
Review of the Specification of the Unicode Collation Algorithm
Author: Richard Wordingham
Date: 23 July 2012

This review was performed to determine whether the specification is adequate for the production of a compliant
collator, and to determine any significant allowed but unpredictable variation in behaviour. The document reviewed
is UTS#10 Unicode Collation Algorithm (Revision 24, Version 6.1.0). The outcome of this review is a list of
observations that I would like to see properly resolved. Some note has been taken of draft changes already made for
Unicode 6.2.0, but this review was not composed with the anticipation that all issues will be addressed in time for
Unicode 6.2.0, and I would consider it perfectly reasonable if resolution were deferred until Unicode 7.0.

An earlier version of these observations was shared with Mark Davis and Markus Scherer, and many of the
observations have been removed because they are adequately resolved by Draft 4 of Unicode 6.2.0, and yet others
have been withdrawn because the relevant text has been moved to the UTS#35, the LDML specification. Some
observations have been withdrawn because they were wrong or not worth mentioning, and yet others have been
reworded because they were not clear. Finally, several observations are covered by L2/12-223 'Anomalous Level 4
Weights in Tables for UCA'. For their benefit, I have retained the original numbering of the observations, which
went up to 133. As a result, the following new observations appear out of order:

No. 134 occurs at the beginning.
No. 135 occurs after no. 15.
No. 136 occurs after no. 45.
No. 137 occurs after no .89.

While the number of observations (about 70) may seem daunting, many of them are related. For example,. the
anomalous weighting (or general category?) of U+10A7F OLD SOUTH ARABIAN NUMERIC INDICATOR has
given rise to many observations. Other observations result from the specification not having kept up with changes.
For example, many observations arose because the relevant text assumes that accented Latin characters have a
simple mapping to collation elements, as opposed to the expansion that they have nowadays. A few observations
arose because some text appears to date back to when all characters lay in the BMP.

Anomalies in the 3rd and 4th level weights in DUCET have been observed. The significant anomalies in the 3rd level
weights are recorded in the table at the end of this review.

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

1 ¶7
Obs. 134.
Error

“If a German employee at this
French company accesses the data”

French v. German is a bad
example, as their CLDR standard
orders are identical!

1 ¶7
Obs. 2.
Quibble

“If a German employee at this
French company accesses the data,
the customer names need to show up
in the order that meets this
employee's expectations—that is, in
a German order”

Dividing tasks alphabetically
could be disastrous if the
recipients work with different
understandings of the ordering
behind the division.

Give an Englishman A-M to
handle and a Lithuanian N-Z, no

1 of 15

rick@unicode.org
Text Box
L2/12-250

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

one handles those with names
starting with Y, as i << y in
Lithuanian. I'm not sure what
would happen if you gave a
Swede N-Z - would he have the
nous to treat that as N-Ö and both
the Englishman and the Swede
handle Å, or would no-one handle
Ö?

1 ¶8
Obs. 3.
Quibble

“For example, Swedish and French
have clearly specified, distinct rules
for sorting ä ... but neither defines
the ordering of characters such as
Ж, ש, ♫, ∞, ◊, or ⌂.”

One acquainted with the Hebrew
alphabet would expect ת < < ש .ר
Similarly, one acquainted with
Russian would expect Cyrillic to
be ordered as in Russian unless
interleaved with another script.

Indeed, English users have rather
stronger expectations for the
sorting of Greek than they do for
most of the Latin script.

Perhaps add '(Users
may, however, have
expectations.)'.

1.3 ¶5
Obs. 6. “In French and a few other

languages, however, it is the last
accent difference that determines the
order”

Is there a contradictory French
rule for the sorting of multi-
accented characters? An ICU
code comment says that there is!
(The comment might relate to the
French sorting of Vietnamese.)
The comment, in tblcoll.cpp of
ICU 49.1.1, reads:

“To make things even trickier,
secondary differences (accent
marks) are compared starting at
the *end* of the string in
languages with French secondary
ordering. But when comparing the
accent marks on a single base
character, they are compared from
the beginning.”

C1 ¶2
Obs. 12.
Query

“characters supported by that
implementation”

Should this be supported
characters or supported strings?

C1 ¶2
Obs. 13.
Minor

“any two canonical-equivalent
strings as being equal”

Should add that an optional
tailoring may allow this
requirement to be ignored.

C1 ¶3
Obs. 14.
Query

“same results as if those strings had
been transcoded to Unicode.”

May the transcoding be language-
sensitive,e.g. inserting CGJ?

Recommend noting that
the transcoding may be
language-sensitive.

2 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

2 C4
Obs. 15.
Query

“A conformant implementation
must specify the version number of
this Unicode Technical Standard.”

My implementation loads
UnicodeData.txt and a collation
element table. (It's happy to load
fake files, which may occasionally
be appropriate, e.g. for beta
testing.) What is it required to
report? Can I read 'conformance
claim' for 'conformant
implementation'?

Suggest adding, “for
the version of the UCA
it implements”.

2 C4
Obs. 135.
Editorial

The precise values of the collation
elements for the characters may
change over time as new characters
are added to the Unicode Standard.

Irrelevant – there is no
requirement to report the version
of DUCET used.

3 (intro)
Obs. 16.
Error

“a collation element is an ordered
list of three or more 16-bit weights”

The fourth element ranges up to
17×216. (15×216 for tabulated
values). The other elements are
indeed 16 bits.

3.1 ¶5
Obs. 17.
Editorial

Where only plain text ASCII
characters are available the fallback
notation in Table 10 can be used.

Replace 'can be used' by 'is
recommended'. This document
does not claim to be defining a
notation for general use – see
Section 3.1 ¶2. (Revision 2 of
UTR#10 did specify a tailoring
language, and LDML does.)

3.6 ¶1
Obs. 23.
Better
information

“Any code points that are not
explicitly mentioned in this table are
given a derived collation element, as
described in Section 7, Weight
Derivation.”

Should add, 'Some decomposable
codepoints have weights based on
those of derived collation
elements'.

3.6 ¶4
Obs. 25.
Correction

“vowels cannot simply be weighted
by their representation order in
strings”

VCC combinations are also
needed for Lao (and possibly Tai
Viet); Thai collation is
mechanical.

For second, suggest
adding, 'Language
tailorings may need to
add contractions for
vowel plus consonant
cluster.'

3 of 15

http://www.unicode.org/reports/tr10/tr10-24.html#Weight_Derivation%23Weight_Derivation
http://www.unicode.org/reports/tr10/tr10-24.html#Weight_Derivation%23Weight_Derivation

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

3.6 ¶7
Obs. 26.
Editorial

“These get different tertiary
weights, accordingly.”

Comma before 'accordingly' is
grammatically incorrect.

3.6 ¶9
Obs. 27.
Clarific-
ation

“The weightings in the table are
grouped by major categories.”

An algorithm for identifying the
boundaries should be given for
assigning the weights to the
significant classes for conformant
parametric tailoring. While the
algorithm given as an example
looks obvious, it is critically
dependent on the exclusions. For
example, most primary weights
for numbers are in the symbol
group in DUCET. Similarly, most
scripts have a character equivalent
at the primary level to '1', and
many have script-specific
punctuation.

I have checked the algorithm
restricting my attention to primary
weights from solitary collation
elements for single characters
regardless of whether they are in
NFD. This might not be adequate
in subsequent versions of DUCET

For the CLDR root collation, it
appears that a definition of the
boundaries of the groups is given
by FractionalUCA.txt. It is
possible that an algorithm can be
given to translate those boundaries
for use with DUCET.
Any algorithm needs to be
checked for each release of
DUCET.

The partitioning points
of the primary weights
are determined by the
following weights:
1. First positive
primary weight for a gc
= punctuation
character.
2. First subsequent
primary weight for a gc
= Symbol character
3. First subsequent
primary weights for a
gc = Sc character.
4. First subsequent
primary weights for a
gc = Number character.
(For DUCET, this
could be specialised to
the primary weight of
'0'.)
5. First subsequent
primary weight for a
non-number – this
identifies the start of
the Latin script outside
the 'core' groups.
6. For each of the
other unexcluded
recommended scripts
except Han, the first
subsequent primary
weight of a character in
the script.
7. For Han, the first
primary weight is,
almost by definition,
FB40 8000.

4 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

3.6 ¶10
Obs. 28.
Omissions

In DUCET 6.1.0, U+10A7F OLD
SOUTH ARABIAN NUMERIC
INDICATOR is ordered between
numbers within the symbol range.
This exception, which causes
complications elsewhere, is not
listed.

3.6 ¶10
Obs. 30.
Omissions

“Some letter modifiers are grouped
with general symbols”.

As to Exception 5, it is the
modifier letters that are ordered
with the other types of letter of
their script that are the exception
to Table 11, not those ordered
with the symbols.

3.6 ¶10
Obs. 31.
Omissions

Characters of the common and
inherited scripts are stored within
other scripts, not grouped
together.

3.6 ¶12
Obs. 33.
Editorial

“So as to maintain the highest and
lowest status, in CLDR these values
are not further tailorable, and
nothing can be tailored to have the
same primary weights.”

A cross-reference to within
UTS#35 Section 5.14 would be
useful.

3.6.1
Obs. 34.
Enhance-
ment

There should be a remark that this
file format is intended to be usable
for expressing collations, even
though implementations are not
required to be able to accept input
in this format.

3.6.1 ¶1
Obs. 35.
Correction

“<collationElementTable> :=
<version> “

The version line does not occur in
allkeys_CLDR.txt, which is
supposed to have the same format.

Suggest changing
'<version>' to
'<version>?' and adding
that the version line is
guaranteed for the
DUCET and is optional
for other collations
(e.g. tailorings). (Or
should it be prohibited
for other collations?)

3.6.1 ¶2
Obs. 36.
Query

“@<version> :=
<major>.<minor>.<variant> <eol>”

Are the three fields decimal
numbers, or are letters also
allowed in them? Letters might
be appropriate for objects other
than DUCET. (Perl includes a test
version, and the collation method
exports the version string.)

5 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

3.6.1 ¶3
Obs. 37.
Query

“<variableChoice> := 'blanked' |
'non-ignorable' | 'shifted'”

The options 'shift-trimmed' and
'ignoresp' are missing. Should
they be present?

3.6.1 ¶4
Obs. 38.
Quibble

“The default is for lines to be
forwards.”

A line cannot be forwards or
backwards.

Suggest replacing 'lines
to be forwards' by
'levels to be forwards'.

3.6.1 ¶5
Obs. 40.
Potential
problem

<collElement> := "[" <alt> <char>
"." <char> "." <char> ("." <char>)*
"]"

There should be a requirement
that each collation element have
the same number of char fields.

3.6.1 ¶7
Obs. 42.
Clarific-
ation

0020 ; [*0209.0020.0002.0020] %
SPACE

An example from the Gothic
script would be useful. It would
demonstrate that the 4th weight is
not necessarily expressible in 16
bits.

3.6.1 ¶7
Obs. 43.
Clarific-
ation

02DA ; [*0209.002B.0002.02DA]
% RING ABOVE; COMPATSEQ

The secondary weights of 002B
give a false impression. All
primary elements now have a
weight of 0020, and
decomposable Latin characters
now usually get two collation
elements.

Suggest that in Section
3.2 ¶2 'not match the
weights' be expanded to
'not match the weights
or style'.

3.6.1 ¶8
Obs. 44.
Error

“For completely ignorable collation
elements, the fourth level is set to
zero”

Details should be explained by
reference to Section 7.3 'Fourth-
Level Weight Assignments'. In
particular, the statement about
completely ignorable elements is
either false or has zero content.

3.6.2 Opt 5
Obs. 45.
Query

IgnoreSP: This option is the same
as Shifted, except that only the
variable characters that are
Whitespace or Punctuation are
shifted; the Symbol characters are
treated as regular (non-variable)
characters.

Presumably no weight at or
beyond the lowest positive symbol
character weight is then variable.
The problem is U+10A7F, a
punctuation character that occurs
within the number subgroup
within symbol group.

3.6.2 ¶6
Obs. 136.
Error

“Rather than using a bit per
collation element to determine
whether the collation element is
variable, the implementation only
needs to store the maximum primary
value for all the variable elements.
All collation elements with primary
weights from 1 to that maximum are
variables; all other collation
elements are not.”

The application also needs to store
the minimum primary value, for
U+FFFE may be tailored to be a
non-variable with the lowest
primary weight. Similarly, '1'
should be replaced by 'that
minimum'.

6 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

3.6.2 ¶6
Obs. 46.
Query

“All collation elements with primary
weights from 1 to that maximum are
variables; all other collation
elements are not.”

Does this rule also apply for
IgnoreSP? The problem character
is U+10A7F.

3.6.3 ¶1
Obs. 47.
Minor

“The unmarked characters will have
tertiary weights (such as a3) equal to
MIN3.”

Are all hiragana and katakana
marked? Surely not in any
linguistic sense.

Suggest adding, “(By
convention, all kana are
'marked'.)”.

3.7 Cond 2
Obs. 50.
Error

All Level N weights in Level N-1
ignorables must be strictly less than
all weights in Level N-2 ignorables.

This is a typo for 'All Level N
weights in Level N-2 ignorables
must be strictly less than all Level
N weights in Level N-1
ignorables'. However, even this is
not a complete statement.

131-C9, except for
second 'Level N'.
Reword and change to
as 'All Level N weights
in Level N-1 ignorables
must be different to all
Level N weights in
Level N-2 and lower
ignorables.'

For all but the level
inserted for alternate
weighting, the
difference relationship
must be 'strictly greater
than'. For the level
inserted for alternative
weighting, the
difference relationship
must be 'strictly less
than'. The required
difference relationship
may be customised
level by level.

L2/12-227 contains
clearer but less
comprehensive
wording.

3.7 Cond 4
Obs. 51.
Query

For all variable collation elements
U, V, if there is a collation element
W such that U1 ≤ W1 and W1 ≤ V1,
then W is also variable.

What about IgnoreSP and DUCET
6.1.0 U+10A7F? U+10A7F has
gc = Po. The characters before
and after it in DUCET order are
U+10A7E and U+10917, which
have gc = No. Which of the three
are variable when IgnoreSP is
selected?

7 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

6.1.3
Obs. 65.
Minor

“the original is to be padded with
trailing (not leading) zeros”

Endianist language! Padding an
array of bytes with trailing zeroes
and reinterpreting as unsigned 32-
bit integer would fail
spectacularly on a little-endian
architecture.

Suggest replacing 'the
original...' by 'the
original is to be packed
into the most
significant bits first and
padded with zeroes in
the least significant
bits' (or a better
rephrasing if available).

6.1.3
Obs. 66.
Clarific-
ation

“the original is to be padded with
trailing (not leading) zeros”

An example of padding would be
helpful.

6.2
Obs. 67.
Editorial

It may be worth mentioning that
the technique of large weight
values is the basis of the
'fractional weight' scheme used by
some implementations.

6.3.1 ¶1
Obs. 69.
Grossly
misleading

“Thus all of the secondaries that
share a single primary can be
renumbered to a contiguous range
without affecting the resulting
order.”

In DUCET, all secondary weights
with a non-zero primary are 0020.

See observation on
6.3.1 ¶2.

6.4
Obs. 73.
Omiss-ion

“x → 010116 + (x / 255)*256 + (x %
255) “

A similar trick is needed for the
identical level (and even more so
for DUCET 4th level weights),
where values range from 0000 to
0x10FFFF. Simply appending
UTF-8 will not work because
U+0000 must be supported in
strings.

6.5.2
Obs. 81.
Editorial

(Compatibility Decompositions) Section 6.5.2 belongs better in
Section 7, especially as
Section 6.5 is entitled 'avoiding
normalisation', but this section is
talking about using compatibility
decompositions!

6.5.2
Obs. 82.
Editorial

(Compatibility Decompositions) There should be a cross-reference
at Section 6.3.3 Para 2 for
deriving weights via compatibility
decomposition. Alternatively, just
move Section 6.5.2 to Section
6.3.3 as suggested in UTS#10
6.2.0 Draft 4 notes.

8 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

6.5.2 Step 3
Obs. 86.
Enhance-
ment

It may be worth noting that
categorisations as small or upper
case can be adequately extracted
from the collation elements of the
decomposition.

6.5.2 End
Obs. 88.
Minor

“Some characters cannot be
computed in this way”

May be worth mentioning that this
approach fails for all of the 34
decompositions to two or more
characters starting with SPACE.

6.5.2 End
Obs. 89.
Enhance-
ment

“Some characters cannot be
computed in this way”

Is it worth noting here that for
CLDR root, but not DUCET, the
derivation fails for U+20A8 and
U+FDFC so that they may be
treated as currency symbols?

6.9.1 ¶4
Obs. 137.
Error

“To find the collation grapheme
cluster boundaries in a string...”

Normalisation issues remain. Is
<U+0F75 TIBETAN VOWEL
SIGN UU, U+0F7A TIBETAN
VOWEL SIGN E> one cluster or
two?

6.9.1 ¶5
Obs. 94.
External
error

For information on the use of
collation graphemes, see [UTS18].

The code in UTS#18 Annex B
does not appear to be able to
handle interleaving discontiguous
grapheme clusters.

Updating UTS#18
Version 15 Annex B to
UTS#10 Version 6.2.0
Section 6.9 should
resolve the matter.

7.1.1 ¶1
Obs. 95.
Query

“Implementations of the Unicode
Collation Algorithm may choose to
treat such ill-formed code unit
sequences as error conditions”

How are such implementations to
pass the conformance tests? (A
modification to the test rubric is
promised, but no draft has yet
been published.)

7.1.1 ¶2
Obs. 96.
Query

“The first approach is to weight
each maximal ill-formed
subsequence as if it were U+FFFD
REPLACEMENT CHARACTER.”

How are applications that convert
them to U+FFFD to pass the
conformance tests? (A
modification to the test rubric is
promised, but no draft has yet
been published.)

7.1.1 ¶2
Obs. 97.
Correction

“A second approach, only
applicable to UTF-16 strings, is to
generate an implicit weight for any
unpaired surrogate code point as if it
were an unassigned code point,
using the method of Section 7.1.3,
Implicit Weights.”

The second approach is open to all
three encodings, not just to UTF-
16.

Remove 'only
applicable to UTF-16
strings'

9 of 15

http://www.unicode.org/reports/tr10/tr10-24.html#Implicit_Weights%23Implicit_Weights
http://www.unicode.org/reports/tr10/tr10-24.html#UTS18%23UTS18

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

7.1.1 ¶2
Obs. 98.
Remark

The second approach is required
to pass the conformance tests.
This comes perilously close to
treating them as valid Unicode
characters!

7.1.3 ¶5
Obs. 100.
Error

“They are set to a non-zero value in
the first collation element and zero
in the second.”

This conflicts with Step 4 in
Section 7.3. For compatibility
with the allkeys.txt and
allkeys_CLDR.txt, the fourth
weight corresponding to the fourth
weight in the DUCET tables needs
to have the same non-zero value
for both elements.

7.1.3 ¶5
Obs. 101.
Omission

Apart from the DUCET 4th
weight, the non-zero value must,
however, satisfy well-formedness
condition 2 of Section 3.7.

7.1.3 ¶6.
Obs. 102.
Minor

“Unassigned code points are also
excluded from these first two BASE
values.”

Excluding unassigned code points
from the CJK Ideograph
Extensions is distinctly
programmer-hostile. What useful
function does it serve?

Table 8
Row 2
Obs. 104.
Improve-
ment

Unified_Ideograph=True AND
((Block=CJK_Unified_Ideograph)
OR
(Block=CJK_Compatibility_Ideogra
phs))

Actually, the weights for assigned
characters in the CJK
Compatibility Ideographs block
are all recorded in the DUCET.

7.1.3 ¶7
Obs. 105.
Improve-
ment

“the explicit primary weights must
be shifted so that none are between
each of the BASE values and BASE
+ 34.”

Should remark that the weights of
characters sharing values with the
CJK ideographs must also be
shifted along with the implicit
weights.

7.2
Obs. 106.
Minor

The distinction between 'None'
and '<compat>' is not rigidly
followed. Some non-compatibility
decompositions are weighted as
though they were decompositions
in the obvious fashion. This
should be documented.

For example, U+1F150
NEGATIVE CIRCLED LATIN
CAPITAL LETTER A, weighted
as though <circle> 0041,
 U+1F170 NEGATIVE
SQUARED LATIN CAPITAL
LETTER A, weighted as though

10 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

<square> 0041, U+1F197
SQUARED OK weighted as
though <square> 004F 004B and
U+1F1FB REGIONAL
INDICATOR SYMBOL LETTER
V weighted as though <compat>
0056.

In the reverse direction, we have
examples where all hint of a
compatibility decomposition is
ignored, such as U+0F77
TIBETAN VOWEL SIGN
VOCALIC RR <compat> 0FB2
0F81, which has tertiary weight 2.

7.2
Obs. 107.
Enhance-
ment

'h' has a very wide range of
decompositions to it – it might be
worth using it for samples.

7.2
Obs. 108.
Minor

Some tertiary weights are far from
obvious. See the table at the foot
of this review.

7.2
Obs. 109.
Error

“<small> small hiragana”
Decomposition type should be
NONE for small hiragana.
Alternatively, it should be made
clear that 000F is used for any
small non-Hiragana characters,
e.g. much of the Small form
Variants block.

7.3
Obs. 110.
Error

There are many strange deviations
in both DUCET and CLDR root.
They were reported together
separately to Unicode as
L2/12-223.

7.3 ¶1
Obs. 111.
Omission

The assignment of fourth-level
weights in the Default Unicode
Collation Element Table is done as
follows:

This does not explain how to
assign weights to contractions.
While it may be deduced for most
contractions from Rule 2 and the
principle of canonical
equivalence, there are some
contractions that are not covered.

There is no obvious rule for vowel
swapping for the Indic scripts with
user-friendly storage order.
Fortunately, at least at Version
6.1.0, the 4th level weights are

The following rules
cover many cases:
1) If the key is
canonically equivalent
to a character, that
character is used as the
4th weight.
2) If the key is
canonically equivalent
to the compatibility
decomposition of
character, and the key
and the character have

11 of 15

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

irrelevant for the sorting of the
characters employed, and UCA-
compliant searching is also
unaffected by their values.

the same weights for
the first three levels,
the character is used as
the 4th weight. This
gives the DUCET 4th
weights for:
004C 0387
006C 0387
0E4D 0E32
0ECD 0EB2.
0FB2 0F71 0F80
0FB3 0F71 0F80

7.3 Step 2
Obs. 112.
Error

If a character is weighted as an
expansion based on a compatibility
decomposition or a synthetic
expansion, then assign the code
point of the character itself as the
fourth-level weight for each element
of the expansion.

This does not work for CJK
characters in DUCET 6.1.0. For
all compatibility decompositions
yielding a character in a CJK
block, the fourth level weight is
the code point of that CJK block
character. Thus U+2F17
KANGXI RADICAL TEN and
U+3038 HANGZHOU
NUMERAL TEN are quaternary
equal in allkeys.txt. By contrast,
the process is followed in the
generation of allkeys_CLDR.txt,
so there they are only tertiary
equal.

8 (intro)
Obs. 114.
Editorial

The text in Section 8 before
Section 8.1 is too long, and it
contains two numbered lists,
which further makes referencing
difficult.

8 ¶7
Obs. 117.
Clarific-
ation

So in a language where "ch" is a
contraction, "bac" would not match
in "bach" (given the proper user
setting).

The conclusion all depends on the
definition of grapheme clusters.

Add 'and grapheme
cluster definition' to
'user setting'.

8 ¶13
Obs. 120.
Clarific-
ation

“Whole Word Search, as defined in
[UAX29].”

Should alert user here, rather than
only in UAX29, that this may
depend on further customisation
or even, as for Thai, extensive
dictionaries.

12 of 15

http://www.unicode.org/reports/tr10/tr10-24.html#UAX29%23UAX29

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

8 ¶14
Obs. 121.
Booby-trap
for users

“The parameter match-
boundaries=whole-character
requires that the start and end of a
match each be on a grapheme
boundary.”

Could add a note that in general
the definition of grapheme
boundaries will be tailored, and
should be consistent with the
collation. Above all, do not leave
the impression that UAX29 gives
a complete definition of grapheme
clusters.

8 ¶17
Obs. 123.
Query

DS2. The pattern string P has a
match at Q[s,e] according to
collation C if C generates the same
sort key for P as for Q[s,e], and the
offsets s and e meet the boundary
condition B. One can also say P has
a match in Q according to C.

So in Danish, do both “å” and “ä”
have a match in “aa\u0308”? Are
there two Danish matches for “å”
in “baaab”?

8 ¶18
Obs. 124.
English

“canonical match at Q[s,e]”
That should be 'in Q[s,e]', not 'at
Q[s,e]'. Compare the preposition
use in the previous paragraphs,
where 'at' indicates that the whole
string matches and 'in' indicates
that a substring matches. For
example, one should say “cat” has
a canonical match in “catalogue”,
not at “catalogue”.

8 ¶21
Obs. 126.
Error

“Note that Whole Word Search as
defined in [UAX29] is grapheme
complete.”

Sanskrit word boundaries often
cross not only aksharas, but even
split vowel marks! Final Pali
anusvara can appear as the initial
nasal in a cluster with the first
consonant of the next word. I can
find nothing that makes whole
word search grapheme-complete.

The statement is true if one only
uses default word boundary and
legacy or extended grapheme
clusters, but would then be
meaningless for most SE Asian
scripts, as they cannot use default
word boundaries.

13 of 15

http://www.unicode.org/reports/tr10/tr10-24.html#UAX29%23UAX29

Section
Obs. no
Nature

Text (or Topic) Observation Ameliorating Actions

8 ¶29
Obs. 130.
Quibble

If, for example, the condition is
Whole Grapheme, then the matches
are restricted to "abc¸|-°|d", thus
discarding match positions that
would not be on a grapheme cluster
boundary. In this case the minimal
match would be "abc¸|-°d"

Grapheme clusters under the
tailoring don’t have to be default
grapheme clusters

8.2 (intro)
Obs. 133.
Error

“a character is unmarked if it has the
lowest collation weight for that
level”

The definition of unmarked is
wrong. In DUCET, the lowest
tertiary weight is 2, but no
primary element for a BMP kana
'letter' has a weight of 2!

We need a definition
based on collation
elements with the same
primary for the
secondary weight
indicating
unmarkedness, and
possibly based on same
primary and secondary
for the tertiary weight.
The definition of the
latter may have to be
worded very carefully;
in particular, it must
encompass the
exceptional treatment
of kana.

14 of 15

Unusual Tertiary Weight Assignments

Code-
point

General
Category

Decom-
position

General Category
of First Character
of Decomposition

Actual
Tertiary
Weights

Expected
Tertiary
Weight

Name

309D Lm NONE N/A 02 0E HIRAGANA ITERATION MARK

30FD Lm NONE N/A 02 11 KATAKANA ITERATION MARK

1D2D Lm super Lu 14 14 1F 1D 1D 1F MODIFIER LETTER CAPITAL AE

214D So NONE N/A 0A 04 1F 02 AKTIESELSKAB

210F Ll font Ll 02 02 05 PLANCK CONSTANT OVER TWO PI

A7F8 Lm super Lu 14 14 1D 14 MODIFIER LETTER CAPITAL H WITH
STROKE

1D4E Lm NONE N/A 14 02 MODIFIER LETTER SMALL TURNED I

1F16A So super Lu 14 14 1D 1D RAISED MC SIGN

1F16B So super Lu 14 14 1D 1D RAISED MD SIGN

2120 So super Lu 14 14 1D 1D SERVICE MARK

2122 So super Lu 14 14 1D 1D TRADE MARK SIGN

A728 Lu NONE N/A 0A 04 08 LATIN CAPITAL LETTER TZ

037A Lm compat Zs 04 02 GREEK YPOGEGRAMMENI

03CF Lu NONE N/A 0A 04 1F 08 GREEK CAPITAL KAI SYMBOL

2D6F Lm super Lo 02 14 TIFINAGH MODIFIER LETTER
LABIALIZATION MARK

1A59 Mn NONE N/A 04 19 TAI THAM CONSONANT SIGN FINAL
NGA

1B000 Lo NONE N/A 02 11 KATAKANA LETTER ARCHAIC E

1B001 Lo NONE N/A 02 0E HIRAGANA LETTER ARCHAIC YE

31B3 Lo NONE N/A 16 16 2 BOPOMOFO LETTER INNN

U+214D and U+A728 are only peculiar in that the weights can only be deduced from the character shapes, and
cannot be deduced from their Unicode properties. It accords perfectly well with its appearance, and is thus similar
to many other cases with weights corresponding to a non-standard <compat> decomposition.

U+1D4E is arguably not unusual – perhaps the tertiary weight 0x14 should be deduced from the 'modifier' in its
name.

15 of 15

	Unusual Tertiary Weight Assignments

