Bidi Class L ON L WS R ON R

Rules Applied N0->L N2->L N0->L

Resulting Level L0 L0 L0 L0 L1 L0 L1

See also additional examples later in this document. 160

4.2. Solution using rules for higher-level protocols

This approach may be used as a conformant solution under the current UBA since UAX #9 includes

additional rules for Higher-Level Protocols that may be applied to structured text:

The following clauses are the only permissible ways for systems to apply higher-level protocols to the
ordering of bidirectional text. Some of the clauses apply to segments of structured text. This refers to
the situation where text is interpreted as being structured, whether with explicit markup such as XML or

9

HTML, or internally structured such as in a word processor or spreadsheet. In such a case, a segment is
[a] span of text that is distinguished in some way by the structure.

In order to ensure consistent implementation the directional control marks LRM and RLM should be

applied to paired punctuation marks according to logic described in this section. 165

4.2.1. Current rules

Properly nested paired punctuation marks may be used to identify segments of text to which the UBA

may be applied. The appropriate rule is HL4:

HL4. Apply the Bidirectional Algorithm to segments
The Bidirectional Algorithm can be applied independently to one or more segments of structured text.
For example, when displaying a document consisting of textual data and visible markup in an editor, a
higher-level process can handle syntactic elements in the markup separately from the textual data.

The segments are to be identified using the logic described above (§ 3.3).

Where necessary, directional control marks (RLM/LRM) should be inserted at the borders of segments in 170

order to provide correct resolution using the UBA. The appropriate rule is HL5:

HL5. Provide artificial context.
Text can be processed by the Bidirectional Algorithm as if it were preceded by a character of a given
type and/or followed by a character of a given type. This allows a piece of text that is extracted from a
longer sequence of text to behave as it did in the larger context.

The determination of whether directional control marks should be inserted is based on the logic

described above (§ 3.6). Once the appropriate marks have been inserted, segment can be processed

using the UBA.

4.2.2. Detailed example 175

For example (assuming RTL paragraph level):

1.

R(L)R

WERBEH (a) CIBARA

Logical sequence 0 1 2 3 4

Text run ARABIC (a) HEBREW

Bidi Class R ON L ON R

Segment (HL4) 0 1 1 1 2

Artificial context (HL5) RLM()RLM

Rules applied N2->R N2->R

Resulting Level L1 L1 L2 L1 L1

2.

R(L)L

book(s) CIBARA

Logical sequence 0 1 2 3 4

Text run ARABIC book (S)

Bidi Class R L ON L ON

Segment (HL4) 0 0 1 1 1

Artificial context (HL5) LRM()LRM

Rules applied N1->L N1->L

Resulting Level L1 L2 L2 L2 L2

3. WERBEH hobby(-)horse CIBARA

10

L(N)L

Logical sequence 0 1 2 3 4 5 6

Text run ARABIC hobby (-) horse HEBREW

Bidi Class R L ON ON ON L R

Segment (HL4) 0 0 1 1 1 2 2

Artificial context (HL5) LRM()LRM

Rules applied N1->L N1->L

Resulting Level L1 L2 L2 L2 L2 L2 L1

4.

L(LR)R

WERBEH (CIBARA fabrikam) j. smith

Logical sequence 0 1 2 3 4 5 6

Text run j. smith (fabrikam Space ARABIC) HEBREW

Bidi Class L ON L WS R ON R

Segment (HL4) 0 1 1 1 1 1 2

Artificial context (HL5) RLM()RLM

Rules applied N2->R N2->R N1->R

Resulting Level L2 L1 L2 L1 L1 L1 L1

5.

L(LR)R

j. smith (fabrikam CIBARA) WERBEH

Logical sequence 0 1 2 3 4 5 6

Text run j. smith (fabrikam Space ARABIC) HEBREW

Bidi Class L ON L WS R ON R

Segment (HL4) 0 1 1 1 1 1 2

Artificial context (HL5) LRM()LRM

Rules applied N1->L N2->L N2->L

Resulting Level L0 L0 L0 L0 L1 L0 L1

See also additional examples given below.

5. Examples
Paragraph
direction

Text Output

1. RTL Text Files (*.txt) Broken

Fixed

2. RTL WWW (World
Wide Web)

 מערכת

Broken

Fixed

3. RTL إعداد Office 15
(Technical

Preview)

Broken

Fixed

4. RTL j. smith (fabrikam
 עברית (العربية

Broken

Fixed

5. LTR j. smith (fabrikam

 עברית (العربية
Broken

Fixed

11

6. LTR شركة) السيد محمد
 موزعين)الإدراك
Microsoft Corp))

Broken

Fixed

7. LTR מלא צבע [24bpp] Broken

Fixed

8. LTR From: السيد محمد
 (الإدراك شركة)

Broken

Fixed

6. Stability 180

Because the BPA proposed here involves a heuristic which determines the level of paired punctuation

marks based on the content of the text itself and does not alter the text in any way, well-formed new or

existing text will display correctly under the BPA. This is true whether or not the text contains directional

control marks. It is important to stress that current text which has used directional controls in order to

obtain correct display will continue to display correctly under the BPA. The main stability concern 185

therefore is that text authored using the BPA may display imperfectly when rendered on a system which

has not implemented the BPA. In such a case, the reader of that text is no worse off than they would

have been prior to the development of the BPA.

The only other stability concern relates to the possibility of there being text which is deliberately

malformed in order to work around the problem of mismatched paired punctuation marks under the 190

UBA. An example would be a logical pair of nested parentheses which render as a sequence of

parentheses under the UBA. The benefits of the BPA are expected to far outweigh the loss in stability of

such sequences.

7. Alternative solutions considered and rejected

7.1. Inserting marks 195

One suggestion to address this problem is to have edit controls insert the appropriate directional

controls automatically. A serious drawback to this suggestion is that the correct display of text with

paired punctuation marks would depend on the source application supporting this behavior. This also

requires these controls to have an awareness of the UBA in order to insert the correct marks when they

may currently be relying on the OS to manage the display of bidirectional text. Given the number of 200

different edit controls, the surface area for this approach is too great to be viable.

Having a tool that inserts the correct marks according to the proposed algorithm might be a useful tool

to facilitate cross platform stability during the transition period. However, insertion of marks is not a

stable or complete solution to the problem because text that has had marks inserted may be copied and

edited in contexts beyond the one in which the marks were applied, and thus, rather than correcting 205

12

problems, the presence of invisible directional control marks may introduce problems. For example,

when the text for example 4 above (§ 4.2.2, § 5) is updated to include the RLM marks according to the

procedure in section 4.2, the text renders correctly in an RTL paragraph:

However, when this text, including the marks, is put in an LRT context the text is distorted: 210

Only dynamic resolution of the parenthesis under the BPA is able to adapt correctly to changes in

context required for resolution to the embedding direction.

8. Demo
An update to the CLDR Bidi Utility that illustrates the output from the algorithm is planned. 215

9. Conformance test data
Microsoft will provide conformance test data corresponding to sequences that will change under the

BPA.

10. Appendix – List of paired punctuation marks

U+0028 U+0029 () LEFT PARENTHESIS RIGHT PARENTHESIS

U+005B U+005D [] LEFT SQUARE BRACKET RIGHT SQUARE BRACKET

U+007B U+007D { } LEFT CURLY BRACKET RIGHT CURLY BRACKET

U+0F3A U+0F3B ༺ ༻ TIBETAN MARK GUG
RTAGS GYON

TIBETAN MARK GUG RTAGS
GYAS

U+0F3C U+0F3D ༼ ༽ TIBETAN MARK ANG
KHANG GYON

TIBETAN MARK ANG KHANG
GYAS

U+169B U+169C ᚛ ᚜ OGHAM FEATHER MARK
OGHAM REVERSED FEATHER
MARK

U+2045 U+2046 ⁅ ⁆
LEFT SQUARE BRACKET
WITH QUILL

RIGHT SQUARE BRACKET
WITH QUILL

U+207D U+207E ⁽ ⁾
SUPERSCRIPT LEFT
PARENTHESIS

SUPERSCRIPT RIGHT
PARENTHESIS

U+208D U+208E ₍ ₎
SUBSCRIPT LEFT
PARENTHESIS

SUBSCRIPT RIGHT
PARENTHESIS

U+2329 U+232A 〈 〉
LEFT-POINTING ANGLE
BRACKET

RIGHT-POINTING ANGLE
BRACKET

U+2768 U+2769 ❨ ❩
MEDIUM LEFT
PARENTHESIS ORNAMENT

MEDIUM RIGHT
PARENTHESIS ORNAMENT

U+276A U+276B ❪ ❫
MEDIUM FLATTENED LEFT
PARENTHESIS ORNAMENT

MEDIUM FLATTENED RIGHT
PARENTHESIS ORNAMENT

13

U+276C U+276D ❬ ❭
MEDIUM LEFT-POINTING
ANGLE BRACKET
ORNAMENT

MEDIUM RIGHT-POINTING
ANGLE BRACKET ORNAMENT

U+276E U+276F ❮ ❯
HEAVY LEFT-POINTING
ANGLE QUOTATION MARK
ORNAMENT

HEAVY RIGHT-POINTING
ANGLE QUOTATION MARK
ORNAMENT

U+2770 U+2771 ❰ ❱
HEAVY LEFT-POINTING
ANGLE BRACKET
ORNAMENT

HEAVY RIGHT-POINTING
ANGLE BRACKET ORNAMENT

U+2772 U+2773 ❲ ❳
LIGHT LEFT TORTOISE
SHELL BRACKET
ORNAMENT

LIGHT RIGHT TORTOISE SHELL
BRACKET ORNAMENT

U+2774 U+2775 ❴ ❵
MEDIUM LEFT CURLY
BRACKET ORNAMENT

MEDIUM RIGHT CURLY
BRACKET ORNAMENT

U+27C5 U+27C6 ⟅ ⟆
LEFT S-SHAPED BAG
DELIMITER

RIGHT S-SHAPED BAG
DELIMITER

U+27E6 U+27E7 ⟦ ⟧
MATHEMATICAL LEFT
WHITE SQUARE BRACKET

MATHEMATICAL RIGHT
WHITE SQUARE BRACKET

U+27E8 U+27E9 ⟨ ⟩
MATHEMATICAL LEFT
ANGLE BRACKET

MATHEMATICAL RIGHT
ANGLE BRACKET

U+27EA U+27EB ⟪ ⟫
MATHEMATICAL LEFT
DOUBLE ANGLE BRACKET

MATHEMATICAL RIGHT
DOUBLE ANGLE BRACKET

U+27EC U+27ED ⟬ ⟭
MATHEMATICAL LEFT
WHITE TORTOISE SHELL
BRACKET

MATHEMATICAL RIGHT
WHITE TORTOISE SHELL
BRACKET

U+27EE U+27EF ⟮ ⟯
MATHEMATICAL LEFT
FLATTENED PARENTHESIS

MATHEMATICAL RIGHT
FLATTENED PARENTHESIS

U+2983 U+2984 ⦃ ⦄
LEFT WHITE CURLY
BRACKET

RIGHT WHITE CURLY
BRACKET

U+2985 U+2986 ⦅ ⦆ LEFT WHITE PARENTHESIS RIGHT WHITE PARENTHESIS

U+2987 U+2988 ⦇ ⦈
Z NOTATION LEFT IMAGE
BRACKET

Z NOTATION RIGHT IMAGE
BRACKET

U+2989 U+298A ⦉ ⦊
Z NOTATION LEFT
BINDING BRACKET

Z NOTATION RIGHT BINDING
BRACKET

U+298B U+298C ⦋ ⦌
LEFT SQUARE BRACKET
WITH UNDERBAR

RIGHT SQUARE BRACKET
WITH UNDERBAR

U+298D U+2990 ⦍ ⦐
LEFT SQUARE BRACKET
WITH TICK IN TOP
CORNER

RIGHT SQUARE BRACKET
WITH TICK IN TOP CORNER

U+298F U+298E ⦏ ⦎
LEFT SQUARE BRACKET
WITH TICK IN BOTTOM
CORNER

RIGHT SQUARE BRACKET
WITH TICK IN BOTTOM
CORNER

U+2991 U+2992 ⦑ ⦒
LEFT ANGLE BRACKET
WITH DOT

RIGHT ANGLE BRACKET WITH
DOT

U+2993 U+2994 ⦓ ⦔
LEFT ARC LESS-THAN
BRACKET

RIGHT ARC GREATER-THAN
BRACKET

U+2995 U+2996 ⦕ ⦖
DOUBLE LEFT ARC
GREATER-THAN BRACKET

DOUBLE RIGHT ARC LESS-
THAN BRACKET

14

U+2997 U+2998 ⦗ ⦘
LEFT BLACK TORTOISE
SHELL BRACKET

RIGHT BLACK TORTOISE
SHELL BRACKET

U+29D8 U+29D9 ⧘ ⧙ LEFT WIGGLY FENCE RIGHT WIGGLY FENCE

U+29DA U+29DB ⧚ ⧛
LEFT DOUBLE WIGGLY
FENCE

RIGHT DOUBLE WIGGLY
FENCE

U+29FC U+29FD ⧼ ⧽
LEFT-POINTING CURVED
ANGLE BRACKET

RIGHT-POINTING CURVED
ANGLE BRACKET

U+2E22 U+2E23 ⸢ ⸣ TOP LEFT HALF BRACKET TOP RIGHT HALF BRACKET

U+2E24 U+2E25 ⸤ ⸥
BOTTOM LEFT HALF
BRACKET

BOTTOM RIGHT HALF
BRACKET

U+2E26 U+2E27 ⸦ ⸧
LEFT SIDEWAYS U
BRACKET

RIGHT SIDEWAYS U BRACKET

U+2E28 U+2E29 ⸨ ⸩
LEFT DOUBLE
PARENTHESIS

RIGHT DOUBLE PARENTHESIS

U+3008 U+3009 〈 〉 LEFT ANGLE BRACKET RIGHT ANGLE BRACKET

U+300A U+300B 《 》
LEFT DOUBLE ANGLE
BRACKET

RIGHT DOUBLE ANGLE
BRACKET

U+300C U+300D 「 」 LEFT CORNER BRACKET RIGHT CORNER BRACKET

U+300E U+300F 『 』
LEFT WHITE CORNER
BRACKET

RIGHT WHITE CORNER
BRACKET

U+3010 U+3011 【 】
LEFT BLACK LENTICULAR
BRACKET

RIGHT BLACK LENTICULAR
BRACKET

U+3014 U+3015 〔 〕
LEFT TORTOISE SHELL
BRACKET

RIGHT TORTOISE SHELL
BRACKET

U+3016 U+3017 〖 〗
LEFT WHITE LENTICULAR
BRACKET

RIGHT WHITE LENTICULAR
BRACKET

U+3018 U+3019 〘 〙
LEFT WHITE TORTOISE
SHELL BRACKET

RIGHT WHITE TORTOISE
SHELL BRACKET

U+301A U+301B 〚 〛
LEFT WHITE SQUARE
BRACKET

RIGHT WHITE SQUARE
BRACKET

U+FE59 U+FE5A ﹙ ﹚ SMALL LEFT PARENTHESIS SMALL RIGHT PARENTHESIS

U+FE5B U+FE5C ﹛ ﹜
SMALL LEFT CURLY
BRACKET

SMALL RIGHT CURLY
BRACKET

U+FE5D U+FE5E ﹝ ﹞
SMALL LEFT TORTOISE
SHELL BRACKET

SMALL RIGHT TORTOISE
SHELL BRACKET

U+FF08 U+FF09 （ ）
FULLWIDTH LEFT
PARENTHESIS

FULLWIDTH RIGHT
PARENTHESIS

U+FF3B U+FF3D ［ ］
FULLWIDTH LEFT SQUARE
BRACKET

FULLWIDTH RIGHT SQUARE
BRACKET

U+FF5B U+FF5D ｛ ｝
FULLWIDTH LEFT CURLY
BRACKET

FULLWIDTH RIGHT CURLY
BRACKET

U+FF5F U+FF60 ｟ ｠
FULLWIDTH LEFT WHITE
PARENTHESIS

FULLWIDTH RIGHT WHITE
PARENTHESIS

U+FF62 U+FF63 ｢ ｣
HALFWIDTH LEFT CORNER
BRACKET

HALFWIDTH RIGHT CORNER
BRACKET

 220

