
 Technical Reports

Proposed Update

Unicode Standard Annex #44

Version Unicode 6.3.0 (draft 3)
Editors Mark Davis (markdavis@google.com) and Ken Whistler

(ken@unicode.org)
Date 2013-04-25
This Version http://www.unicode.org/reports/tr44/tr44-11.html
Previous
Version

http://www.unicode.org/reports/tr44/tr44-10.html

Latest Version http://www.unicode.org/reports/tr44/
Latest
Proposed
Update

http://www.unicode.org/reports/tr44/proposed.html

Revision 11

Summary

This annex provides the core documentation for the Unicode Character Database
(UCD). It describes the layout and organization of the Unicode Character Database
and how it specifies the formal definitions of the Unicode Character Properties.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode Consortium.
This is not a stable document; it is inappropriate to cite this document as other than a work in
progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number of
a UAX document corresponds to the version of the Unicode Standard of which it forms
a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].

rick@unicode.org
Text Box
L2/13-097

Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version of
the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see
[Reports]. For more information about versions of the Unicode Standard, see [Versions]. For
any errata which may apply to this annex, see [Errata].

Contents

1 Introduction
2 Conformance

2.1 Simple and Derived Properties
2.2 Use of Default Values
2.3 Stability of Releases

3 Documentation
3.1 Character Properties in the Standard
3.2 The Character Property Model
3.3 NamesList.html
3.4 StandardizedVariants.html
3.5 Unihan and UAX #38
3.6 U-Source Ideographs and UAX #45
3.7 Data File Comments
3.8 Obsolete Documentation Files

4 UCD Files
4.1 Directory Structure
4.2 File Format Conventions
4.3 File List
4.4 Zipped Files
4.5 UCD in XML

5 Properties
5.1 Property Index
5.2 About the Property Table
5.3 Property Definitions
5.4 Derived Extracted Properties
5.5 Contributory Properties
5.6 Case and Case Mapping
5.7 Property Value Lists
5.8 Property and Property Value Aliases
5.9 Matching Rules
5.10 Invariants
5.11 Validation
5.12 Deprecation

6 Test Files
6.1 NormalizationTest.txt
6.2 Segmentation Test Files and Documentation
6.3 Bidi Test Files

7 UCD Change History
Acknowledgments
References
Modifications

Note: the information in this annex is not intended as an exhaustive description of the
use and interpretation of Unicode character properties and behavior. It must be used in
conjunction with the data in the other files in the Unicode Character Database, and

relies on the notation and definitions supplied in The Unicode Standard. All chapter
references are to Version 6.3.0 of the standard unless otherwise indicated.

1 Introduction

The Unicode Standard is far more than a simple encoding of characters. The standard also
associates a rich set of semantics with each encoded character—properties that are
required for interoperability and correct behavior in implementations, as well as for Unicode
conformance. These semantics are cataloged in the Unicode Character Database (UCD), a
collection of data files which contain the Unicode character code points and character
names. The data files define the Unicode character properties and mappings between
Unicode characters (such as case mappings).

This annex describes the UCD and provides a guide to the various documentation files
associated with it. Additional information about character properties and their use is
contained in the Unicode Standard and its annexes. In particular, implementers should
familiarize themselves with the formal definitions and conformance requirements for
properties detailed in Section 3.5, Properties in [Unicode] and with the material in Chapter 4,
Character Properties in [Unicode].

The latest version of the UCD is always located on the Unicode Web site at:

http://www.unicode.org/Public/UNIDATA/

The specific files for the UCD associated with this version of the Unicode Standard (6.3.0)
are located at:

http://www.unicode.org/Public/6.3.0/

Stable, archived versions of the UCD associated with all earlier versions of the Unicode
Standard can be accessed from:

http://www.unicode.org/ucd/

For a description of the changes in the UCD for this version and earlier versions, see the
UCD Change History.

2 Conformance

The Unicode Character Database is an integral part of the Unicode Standard.

The UCD contains normative property and mapping information required for implementation
of various Unicode algorithms such as the Unicode Bidirectional Algorithm, Unicode
Normalization, and Unicode Casefolding. The data files also contain additional informative
and provisional character property information.

Each specification of a Unicode algorithm, whether specified in the text of [Unicode] or in
one of the Unicode Standard Annexes, designates which data file(s) in the UCD are needed
to provide normative property information required by that algorithm.

For information on the meaning and application of the terms, normative, informative, and
provisional, see Section 3.5, Properties in [Unicode].

For information about the applicable terms of use for the UCD, see the Unicode Terms of
Use.

2.1 Simple and Derived Properties

Some character properties in the UCD are simple properties. This status has no bearing on
whether or not the properties are normative, but merely indicates that their values are not
derived from some combination of other properties.

Other character properties are derived. This means that their values are derived by rule from
some other combination of properties. Generally such rules are stated as set operations, and
may or may not include explicit exception lists for individual characters.

Certain simple properties are defined merely to make the statement of the rule defining a
derived property more compact or general. Such properties are known as contributory
properties. Sometimes these contributory properties are defined to encapsulate the
messiness inherent in exception lists. At other times, a contributory property may be defined
to help stabilize the definition of an important derived property which is subject to stability
guarantees.

Derived character properties are not considered second-class citizens among Unicode
character properties. They are defined to make implementation of important algorithms
easier to state. Included among the first-class derived properties important for such
implementations are: Uppercase, Lowercase, XID_Start, XID_Continue, Math, and
Default_Ignorable_Code_Point, all defined in DerivedCoreProperties.txt, as well as derived
properties for the optimization of normalization, defined in DerivedNormalizationProps.txt.

Implementations should simply use the derived properties, and should not try to rederive
them from lists of simple properties and collections of rules, because of the chances for error
and divergence when doing so.

Definitions of property derivations are provided for information only, typically in comment
fields in the data files. Such definitions may be refactored, refined, or corrected over time.
These definitions are presented in a modified set notation, expressed as set additions and/or
subtractions of various other property values. For example:

Derived Property: ID_Start
Characters that can start an identifier.
Generated from:
Lu + Ll + Lt + Lm + Lo + Nl
+ Other_ID_Start
- Pattern_Syntax
- Pattern_White_Space

When interpreting definitions of derived properties of this sort, keep in mind that set
subtraction is not a commutative operation. Thus "Lo + Lm - Pattern_Syntax" defines a
different set than "Lo - Pattern_Syntax + Lm". The order of property set operations stated in
the definitions affects the composition of the derived set.

If there are any cases of mismatches between the definition of a derived property as listed in
DerivedCoreProperties.txt or similar data files in the UCD, and the definition of a derived
property as a set definition rule, the explicit listing in the data file should always be taken as
the normative definition of the property. As described in Stability of Releases the property
listing in the data files for any given version of the standard will never change for that

version.

2.2 Use of Default Values

Unicode character properties have default values. Default values are the value or values that
a character property takes for an unassigned code point, or in some instances, for
designated subranges of code points, whether assigned or unassigned. For example, the
default value of a binary Unicode character property is always "N".

For the formal discussion of default values, see D26 in Section 3.5, Properties in [Unicode].
For conventions related to default values in various data files of the UCD and for
documentation regarding the particular default values of individual Unicode character
properties, see Default Values.

2.3 Stability of Releases

Just as for the Unicode Standard as a whole, each version of the UCD, once published, is
absolutely stable and will never change. Each released version is archived in a directory on
the Unicode Web site, with a directory number associated with that version. URLs pointing to
that version's directory are also stable and will be maintained in perpetuity.

Any errors discovered for a released version of the UCD are noted in [Errata], and if
appropriate will be corrected in a subsequent version of the UCD.

Stability guarantees constraining how Unicode character properties can (or cannot) change
between releases of the UCD are documented in the Unicode Consortium Stability Policies
[Stability].

2.3.1 Changes to Properties Between Releases

Updates to character properties in the Unicode Character Database may be required for any
of three reasons:

To cover new characters added to the standard1.

To add new character properties to the standard2.

To change the assigned values for a property for some characters already in the
standard

3.

While the Unicode Consortium endeavors to keep the values of all character properties as
stable as possible between versions, occasionally circumstances may arise which require
changing them. In particular, as less well-documented scripts, such as those for minority
languages, or historic scripts are added to the standard, the exact character properties and
behavior may not fully be known when the script is first encoded. The properties for some of
these characters may change as further information becomes available or as
implementations turn up problems in the initial property assignments. As far as possible, any
readjustment of property values based on growing implementation experience is made to be
compatible with established practice.

All changes to normative or informative property values, to the status or type of a property, or
to property or property value aliases, must be approved by an explicit decision taken by the
Unicode Technical Committee. Changes to provisional property values are subject to less
stringent oversight.

Occasionally, a character property value is changed to prevent incorrect generalizations
about a character's use based on its nominal property values. For example, U+200B ZERO
WIDTH SPACE was originally classified as a space character (General_Category=Zs), but it
was reclassified as a Format character (General_Category=Cf) to clearly distinguish it from
space characters in its function as a format control for line breaking.

There is no guarantee that a particular value for an enumerated property will actually have
characters associated with it. Also, because of changes in property value assignments
between versions of the standard, a property value that once had characters associated with
it may later have none. Such conditions and changes are rare, but implementations must not
assume that all property values are associated with non-null sets of characters. For
example, currently the special Script property value Katakana_Or_Hiragana has no
characters associated with it.

2.3.2 Obsolete Properties

In some instances an entire property may become obsolete. For example, the
ISO_Comment property was once used to keep track of annotations for characters used in
the production of name lists for ISO/IEC 10646 code charts. As of Unicode 5.2.0 that
property became obsolete, and its value is now defaulted to the null string for all Unicode
code points.

An obsolete property is never removed from the UCD.

2.3.3 Deprecated Properties

Occasionally an obsolete property may also be formally deprecated. This is an indication
that the property is no longer recommended for use, perhaps because its original intent has
been replaced by another property or because its specification was somehow defective. See
also the general discussion of Deprecation.

A deprecated property is never removed from the UCD.

Table 1 lists the properties that are formally deprecated as of this version of the Unicode
Standard.

Table 1. Deprecated Properties

Property Name Deprecation
Version

Reason

Grapheme_Link 5.0.0 Duplication of ccc=9
Hyphen 6.0.0 Supplanted by Line_Break property values
ISO_Comment 6.0.0 No longer needed for chart generation;

otherwise not useful
Expands_On_NFC 6.0.0 Less useful than UTF-specific calculations
Expands_On_NFD 6.0.0 Less useful than UTF-specific calculations
Expands_On_NFKC 6.0.0 Less useful than UTF-specific calculations
Expands_On_NFKD 6.0.0 Less useful than UTF-specific calculations

FC_NFKC_Closure 6.0.0 Supplanted in usage by NFKC_Casefold;
otherwise not useful

2.3.4 Stabilized Properties

Another possibility is that an obsolete property may be declared to be stabilized. Such a
determination does not indicate that the property should or should not be used; instead it is a
declaration that the UTC will no longer actively maintain the property or extend it for newly
encoded characters. The property values of a stabilized property are frozen as of a particular
release of the standard.

A stabilized property is never removed from the UCD.

Table 2 lists the properties that are formally stabilized as of this version of the Unicode
Standard.

Table 2. Stabilized Properties

Property Name Stabilization Version
Hyphen 4.0.0
ISO_Comment 6.0.0

3 Documentation

This annex provides the core documentation for the UCD, but additional information about
character properties is available in other parts of the standard and in additional
documentation files contained within the UCD.

3.1 Character Properties in the Standard

The formal definitions related to character properties used by the Unicode Standard are
documented in Section 3.5, Properties in [Unicode]. Understanding those definitions and
related terminology is essential to the appropriate use of Unicode character properties.

See Section 4.1, Unicode Character Database, in [Unicode] for a general discussion of the
UCD and its use in defining properties. The rest of Chapter 4 provides important
explanations regarding the meaning and use of various normative character properties.

3.2 The Character Property Model

For a general discussion of the property model which underlies the definitions associated
with the UCD, see Unicode Technical Report #23, "The Unicode Character Property Model"
[UTR23]. That technical report is informative, but over the years various content from it has
been incorporated into normative portions of the Unicode Standard, particularly for the
definitions in Chapter 3.

UTR #23 also discusses string functions and their relation to character properties.

3.3 NamesList.html

NamesList.html formally describes the format of the NamesList.txt data file in BNF. That data
file is used to drive the printing of the Unicode code charts and names list. See also Section

17.1, Character Names List, in [Unicode] for a detailed discussion of the conventions used in
the Unicode names list as formatted for printing.

3.4 StandardizedVariants.html

StandardizedVariants.html documents standardized variants, showing a representative glyph
for each. It is closely tied to the data file, StandardizedVariants.txt, which defines those
sequences normatively.

3.5 Unihan and UAX #38

Unicode Standard Annex #38, "Unicode Han Database (Unihan)" [UAX38] describes the
format and content of the Unihan Database, which collects together all property information
for CJK Unified Ideographs. That annex also specifies in detail which of the Unihan
character properties are normative, informative, or provisional.

The Unihan Database contains extensive and detailed mapping information for CJK Unified
Ideographs encoded in the Unicode Standard, but it is aimed only at those ideographs, not
at other characters used in the East Asian context in general. In contrast, East Asian legacy
character sets, including important commercial and national character set standards, contain
many non-CJK characters. As a result, the Unihan Database must be supplemented from
other sources to establish mapping tables for those character sets.

The majority of the content of the Unihan Database is released for each version of the
Unicode Standard as a collection of Unihan data files in the UCD. Because of their large
size, these data files are released only as a zipped file, Unihan.zip. The details of the
particular data files in Unihan.zip and the CJK properties each one contains are provided in
[UAX38]. For versions of the UCD prior to Version 5.2.0, all of the CJK properties were listed
together in a very large, single file, Unihan.txt.

3.6 U-Source Ideographs and UAX #45

Unicode Standard Annex #45, "Unicode Han Database (Unihan)" [UAX45] describes the
format of USourceData.txt, which lists all of the information for U-Source ideographs.

3.7 Data File Comments

In addition to the specific documentation files for the UCD, individual data files often contain
extensive header comments describing their content and any special conventions used in
the data.

In some instances, individual property definition sections also contain comments with
information about how the property may be derived. Such comments are informative; while
they are intended to convey the intent of the derivation, in case of any mismatch between a
statement of a derivation in a comment field and the actual listing of the derived property, the
list is considered to be definitive. See Simple and Derived Properties.

3.8 Obsolete Documentation Files

UCD.html was formerly the primary documentation file for the UCD. As of Version 5.2.0, its
content has been wholly incorporated into this document.

Unihan.html was formerly the primary documentation file for the Unihan Database. As of
Version 5.1.0, its content has been wholly incorporated into [UAX38].

Versions of the Unicode Standard prior to Version 4.0.0 contained small, focused
documentation files, UnicodeCharacterDatabase.html, PropList.html, and
DerivedProperties.html, which were later consolidated into UCD.html.

4 UCD Files

The heart of the UCD consists of the data files themselves. This section describes the
directory structure for the UCD, the format conventions for the data files, and provides
documentation for data files not documented elsewhere in this annex.

4.1 Directory Structure

Each version of the UCD is released in a separate, numbered directory under the Public
directory on the Unicode Web site. The content of that directory is complete for that release.
It is also stable—once released, it will be archived permanently in that directory, unchanged,
at a stable URL.

The specific files for the UCD associated with this version of the Unicode Standard (6.3.0)
are located at:

http://www.unicode.org/Public/6.3.0/

4.1.1 UCD Files Proper

The UCD proper is located in the ucd subdirectory of the numbered version directory. That
directory contains all of the documentation files and most of the data files for the UCD,
including some data files for derived properties.

Although all UCD data files are version-specific for a release and most contain internal date
and version stamps, the file names of the released data files do not differ from version to
version. When linking to a version-specific data file, the version will be indicated by the
version number of the directory for the release.

All files for derived extracted properties are in the extracted subdirectory of the ucd
subdirectory. See Derived Extracted Properties for documentation regarding those data files
and their content.

A number of auxiliary properties are specified in files in the auxiliary subdirectory of the ucd
subdirectory. In Version 6.3.0 it contains data files specifying properties associated with
Unicode Standard Annex #29, "Unicode Text Segmentation" [UAX29] and with Unicode
Standard Annex #14, "Unicode Line Breaking Algorithm" [UAX14], as well as test data for
those algorithms. See Segmentation Test Files and Documentation for more information
about the test data.

4.1.2 UCD XML Files

The XML version of the UCD is located in the ucdxml subdirectory of the numbered version
directory. See the UCD in XML for more details.

4.1.3 Charts

The code charts specific to a version of Unicode are archived as a single large pdf file in the
charts subdirectory of the numbered version directory. See the readme.txt in that

subdirectory and the general web page explaining the Unicode Code Charts for more details.

4.1.4 Beta Review Considerations

Prior to the formal release for any particular version of the UCD, a beta review is conducted.
The beta review files are located in the same directory that is later used for the released
UCD, but during the beta review period, the subdirectory structure differs somewhat and may
contain temporary files, including documentation of diffs between deltas for the beta review.
Also, during the beta review, all data file names are suffixed with version numbers and delta
numbers. So a typical file name during beta review may be "PropList-5.2.0d13.txt" instead of
the finally released "PropList.txt".

Notices contained in a ReadMe.txt file in the UCD directory during the beta review period
also make it clear that that directory contains preliminary material under review, rather than a
final, stable release.

4.1.5 File Directory Differences for Early Releases

The UCD in XML was introduced in Version 5.1.0, so UCD directories prior to that do not
contain the ucdxml subdirectory.

UCD directories prior to Version 4.1.0 do not contain the auxiliary subdirectory.

UCD directories prior to Version 3.2.0 do not contain the extracted subdirectory.

The general structure of the file directory for a released version of the UCD described above
applies to Versions 4.1.0 and later. Prior to Version 4.1.0, versions of the UCD were not
self-contained, complete sets of data files for that version, but instead only contained any
new data files or any data files which had changed since the prior release.

Because of this, the property files for a given version prior to Version 4.1.0 can be spread
over several directories. Consult the component listings at Enumerated Versions to find out
which files in which directories comprise a complete set of data files for that version.

The directory naming conventions and the file naming conventions also differed prior to
Version 4.1.0. So, for example, Version 4.0.0 of the UCD is contained in a directory named
4.0-Update, and Version 4.0.1 of the UCD in a directory named 4.0-Update1. Furthermore,
for these earlier versions, the data file names do contain explicit version numbers.

4.2 File Format Conventions

Files in the UCD use the format conventions described in this section, unless otherwise
specified.

4.2.1 Data Fields

Each line of data consists of fields separated by semicolons. The fields are numbered
starting with zero.

The first field (0) of each line in the Unicode Character Database files represents a
code point or range. The remaining fields (1..n) are properties associated with that
code point.

Leading and trailing spaces within a field are not significant. However, no leading or
trailing spaces are allowed in any field of UnicodeData.txt.

The Unihan data files in the UCD have a separate format, using tab characters instead
of semicolons to separate fields. See [UAX38] for the detailed specification of the
format of the Unihan data files.

4.2.2 Code Points and Sequences

Code points are expressed as hexadecimal numbers with four to six digits. They are
written without the "U+" prefix in all data files except the Unihan data files. The Unihan
data files use the "U+" prefix for all Unicode code points, to distinguish them from other
decimal and hexadecimal numerical references occurring in their data fields.

When a data field contains a sequence of code points, spaces separate the code
points.

4.2.3 Code Point Ranges

A range of code points is specified by the form "X..Y".

Each code point in a range has the associated property value specified on a data file.
For example (from Blocks.txt):

0000..007F; Basic Latin
0080..00FF; Latin-1 Supplement

For backward compatibility, ranges in the file UnicodeData.txt are specified by entries
for the start and end characters of the range, rather than by the form "X..Y". The start
character is indicated by a range identifier, followed by a comma and the string "First",
in angle brackets. This entry takes the place of a regular character name in field 1 for
that line. The end character is indicated on the next line with the same range identifier,
followed by a comma and the string "Last", in angle brackets:

4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
9FCC;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;

For character ranges using this convention, the names of all characters in the range
are algorithmically derivable. See Section 4.8, Name—Normative in [Unicode] for more
information on derivation of character names for such ranges.

4.2.4 Comments

U+0023 NUMBER SIGN ("#") is used to indicate comments: all characters from the
number sign to the end of the line are considered part of the comment, and are
disregarded when parsing data.

In many files, the comments on data lines use a common format, as illustrated here
(from Scripts.txt):

09B2 ; Bengali # Lo BENGALI LETTER LA

The first part of a comment using this common format is the General_Category value,
provided for information. This is followed by the character name for the code point in
the first field (0).

The printing of the General_Category value is suppressed in instances where it would

be redundant, as for DerivedGeneralCategory.txt, in which the value of the property
value in the data field is already the General_Category value.

The symbol "L&" indicates characters of General_Category Lu, Ll, or Lt (uppercase,
lowercase, or titlecase letter). For example:

0386 ; Greek # L& GREEK CAPITAL LETTER ALPHA WITH TONOS

L& as used in these comments is an alias for the derived LC value for the
General_Category property, as documented in PropertyValueAliases.txt.

When the data line contains a range of code points, this common format for a comment
also indicates a range of character names, separated by "..", as illustrated here (from
DerivedNumericType.txt):

00BC..00BE ; Numeric # No [3] VULGAR FRACTION ONE QUARTER..VULGAR FRACTION THREE QUA

Normally, consecutive characters with the same property value would be represented
by a single code point range. In data files using this comment convention, such ranges
are subdivided so that all characters in a range also have the same General_Category
value (or LC). While this convention results in more ranges than are strictly necessary,
it makes the contents of the ranges clearer.

When a code point range occurs, the number of items in the range is included in the
comment (in square brackets), immediately following the General_Category value.

The comments are purely informational, and may change format or be omitted in the
future. They should not be parsed for content.

4.2.5 Code Point Labels

Surrogate code points, private-use characters, control codes, noncharacters, and
unassigned code points have no names. When such code points are listed in the data
files, for example to list their General_Category values, the comments use code point
labels instead of character names. For example (from DerivedCoreProperties.txt):

2065..2069 ; Default_Ignorable_Code_Point # Cn [5] <reserved-2065>..<reserved-2069>

2065 ; Default_Ignorable_Code_Point # Cn <reserved-2065>

Code point labels use one of the tags as documented in Section 4.8,
Name—Normative in [Unicode] and as shown in Table 3, followed by "-" and the code
point expressed in hexadecimal. The entire label is then enclosed in angle brackets.

Table 3. Code Point Label Tags

Tag General_Category Note
reserved Cn Noncharacter_Code_Point=F
noncharacter Cn Noncharacter_Code_Point=T
control Cc
private-use Co
surrogate Cs

4.2.6 Multiple Properties in One Data File

When a file contains the specification for multiple properties, the second field specifies
the name of the property and the third field specifies the property value. For example
(from DerivedNormalizationProps.txt):

03D2 ; FC_NFKC; 03C5 # L& GREEK UPSILON WITH HOOK SYMBOL
03D3 ; FC_NFKC; 03CD # L& GREEK UPSILON WITH ACUTE AND HOOK SYMBOL

4.2.7 Binary Property Values

For binary properties, the second field specifies the name of the applicable property,
with the implied value of the property being "True". Only the ranges of characters with
the binary property value of "Y" (= True) are listed. For example (from PropList.txt):

1680 ; White_Space # Zs OGHAM SPACE MARK
180E ; White_Space # Zs MONGOLIAN VOWEL SEPARATOR
2000..200A ; White_Space # Zs [11] EN QUAD..HAIR SPACE

4.2.8 Multiple Values for Properties

When a data file defines a property which may take multiple values for a single code
point, the multiple values are expressed in a space-delimited list. For example (from
ScriptExtensions.txt):

0640 ; Arab Mand Syrc # Lm ARABIC TATWEEL

In some cases—but not all—the order of multiple elements in a space-delimited list
may be significant. When the order of multiple elements is significant, it is documented
along with the property itself. For example (from Unihan_Readings.txt), for the tag
kMandarin, when there are two values for a code point, the first value is used to
indicate a preferred pronunciation for zh-Hans (CN) and the second a preferred
pronuncation for zh-Hant (TW).

For further discussion, see Section 5.7.6 Properties Whose Values Are Sets of Values.

4.2.9 Default Values

Entries for a code point may be omitted in a data file if the code point has a default
value for the property in question.

For string properties, including the definition of foldings, the default value is the code
point of the character itself.

For miscellaneous properties which take strings as values, such as the Unicode Name
property, the default value is a null string.

For binary properties, the default value is always "N" (= False) and is always omitted.

For enumerated and catalog properties, the default value is listed in a comment. For
example (from Scripts.txt):

All code points not explicitly listed for Script
have the value Unknown (Zzzz).

A few properties of the enumerated type have multiple default values. In those cases,
comments in the file explain the code point ranges for applicable values. See also
Table 4.

Default values may are also be listed in specially formatted comment lines, using the
keyword "@missing". Parsers which extract and process these lines can
algorithmically determine the default values for all code points. For example:

@missing: 0000..10FFFF; Unknown

Because of the legacy format constraints for UnicodeData.txt, that file contains no
specific information about default values for properties. The default values for fields in
UnicodeData.txt are documented in the Default Values for Properties table Table 4
below if they cannot be derived from the general rules about default values for
properties.

The file ArabicShaping.txt is also exceptional, because it omits the listing of many
characters whose property value (jt=T) can be derived by rule. Adding an "@missing"
line to that file would result in the wrong interpretation of Joining_Type values for
omitted characters. The full explicit listing of Joining_Type values and the correct
"@missing" line for the default Joining_Type value (jt=U) can be found in the file
DerivedJoiningType.txt instead.

Default values for common catalog, enumeration, and numeric properties are listed in Table
4.

Table 4. Default Values for Properties

Property Name Default Value(s)
Age unassigned
Bidi_Class L, AL, R, BN, ET
Block No_Block
Canonical_Combining_Class Not_Reordered (= 0)
Decomposition_Type None
East_Asian_Width Neutral (= N), Wide (= W)
General_Category Cn
Line_Break Unknown (= XX), ID, PR
Numeric_Type None
Numeric_Value NaN
Script Unknown (= Zzzz)

Note that when default values are complex, taking multiple values contingent on code point
ranges or other conditions, the default values other than those specified in the "@missing"
line are explicitly listed in the relevant property file, including for any unassigned (reserved)

code point ranges. This means that a parser extracting property values from the UCD should
never encounter an ambiguous condition for which the default value of a property for a
particular code point is unclear.

Default values for the Unicode character property Bidi_Class property are complex. See
Unicode Standard Annex #9, "The Unicode Bidirectional Algorithm" [UAX9] and
DerivedBidiClass.txt for more full details.

Default values for the East_Asian_Width property are also complex. This property defaults to
Neutral for most code points, but defaults to Wide for unassigned code points in blocks
associated with CJK ideographs. See Unicode Standard Annex #11, "East Asian Width"
[UAX11] and DerivedEastAsianWidth.txt for full details.

Default values for the Line_Break property are complex. This property defaults to Unknown
for most code points, but defaults to ID for unassigned code points in blocks associated with
CJK ideographs, and to PR for unassigned code points in the Currency Symbols block. See
Unicode Standard Annex #14, "Unicode Line Breaking Algorithm" [UAX14], and
DerivedLineBreak.txt for full details.

4.2.10 Empty Fields

The data file UnicodeData.txt defines many property values in each record. When a field in a
data line for a code point is empty, that indicates that the property takes the default value for
that code point. For example:

0022;QUOTATION MARK;Po;0;ON;;;;;N;;;;;

In that data line, the empty numeric fields indicate that the value of Numeric_Value for
U+0022 is NaN and that the value of Numeric_Type is None. The empty case mapping fields
indicate that the value of Simple_Uppercase_Mapping for U+0022 takes the default value,
namely the code point itself, and so forth.

The interpretation of empty fields in other data files of the UCD differs. In the case of data
files which define string properties, the omission of an entry for a code point indicates that
the property takes the default value for that code point. However, if there is an entry for a
code point, but the property value field for that entry is empty, that indicates that the property
value is an explicit empty string (""). For example, the derived string property
NFKC_Casefold may map a code point to a sequence of code points, to a single different
code point, to the same single code point, or to no code point at all (an empty string). See
the following entries from the data file DerivedNormalizationProps.txt:

00AA ; NFKC_CF; 0061 # Lo FEMININE ORDINAL INDICATOR
00AD ; NFKC_CF; # Cf SOFT HYPHEN
00AF ; NFKC_CF; 0020 0304 # Sk MACRON

The empty field for U+00AD indicates that the property NFKC_Casefold maps SOFT
HYPHEN to an empty string. By contrast, the absence of the entry for U+00AE in the data
file indicates that the property NFKC_Casefold maps U+00AE REGISTERED SIGN to
itself—the default value.

4.2.11 Text Encoding

The data files use UTF-8. Unless otherwise noted, non-ASCII characters only appear
in comments.

The Unihan data files in the UCD make extensive use of UTF-8 in data fields. (See
[UAX38] for details.)

For legacy reasons, NamesList.txt was exceptional; it was encoded in Latin-1 prior to
Unicode 6.2. For Unicode 6.2 and later, the encoding is UTF-8. See NamesList.html.

Segmentation test data files, such as WordBreakTest.txt, make use of non-ASCII
(UTF-8) characters as delimiters for data fields.

4.2.12 Line Termination

All data files in the UCD use LF line termination (not CRLF line termination). When
copied to different systems, these line endings may be automatically changed to use
the native line termination conventions for that system. Make sure your editor (or
parser) can deal with the line termination style in the local copy of the data files.

4.2.13 Other Conventions

In some test data files, segments of the test data are distinguished by a line starting
with an "@" sign. For example (from NormalizationTest.txt):

@Part1 # Character by character test

4.2.14 Other File Formats

The data format for Unihan data files in the UCD differs from the standard format. See
the discussion of Unihan and UAX #38 earlier in this annex for more information.

The format for NamesList.txt, which documents the Unicode names list and which is
used programmatically to drive the formatting program for Unicode code charts, also
differs significantly from regular UCD data files. See NamesList.html

Index.txt is another exception. It uses a tab-delimited format, with field 0 consisting of
an index entry string, and field 1 a code point. Index.txt is used to maintain the Unicode
Character Name Index.

The various segmentation test data files make use of "#" to delimit comments, but have
distinct conventions for their data fields. See the documentation in their header
sections for details of the data field formats for those files.

The XML version of the UCD has its own file format conventions. In those files, "#" is
used to stand for the code point in algorithmically derivable character names such as
CJK UNIFIED IDEOGRAPH-4E00, so as to allow for name sharing in more compact
representations of the data. See Unicode Standard Annex #42, "Unicode Character
Database in XML" [UAX42] for details.

4.3 File List

The exact list of files associated with any particular version of the UCD is available on the
Unicode Web site by referring to the component listings at Enumerated Versions.

The majority of the data files in the UCD provide specifications of character properties for
Unicode characters. Those files and their contents are documented in detail in the Property
Definitions section below.

The data files in the extracted subdirectory constitute reformatted listings of single character
properties extracted from UnicodeData.txt or other primary data files. The reformatting is
provided to make it easier to see the particular set of characters having certain values for
enumerated properties, or to separate the statement of that property from other properties
defined together in UnicodeData.txt. These files also include explicit listings of default values
for the respective properties. These extracted, derived data files are further documented in
the Derived Extracted Properties section below.

The UCD also contains a number of test data files, whose purpose is to provide standard
test cases useful in verifying the implementation of complex Unicode algorithms. See the
Test Files section below for more documentation.

The remaining files in the Unicode Character Database do not directly specify Unicode
properties. The important ones and their functions are listed in Table 5. The Status column
indicates whether the file (and its content) is considered Normative, Informative, or
Provisional.

Table 5. Files in the UCD

File Name Reference Status Description
CJKRadicals.txt [UAX38] I List of Unified CJK Ideographs and CJK

Radicals that correspond to specific
radical numbers used in the CJK
radical stroke counts.

USourceData.txt [UAX45] N The list of formal references for
U-Source ideographs, together with
data regarding their status and
sources.

USourceGlyphs.pdf [UAX45] I A table containing a representative
glyph for each U-Source ideograph.

EmojiSources.txt Chapter 15 N Specifies source mappings to SJIS
values for emoji symbols in the
original implementations of these
symbols by Japanese
telecommunications companies.

Index.txt Chapter 17 I Index to Unicode characters, as
printed in the Unicode Standard.

NamesList.txt Chapter 17 I Names list used for production of the
code charts, derived from
UnicodeData.txt. It contains additional
annotations.

NamesList.html Chapter 17 I Documents the format of
NamesList.txt.

StandardizedVariants.txt Chapter 16 N Lists all the standardized variant
sequences that have been defined,
plus a textual description of their
desired appearance.

StandardizedVariants.html Chapter 16 N A derived documentation file,
generated from
StandardizedVariants.txt, plus a list of
sample glyphs showing the desired
appearance of each standardized
variant.

NamedSequences.txt [UAX34] N Lists the names for all approved
named sequences.

NamedSequencesProv.txt [UAX34] P Lists the names for all provisional
named sequences.

For more information about these files and their use, see the referenced annexes or
chapters of Unicode Standard.

4.4 Zipped Files

Starting with Version 4.1.0, zipped versions of all of the UCD files, both data files and
documentation files, are available under the Public/zipped directory on the Unicode Web
site. Each collection of zipped files is located there in a numbered subdirectory
corresponding to that version of the UCD.

Two different zipped files are provided for each version:

Unihan.zip is the zipped version of the very large Unihan data files

UCD.zip is the zipped version of all of the rest of the UCD data files, excluding the
Unihan data files.

This bifurcation allows for better management of downloading version-specific information,
because Unihan.zip contains all the pertinent CJK-related property information, while
UCD.zip contains all of the rest of the UCD property information, for those who may not need
the voluminous CJK data.

In versions of the UCD prior to Version 4.1.0, zipped copies of the Unihan data files (which
for those versions were released as a single large text file, Unihan.txt) are provided in the
same directory as the UCD data files. These zipped files are only posted for versions of the
UCD in which Unihan.txt was updated.

4.5 UCD in XML

Starting with Version 5.1.0, a set of XML data files are also released with each version of the
UCD. Those data files make it possible to import and process the UCD property data using
standard XML parsing tools, instead of the specialized parsing required for the various
individual data files of the UCD.

4.5.1 UAX #42

Unicode Standard Annex #42, "Unicode Character Database in XML" [UAX42] defines an
XML schema which is used to incorporate all of the Unicode character property information
into the XML version of the UCD. See that annex for details of the schema and conventions
regarding the grouping of property values for more compact representations.

4.5.2 XML File List

The XML version of the UCD is contained in the ucdxml subdirectory of the UCD. The files
are all zipped. The list of files is shown in Table 6.

Table 6. XML File List

File Name CJK non-CJK
ucd.all.flat.zip x x
ucd.all.grouped.zip x x
ucd.nounihan.flat.zip x
ucd.nounihan.grouped.zip x
ucd.unihan.flat.zip x
ucd.unihan.grouped.zip x

The "flat" file versions simply list all attributes with no particular compression. The "grouped"
file versions apply the grouping mechanism described in [UAX42] to cut down on the size of
the data files.

5 Properties

This section documents the Unicode character properties, relating them in detail to the
particular UCD data files in which they are specified. For enumerated properties in particular,
this section also documents the actual values which those properties can have.

5.1 Property Index

Table 7 provides a summary list of the Unicode character properties, excluding most of those
specific to the Unihan data files. For a comparable index of CJK character properties, see
Unicode Standard Annex #38, "Unicode Han Database (Unihan)" [UAX38].

The properties are roughly organized into groups based on their usage. This grouping is
primarily for documentation convenience and except for contributory properties, has no
normative implications. Contributory properties are shown in this index with a gray
background, to better distinguish them visually from ordinary (simple or derived) properties.
The link on each property leads to its description in Table 9, Property Table.

Table 7. Property Index by Scope of Use

General Normalization CJK
Name Canonical_Combining_Class Ideographic

Name_Alias Decomposition_Mapping Unified_Ideograph
Block Composition_Exclusion Radical
Age Full_Composition_Exclusion IDS_Binary_Operator
General_Category Decomposition_Type IDS_Trinary_Operator
Script FC_NFKC_Closure (deprecated) Unicode_Radical_Stroke
Script_Extensions
White_Space NFC_Quick_Check Miscellaneous
Alphabetic NFKC_Quick_Check Math
Hangul_Syllable_Type NFD_Quick_Check Quotation_Mark
Noncharacter_Code_Point NFKD_Quick_Check Dash
Default_Ignorable_Code_Point Expands_On_NFC (deprecated) Hyphen (deprecated, stabilized)
Deprecated Expands_On_NFD (deprecated) STerm
Logical_Order_Exception Expands_On_NFKC (deprecated) Terminal_Punctuation
Variation_Selector Expands_On_NFKD (deprecated) Diacritic
Case NFKC_Casefold Extender
Uppercase Changes_When_NFKC_Casefolded Grapheme_Base
Lowercase Shaping and Rendering Grapheme_Extend
Lowercase_Mapping Join_Control Grapheme_Link (deprecated)
Titlecase_Mapping Joining_Group Unicode_1_Name
Uppercase_Mapping Joining_Type ISO_Comment (deprecated,

stabilized)
Case_Folding Line_Break Indic_Matra_Category
Simple_Lowercase_Mapping Grapheme_Cluster_Break Indic_Syllabic_Category
Simple_Titlecase_Mapping Sentence_Break Contributory Properties
Simple_Uppercase_Mapping Word_Break Other_Alphabetic
Simple_Case_Folding East_Asian_Width Other_Default_Ignorable_Code_P
Soft_Dotted Bidirectional Other_Grapheme_Extend
Cased Bidi_Class Other_ID_Start
Case_Ignorable Bidi_Control Other_ID_Continue
Changes_When_Lowercased Bidi_Mirrored Other_Lowercase
Changes_When_Uppercased Bidi_Mirroring_Glyph Other_Math
Changes_When_Titlecased Bidi_Paired_Bracket Other_Uppercase
Changes_When_Casefolded Bidi_Paired_Bracket_Type Jamo_Short_Name
Changes_When_Casemapped Identifiers
Numeric ID_Continue

Numeric_Value ID_Start
Numeric_Type XID_Continue
Hex_Digit XID_Start
ASCII_Hex_Digit Pattern_Syntax
 Pattern_White_Space

5.2 About the Property Table

Table 9, Property Table specifies the list of character properties defined in the UCD. That
table is divided into separate sections for each data file in the UCD. Data files which define a
single property or a small number of properties are listed first, followed by the data files
which define a large number of properties: DerivedCoreProperties.txt,
DerivedNormalizationProps.txt, PropList.txt, and UnicodeData.txt. In some instances for
these files defining many properties, the entries in the property table are grouped by type, for
clarity in presentation, rather than being listed alphabetically.

In Table 9, Property Table each property is described as follows:

First Column. This column contains the name of each of the character properties specified
in the respective data file. Any special status for a property, such as whether it is obsolete,
deprecated, or stabilized, is also indicated in the first column.

Second Column. This column indicates the type of the property, according to the key in
Table 8.

Table 8. Property Type Key

Property Type Symbol Examples
Catalog C Age, Block
Enumeration E Joining_Type, Line_Break
Binary B Uppercase, White_Space
String S Uppercase_Mapping, Case_Folding
Numeric N Numeric_Value
Miscellaneous M Name, Jamo_Short_Name

Catalog properties have enumerated values which are expected to be regularly
extended in successive versions of the Unicode Standard. This distinguishes them
from Enumeration properties.

Enumeration properties have enumerated values which constitute a logical partition
space; new values will generally not be added to them in successive versions of the
standard.

Binary properties are a special case of Enumeration properties, which have exactly
two values: Yes and No (or True and False).

String properties are typically mappings from a Unicode code point to another Unicode
code point or sequence of Unicode code points; examples include case mappings and

decomposition mappings.

Numeric properties specify the actual numeric values for digits and other characters
associated with numbers in some way.

Miscellaneous properties are those properties that do not fit neatly into the other
property categories; they currently include character names, comments about
characters, the Script_Extensions property, and the Unicode_Radical_Stroke property
(a combination of numeric values) documented in Unicode Standard Annex #38,
"Unicode Han Database (Unihan)" [UAX38].

Third Column. This column indicates the status of the property: Normative or Informative or
Contributory or Provisional.

Fourth Column. This column provides a description of the property or properties. This
includes information on derivation for derived properties, as well as references to locations in
the standard where the property is defined or discussed in detail.

In the section of the table for UnicodeData.txt, the data field numbers are also supplied in
parentheses at the start of the description.

For a few entries in the property table, values specified in the fields in a data file only
contribute to a full definition of a Unicode character property. For example, the values in field
1 (Name) in UnicodeData.txt do not provide all the values for the Name property for all code
points; Jamo.txt must also be used, and the Name property for CJK Unified Ideographs is
derived by rule.

None of the Unicode character properties should be used simply on the basis of the
descriptions in the property table without consulting the relevant discussions in the Unicode
Standard. Because of the enormous variety of characters in the repertoire of the Unicode
Standard, character properties tend not to be self-evident in application, even when the
names of the properties may seem familiar from their usage with much smaller legacy
character encodings.

5.3 Property Definitions

This section contains the table which describes each character property and defines its
status, organized by data file in the UCD.

Table 9. Property Table

ArabicShaping.txt
Joining_Type
Joining_Group

E N Basic Arabic and Syriac character
shaping properties, such as initial,
medial and final shapes. See Section 8.2,
Arabic in [Unicode].

BidiBrackets.txt
Bidi_Paired_Bracket_Type E N Type of a paired bracket, either opening

or closing. This property is used in the
implementation of parenthesis
matching. See Unicode Standard Annex

#9, " The Unicode Bidirectional
Algorithm" [UAX9].

Bidi_Paired_Bracket M N For an opening bracket, the code point
of the matching closing bracket. For a
closing bracket, the code point of the
matching opening bracket. This
property is used in the implementation
of parenthesis matching. See Unicode
Standard Annex #9, " The Unicode
Bidirectional Algorithm" [UAX9].

BidiMirroring.txt
Bidi_Mirroring_Glyph M I Informative mapping for substituting

characters in an implementation of
bidirectional mirroring. This maps a
subset of characters with the
Bidi_Mirrored property to other
characters that normally are displayed
with the corresponding mirrored glyph.
When a character with the Bidi_Mirrored
property has the default value for
Bidi_Mirroring_Glyph, that means that
no other character exists whose glyph is
appropriate for character-based glyph
mirroring. Implementations must then
use other mechanisms to implement
mirroring of those characters for the
Unicode Bidirectional Algorithm. See
Unicode Standard Annex #9, " The
Unicode Bidirectional Algorithm" [UAX9].
Do not confuse this property with the
Bidi_Mirrored property itself.

Blocks.txt
Block C N List of block names, which are arbitrary

names for ranges of code points. See
the code charts in [Unicode].

CompositionExclusions.txt
Composition_Exclusion B N A property used in normalization. See

Unicode Standard Annex #15, "Unicode

Normalization Forms" [UAX15]. Unlike
other files, CompositionExclusions.txt
simply lists the relevant code points.

CaseFolding.txt
Simple_Case_Folding
Case_Folding

S N Mapping from characters to their
case-folded forms. This is an
informative file containing normative
derived properties.

Derived from UnicodeData and
SpecialCasing.

Note: The case foldings are omitted in
the data file if they are the same as the
code point itself.

DerivedAge.txt
Age C N/I This file shows when various code

points were designated/assigned in
successive versions of the Unicode
Standard.

The Age property is normative in the
sense that it is completely specified
based on when a character is encoded in
the standard. However, DerivedAge.txt
is provided for information. The value of
the Age property for a code point can be
derived by analysis of successive
versions of the UCD, and Age is not
used normatively in the specification of
any Unicode algorithm.

Note: When using the Age property in
regular expressions, an expression such
as "\p{age=3.0}" matches all of the code
points assigned in Version 3.0—that is,
all the code points with a value less than
or equal to 3.0 for the Age property. For
more information, see Unicode

Technical Standard #18, "Unicode
Regular Expressions" [UTS18].

EastAsianWidth.txt
East_Asian_Width E I Properties for determining the choice of

wide versus narrow glyphs in East Asian
contexts. Property values are described
in Unicode Standard Annex #11, "East
Asian Width" [UAX11].

HangulSyllableType.txt
Hangul_Syllable_Type E N The values L, V, T, LV, and LVT used in

Chapter 3, Conformance in [Unicode].
IndicMatraCategory.txt
Indic_Matra_Category E P A provisional property defining the

placement categories for dependent
vowels in Indic scripts.

IndicSyllabicCategory.txt
Indic_Syllabic_Category E P A provisional property defining the

structural categories of syllabic
components in Indic scripts.

Jamo.txt
Jamo_Short_Name M C The Hangul Syllable names are derived

from the Jamo Short Names, as
described in Chapter 3, Conformance in
[Unicode].

LineBreak.txt
Line_Break E N Properties for line breaking. For more

information, see Unicode Standard
Annex #14, "Unicode Line Breaking
Algorithm" [UAX14].

GraphemeBreakProperty.txt
Grapheme_Cluster_Break E I See Unicode Standard Annex #29,

"Unicode Text Segmentation" [UAX29]
SentenceBreakProperty.txt
Sentence_Break E I See Unicode Standard Annex #29,

"Unicode Text Segmentation" [UAX29]
WordBreakProperty.txt

Word_Break E I See Unicode Standard Annex #29,
"Unicode Text Segmentation" [UAX29]

NameAliases.txt
Name_Alias M N Normative formal aliases for characters

with erroneous names, for control
characters and some format characters,
and for character abbreviations, as
described in Chapter 4, Character
Properties in [Unicode]. The aliases
tagged with the type "correction" exactly
match the formal aliases published in
the Unicode Standard code charts.

NormalizationCorrections.txt
used in Decomposition Mappings S N NormalizationCorrections lists code

point differences for Normalization
Corrigenda. For more information, see
Unicode Standard Annex #15, "Unicode
Normalization Forms" [UAX15].

Scripts.txt
Script C I Script values for use in regular

expressions and elsewhere. For more
information, see Unicode Standard
Annex #24, "Unicode Script Property"
[UAX24].

ScriptExtensions.txt
Script_Extensions M I Enumerated sets of Script values for use

in regular expressions and elsewhere.
For more information, see Unicode
Standard Annex #24, "Unicode Script
Property" [UAX24].

SpecialCasing.txt
Uppercase_Mapping
Lowercase_Mapping
Titlecase_Mapping

S I Data for producing (in combination with
the simple case mappings from
UnicodeData.txt) the full case mappings.

Unihan data files (for more information, see [UAX38])
Numeric_Type
Numeric_Value

E I The characters tagged with either
kPrimaryNumeric, kAccountingNumeric,
or kOtherNumeric are given the property

value Numeric_Type=Numeric, and the
Numeric_Value indicated in those tags.

Most characters have these numeric
properties based on values from
UnicodeData.txt. See Numeric_Type.

Unicode_Radical_Stroke M I The Unicode radical-stroke count, based
on the tag kRSUnicode.

DerivedCoreProperties.txt
Lowercase B I Characters with the Lowercase property.

For more information, see Chapter 4,
Character Properties in [Unicode].

Generated from: Ll + Other_Lowercase

Uppercase B I Characters with the Uppercase property.
For more information, see Chapter 4,
Character Properties in [Unicode].

Generated from: Lu + Other_Uppercase

Cased B I Characters which are considered to be
either uppercase, lowercase or titlecase
characters. This property is not identical
to the Changes_When_Casemapped
property. For more information, see
D135 in Section 3.13, Default Case
Algorithms in [Unicode].

Generated from: Lowercase + Uppercase
+ Lt

Case_Ignorable B I Characters which are ignored for casing
purposes. For more information, see
D136 in Section 3.13, Default Case
Algorithms in [Unicode].

Generated from: Mn + Me + Cf + Lm +
Sk + Word_Break=MidLetter +
Word_Break=MidNumLet

Changes_When_Lowercased B I Characters whose normalized forms are
not stable under a toLowercase
mapping. For more information, see
D139 in Section 3.13, Default Case
Algorithms in [Unicode].

Generated from: toLowercase(toNFD(X))
!= toNFD(X)

Changes_When_Uppercased B I Characters whose normalized forms are
not stable under a toUppercase
mapping. For more information, see
D140 in Section 3.13, Default Case
Algorithms in [Unicode].

Generated from: toUppercase(toNFD(X))
!= toNFD(X)

Changes_When_Titlecased B I Characters whose normalized forms are
not stable under a toTitlecase mapping.
For more information, see D141 in
Section 3.13, Default Case Algorithms in
[Unicode].

Generated from: toTitlecase(toNFD(X))
!= toNFD(X)

Changes_When_Casefolded B I Characters whose normalized forms are
not stable under case folding. For more
information, see D142 in Section 3.13,
Default Case Algorithms in [Unicode].

Generated from: toCasefold(toNFD(X)) !=
toNFD(X)

Changes_When_Casemapped B I Characters which may change when they
undergo case mapping. For more
information, see D143 in Section 3.13,
Default Case Algorithms in [Unicode].

Generated from:
Changes_When_Lowercased(X) or

Changes_When_Uppercased(X) or
Changes_When_Titlecased(X)

Alphabetic B I Characters with the Alphabetic property.
For more information, see Chapter 4,
Character Properties in [Unicode].

Generated from: Lu + Ll + Lt + Lm + Lo
+ Nl + Other_Alphabetic

Default_Ignorable_Code_Point B N For programmatic determination of
default ignorable code points. New
characters that should be ignored in
rendering (unless explicitly supported)
will be assigned in these ranges,
permitting programs to correctly handle
the default rendering of such characters
when not otherwise supported. For more
information, see the FAQ Display of
Unsupported Characters, and Section
5.21, Default Ignorable Code Points in
[Unicode].

Generated from
Other_Default_Ignorable_Code_Point
+ Cf (format characters)
+ Variation_Selector
- White_Space
- FFF9..FFFB (annotation characters)
- 0600..0604, 06DD, 070F, 110BD
(exceptional Cf characters that should
be visible)

Grapheme_Base B N Property used together with the
definition of Standard Korean Syllable
Block to define "Grapheme base". See
D58 in Chapter 3, Conformance in
[Unicode].

Generated from: [0..10FFFF] - Cc - Cf -
Cs - Co - Cn - Zl - Zp -

Grapheme_Extend

Note: Grapheme_Base is a property of
individual characters. That usage
contrasts with "grapheme base", which is
an attribute of Unicode strings; a
grapheme base may consist of a Korean
syllable which is itself represented by a
sequence of conjoining jamos.

Grapheme_Extend B N Property used to define "Grapheme
extender". See D59 in Chapter 3,
Conformance in [Unicode].

Generated from: Me + Mn +
Other_Grapheme_Extend

Note: The set of characters for which
Grapheme_Extend=Yes is equivalent to
the set of characters for which
Grapheme_Cluster_Break=Extend.

Grapheme_Link (Deprecated as of
5.0.0)

B I Formerly proposed for programmatic
determination of grapheme cluster
boundaries.

Generated from:
Canonical_Combining_Class=Virama

Math B I Characters with the Math property. For
more information, see Chapter 4,
Character Properties in [Unicode].

Generated from: Sm + Other_Math

ID_Start B I Used to determine programming
identifiers, as described in Unicode
Standard Annex #31, "Unicode Identifier
and Pattern Syntax" [UAX31].

ID_Continue B I
XID_Start B I
XID_Continue B I
DerivedNormalizationProps.txt

Full_Composition_Exclusion B N Characters that are excluded from
composition: those listed explicitly in
CompositionExclusions.txt, plus the
derivable sets of Singleton
Decompositions and Non-Starter
Decompositions, as documented in that
data file.

Expands_On_NFC
Expands_On_NFD
Expands_On_NFKC
Expands_On_NFKD
(Deprecated as of 6.0.0)

B N Characters that expand to more than
one character in the specified
normalization form.

FC_NFKC_Closure
(Deprecated as of 6.0.0)

S N Characters that require extra mappings
for closure under Case Folding plus
Normalization Form KC.

The mapping is listed in Field 2.

NFD_Quick_Check
NFKD_Quick_Check
NFC_Quick_Check
NFKC_Quick_Check

E N For property values, see Decompositions
and Normalization. (Abbreviated names:
NFD_QC, NFKD_QC, NFC_QC, NFKC_QC)

NFKC_Casefold S I A mapping designed for best behavior
when doing caseless matching of strings
interpreted as identifiers. (Abbreviated
name: NFKC_CF)

For the definition of the related string
transform toNFKC_Casefold() based on
this mapping, see Section 3.13, Default
Case Algorithms in [Unicode].

The mapping is listed in Field 2.

Changes_When_NFKC_Casefolded B I Characters which are not identical to
their NFKC_Casefold mapping.

Generated from: (cp !=
NFKC_CaseFold(cp))

PropList.txt

ASCII_Hex_Digit B N ASCII characters commonly used for the
representation of hexadecimal numbers.

Bidi_Control B N Format control characters which have
specific functions in the Unicode
Bidirectional Algorithm [UAX9].

Dash B I Punctuation characters explicitly called
out as dashes in the Unicode Standard,
plus their compatibility equivalents.
Most of these have the
General_Category value Pd, but some
have the General_Category value Sm
because of their use in mathematics.

Deprecated B N For a machine-readable list of
deprecated characters. No characters
will ever be removed from the standard,
but the usage of deprecated characters
is strongly discouraged.

Diacritic B I Characters that linguistically modify the
meaning of another character to which
they apply. Some diacritics are not
combining characters, and some
combining characters are not diacritics.

Extender B I Characters whose principal function is
to extend the value or shape of a
preceding alphabetic character. Typical
of these are length and iteration marks.

Hex_Digit B I Characters commonly used for the
representation of hexadecimal numbers,
plus their compatibility equivalents.

Hyphen (Stabilized as of 4.0.0;
Deprecated as of 6.0.0

B I Dashes which are used to mark
connections between pieces of words,
plus the Katakana middle dot. The
Katakana middle dot functions like a
hyphen, but is shaped like a dot rather
than a dash.

Ideographic B I Characters considered to be CJKV
(Chinese, Japanese, Korean, and
Vietnamese) ideographs. This property

roughly defines the class of "Chinese
characters" and does not include
characters of other logographic scripts
such as Cuneiform or Egyptian
Hieroglyphs.

IDS_Binary_Operator B N Used in Ideographic Description
Sequences.

IDS_Trinary_Operator B N Used in Ideographic Description
Sequences.

Join_Control B N Format control characters which have
specific functions for control of cursive
joining and ligation.

Logical_Order_Exception B N A small number of spacing vowel letters
occurring in certain Southeast Asian
scripts such as Thai and Lao, which use
a visual order display model. These
letters are stored in text ahead of
syllable-initial consonants, and require
special handling for processes such as
searching and sorting.

Noncharacter_Code_Point B N Code points permanently reserved for
internal use.

Other_Alphabetic B C Used in deriving the Alphabetic
property.

Other_Default_Ignorable_Code_Point B C Used in deriving the
Default_Ignorable_Code_Point property.

Other_Grapheme_Extend B C Used in deriving the Grapheme_Extend
property.

Other_ID_Continue B C Used to maintain backward compatibility
of ID_Continue.

Other_ID_Start B C Used to maintain backward compatibility
of ID_Start.

Other_Lowercase B C Used in deriving the Lowercase property.
Other_Math B C Used in deriving the Math property.
Other_Uppercase B C Used in deriving the Uppercase

property.
Pattern_Syntax B N Used for pattern syntax as described in

Unicode Standard Annex #31, "Unicode
Identifier and Pattern Syntax" [UAX31].

Pattern_White_Space B N

Quotation_Mark B I Punctuation characters that function as
quotation marks.

Radical B N Used in Ideographic Description
Sequences.

Soft_Dotted B N Characters with a "soft dot", like i or j.
An accent placed on these characters
causes the dot to disappear. An explicit
dot above can be added where required,
such as in Lithuanian.

STerm B I Sentence Terminal. Used in Unicode
Standard Annex #29, "Unicode Text
Segmentation" [UAX29].

Terminal_Punctuation B I Punctuation characters that generally
mark the end of textual units.

Unified_Ideograph B N A property which specifies the exact set
of Unified CJK Ideographs in the
standard. This set excludes CJK
Compatibility Ideographs (which have
canonical decompositions to Unified CJK
Ideographs), as well as characters from
the CJK Symbols and Punctuation block.
The property is used in the definition of
Ideographic Description Sequences.

Variation_Selector B N Indicates characters that are Variation
Selectors. For details on the behavior of
these characters, see
StandardizedVariants.html, Section 16.4,
Variation Selectors in [Unicode], and
Unicode Standard Annex #37, "Unicode
Ideographic Variation Database"
[UTS37].

White_Space B N Spaces, separator characters and other
control characters which should be
treated by programming languages as
"white space" for the purpose of parsing
elements. See also Line_Break,

Grapheme_Cluster_Break,
Sentence_Break, and Word_Break, which
classify space characters and related
controls somewhat differently for
particular text segmentation contexts.

UnicodeData.txt
Name M N (1) These names match exactly the

names published in the code charts of
the Unicode Standard. The derived
Hangul Syllable names are omitted from
this file; see Jamo.txt for their
derivation.

General_Category E N (2) This is a useful breakdown into
various character types which can be
used as a default categorization in
implementations. For the property
values, see General Category Values.

Canonical_Combining_Class N N (3) The classes used for the Canonical
Ordering Algorithm in the Unicode
Standard. This property could be
considered either an enumerated
property or a numeric property: the
principal use of the property is in terms
of the numeric values. For the property
value names associated with different
numeric values, see
DerivedCombiningClass.txt and
Canonical Combining Class Values.

Bidi_Class E N (4) These are the categories required by
the Unicode Bidirectional Algorithm. For
the property values, see Bidirectional
Class Values. For more information, see
Unicode Standard Annex #9, "The
Unicode Bidirectional Algorithm" [UAX9].

The default property values depend on
the code point, and are explained in
DerivedBidiClass.txt

Decomposition_Type
Decomposition_Mapping

E,
S

N (5) This field contains both values, with
the type in angle brackets. The
decomposition mappings exactly match
the decomposition mappings published
with the character names in the Unicode
Standard. For more information, see
Character Decomposition Mappings.

Numeric_Type
Numeric_Value

E,
N

N (6) If the character has the property
value Numeric_Type=Decimal, then the
Numeric_Value of that digit is
represented with an integer value
(limited to the range 0..9) in fields 6, 7,
and 8. Characters with the property
value Numeric_Type=Decimal are
restricted to digits which can be used in
a decimal radix positional numeral
system and which are encoded in the
standard in a contiguous ascending
range 0..9. See the discussion of
decimal digits in Chapter 4, Character
Properties in [Unicode].

E,
N

N (7) If the character has the property
value Numeric_Type=Digit, then the
Numeric_Value of that digit is
represented with an integer value
(limited to the range 0..9) in fields 7 and
8, and field 6 is null. This covers digits
that need special handling, such as the
compatibility superscript digits.

Starting with Unicode 6.3.0, no newly
encoded numeric characters will be
given Numeric_Type=Digit, nor will
existing characters with
Numeric_Type=Numeric be changed to
Numeric_Type=Digit. The distinction
between those two types is not
considered useful.

E,
N

N (8) If the character has the property
value Numeric_Type=Numeric, then the
Numeric_Value of that character is
represented with a positive or negative
integer or rational number in this field,
and fields 6 and 7 are null. This includes
fractions such as, for example, "1/5" for
U+2155 VULGAR FRACTION ONE FIFTH.

Some characters have these properties
based on values from the Unihan data
files. See Numeric_Type, Han.

Bidi_Mirrored B N (9) If the character is a "mirrored"
character in bidirectional text, this field
has the value "Y"; otherwise "N". See
Section 4.7, Bidi Mirrored—Normative of
[Unicode]. Do not confuse this with the
Bidi_Mirroring_Glyph property.

Unicode_1_Name (Obsolete as of
6.2.0)

M I (10) Old name as published in Unicode
1.0 or ISO 6429 names for control
functions. This field is empty unless it is
significantly different from the current
name for the character. No longer used
in code chart production. See
Name_Alias.

ISO_Comment (Obsolete as of 5.2.0;
Deprecated and Stabilized as of
6.0.0)

M I (11) ISO 10646 comment field. It was
used for notes that appeared in
parentheses in the 10646 names list, or
contained an asterisk to mark an Annex
P note.

As of Unicode 5.2.0, this field no longer
contains any non-null values.

Simple_Uppercase_Mapping S N (12) Simple uppercase mapping (single
character result).
If a character is part of an alphabet with
case distinctions, and has a simple
uppercase equivalent, then the

uppercase equivalent is in this field. The
simple mappings have a single character
result, where the full mappings may
have multi-character results. For more
information, see Case and Case
Mapping.

Simple_Lowercase_Mapping S N (13) Simple lowercase mapping (single
character result).

Simple_Titlecase_Mapping S N (14) Simple titlecase mapping (single
character result).

Note: If this field is null, then the
Simple_Titlecase_Mapping is the same
as the Simple_Uppercase_Mapping for
this character.

5.4 Derived Extracted Properties

A number of Unicode character properties have been separated out, reformatted, and listed
in range format, one property per file. These files are located under the extracted directory of
the UCD. The exact list of derived extracted files and the extracted properties they represent
are given in Table 10.

The derived extracted files are provided purely primarily as a reformatting of data for
properties specified in other data files. For non-default values of properties, if there is In
case of any inadvertant mismatch between the primary data files specifying those properties
and these lists of extracted properties, the primary data files are taken as definitive.
However, for default values of properties, the extracted data files are definitive. This is
particularly true for properties which have multiple default values; those properties are
identified with an asterisk in the table. See Section 4.2.9, Default Values.

Table 10. Extracted Properties

File Status Property Extracted from
DerivedBidiClass.txt N Bidi_Class* UnicodeData.txt,

field 4
DerivedBinaryProperties.txt N Bidi_Mirrored UnicodeData.txt,

field 9
DerivedCombiningClass.txt N Canonical_Combining_Class UnicodeData.txt,

field 3

DerivedDecompositionType.txt N/I Decomposition_Type the <tag> in
UnicodeData.txt,
field 5

DerivedEastAsianWidth.txt I East_Asian_Width* EastAsianWidth.txt,
field 1

DerivedGeneralCategory.txt N General_Category UnicodeData.txt,
field 2

DerivedJoiningGroup.txt N Joining_Group ArabicShaping.txt,
field 2

DerivedJoiningType.txt N Joining_Type* ArabicShaping.txt,
field 1

DerivedLineBreak.txt N Line_Break* LineBreak.txt, field
1

DerivedNumericType.txt N Numeric_Type UnicodeData.txt,
fields 6 through 8

DerivedNumericValues.txt N Numeric_Value UnicodeData.txt,
field 8

For the extraction of Decomposition_Type, characters with canonical decomposition
mappings in field 5 of UnicodeData.txt have no tag. For those characters, the extracted
value is Decomposition_Type=Canonical. For characters with compatibility decomposition
mappings, there are explicit tags in field 5, and the value of Decomposition_Type is
equivalent to those tags. The value Decomposition_Type=Canonical is normative. Other
values for Decomposition_Type are informative.

Numeric_Value is extracted based on the actual numeric value of the data in field 8 of
UnicodeData.txt or the values of the kPrimaryNumeric, kAccountingNumeric, or
kOtherNumeric tags, for characters listed in the Unihan data files.

Numeric_Type is extracted as follows. If fields 6, 7, and 8 in UnicodeData.txt are all
non-empty, then Numeric_Type=Decimal. Otherwise, if fields 7 and 8 are both non-empty,
then Numeric_Type=Digit. Otherwise, if field 8 is non-empty, then Numeric_Type=Numeric.
For characters listed in the Unihan data files, Numeric_Type=Numeric for characters that
have kPrimaryNumeric, kAccountingNumeric, or kOtherNumeric tags. The default value is
Numeric_Type=None.

5.5 Contributory Properties

Contributory properties contain sets of exceptions used in the generation of other properties
derived from them. The contributory properties specifically concerned with identifiers and
casing contribute to the maintenance of stability guarantees for properties and/or to
invariance relationships between related properties. Other contributory properties are simply
defined as a convenience for property derivation.

Most contributory properties have names using the pattern "Other_XXX" and are used to
derive the corresponding "XXX" property. For example, the Other_Alphabetic property is

used in the derivation of the Alphabetic property.

Contributory properties are typically defined in PropList.txt and the corresponding derived
property is then listed in DerivedCoreProperties.txt.

Jamo_Short_Name is an unusual contributory property, both in terms of its name and how it
is used. It is defined in its own property file, Jamo.txt, and is used to derive the Name
property value for Hangul syllable characters, according to the rules spelled out in Section
3.12, Conjoining Jamo Behavior in [Unicode].

Contributory is considered to be a distinct status for a Unicode character property.
Contributory properties are neither normative nor informative. This distinct status is marked
in the property table.

Contributory properties are incomplete by themselves and are not intended for independent
use. For example, an API returning Unicode property values should implement the derived
core properties such as Alphabetic or Default_Ignorable_Code_Point, rather than the
corresponding contributory properties, Other_Alphabetic or
Other_Default_Ignorable_Code_Point.

5.6 Case and Case Mapping

Case for bicameral scripts and case mapping of characters are complicated topics in the
Unicode Standard—both because of their inherent algorithmic complexity and because of
the number of characters and special edge cases involved.

This section provides a brief roadmap to discussions about these topics, and specifications
and definitions in the standard, as well as explaining which case-related properties are
defined in the UCD.

Section 3.13, Default Case Algorithms in [Unicode] provides formal definitions for a number
of case-related concepts (cased, case-ignorable, ...), for case conversion
(toUppercase(X), ...), and for case detection (isUppercase(X), ...). It also provides the formal
definition of caseless matching for the standard, taking normalization into account.

Section 4.2, Case—Normative in [Unicode] introduces case and case mapping properties.
Table 4-1, Sources for Case Mapping Information in [Unicode] describes the kind of
case-related information that is available in various data files of the UCD. Table 11 lists those
data files again, giving the explicit list of case-related properties defined in each. The link on
each property leads its description in Table 9, Property Table.

Table 11. UCD Files and Case Properties

File Name Case Properties
UnicodeData.txt Simple_Uppercase_Mapping,

Simple_Lowercase_Mapping,
Simple_Titlecase_Mapping

SpecialCasing.txt Uppercase_Mapping, Lowercase_Mapping,
Titlecase_Mapping

CaseFolding.txt Simple_Case_Folding, Case_Folding

DerivedCoreProperties.txt Uppercase, Lowercase, Cased, Case_Ignorable,
Changes_When_Lowercased,
Changes_When_Uppercased,
Changes_When_Titlecased,
Changes_When_Casefolded,
Changes_When_Casemapped

DerivedNormalizationProps.txt NFKC_Casefold, Changes_When_NFKC_Casefolded
PropList.txt Soft_Dotted, Other_Uppercase, Other_Lowercase

For compatibility with existing parsers, UnicodeData.txt only contains case mappings for
characters where they constitute one-to-one mappings; it also omits information about
context-sensitive case mappings. Information about these special cases can be found in the
separate data file, SpecialCasing.txt, expressed as separate properties.

Section 5.18, Case Mappings, in [Unicode] discusses various implementation issues for
handling case, including language-specific case mapping, as for Greek and for Turkish. That
section also describes case folding in particular detail.

The special casing conditions associated with case mapping for Greek, Turkish, and
Lithuanian are specified in an additional field in SpecialCasing.txt. For example, the
lowercase mapping for sigma in Greek varies according to its position in a word. The
condition list does not constitute a formal character property in the UCD, because it is a
statement about the context of occurrence of casing behavior for a character or characters,
rather than a semantic attribute of those characters. Versions of the UCD from Version 3.2.0
to Version 5.0.0 did list property aliases for Special_Case_Condition (scc), but this was
determined to be an error when the UCD was analyzed for representation in XML;
consequently, the Special_Case_Condition property aliases were removed as of Version
5.1.0.

Caseless matching is of particular concern for a number of text processing algorithms, so is
also discussed at some length in Unicode Standard Annex #31, "Unicode Identifier and
Pattern Syntax" [UAX31] and in Unicode Technical Standard #10, "Unicode Collation
Algorithm" [UTS10].

Further information about locale-specific casing conventions can be found in the Unicode
Common Locale Data Repository [CLDR].

5.7 Property Value Lists

The following subsections give summaries of property values for certain Enumeration
properties. Other property values are documented in other, topically-specific annexes; for
example, the Line_Break property values are documented in Unicode Standard Annex #14,
"Unicode Line Breaking Algorithm" [UAX14] and the various segmentation-related property
values are documented in Unicode Standard Annex #29, "Unicode Text Segmentation"
[UAX29].

5.7.1 General Category Values

The General_Category property of a code point provides for the most general classification
of that code point. It is usually determined based on the primary characteristic of the

assigned character for that code point. For example, is the character a letter, a mark, a
number, punctuation, or a symbol, and if so, of what type? Other General_Category values
define the classification of code points which are not assigned to regular graphic characters,
including such statuses as private-use, control, surrogate code point, and reserved
unassigned.

Many characters have multiple uses, and not all such cases can be captured entirely by the
General_Category value. For example, the General_Category value of Latin, Greek, or
Hebrew letters does not attempt to cover (or preclude) the numerical use of such letters as
Roman numerals or in other numerary systems. Conversely, the General_Category of ASCII
digits 0..9 as Nd (decimal digit) neither attempts to cover (or preclude) the occasional use of
these digits as letters in various orthographies. The General_Category is simply the first-
order, most usual categorization of a character.

For more information about the General_Category property, see Chapter 4, Character
Properties in [Unicode].

The values in the General_Category field in UnicodeData.txt make use of the short,
abbreviated property value aliases for General_Category. For convenience in reference,
Table 12 lists all the abbreviated and long value aliases for General_Category values,
reproduced from PropertyValueAliases.txt, along with a brief description of each category.

Table 12. General_Category Values

Abbr Long Description
Lu Uppercase_Letter an uppercase letter
Ll Lowercase_Letter a lowercase letter
Lt Titlecase_Letter a digraphic character, with first part uppercase
LC Cased_Letter Lu | Ll | Lt
Lm Modifier_Letter a modifier letter
Lo Other_Letter other letters, including syllables and ideographs
L Letter Lu | Ll | Lt | Lm | Lo
Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)
Mc Spacing_Mark a spacing combining mark (positive advance width)
Me Enclosing_Mark an enclosing combining mark
M Mark Mn | Mc | Me
Nd Decimal_Number a decimal digit
Nl Letter_Number a letterlike numeric character
No Other_Number a numeric character of other type
N Number Nd | Nl | No
Pc Connector_Punctuation a connecting punctuation mark, like a tie
Pd Dash_Punctuation a dash or hyphen punctuation mark
Ps Open_Punctuation an opening punctuation mark (of a pair)

Pe Close_Punctuation a closing punctuation mark (of a pair)
Pi Initial_Punctuation an initial quotation mark
Pf Final_Punctuation a final quotation mark
Po Other_Punctuation a punctuation mark of other type
P Punctuation Pc | Pd | Ps | Pe | Pi | Pf | Po
Sm Math_Symbol a symbol of mathematical use
Sc Currency_Symbol a currency sign
Sk Modifier_Symbol a non-letterlike modifier symbol
So Other_Symbol a symbol of other type
S Symbol Sm | Sc | Sk | So
Zs Space_Separator a space character (of various non-zero widths)
Zl Line_Separator U+2028 LINE SEPARATOR only
Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only
Z Separator Zs | Zl | Zp
Cc Control a C0 or C1 control code
Cf Format a format control character
Cs Surrogate a surrogate code point
Co Private_Use a private-use character
Cn Unassigned a reserved unassigned code point or a noncharacter
C Other Cc | Cf | Cs | Co | Cn

Note that the value gc=Cn does not actually occur in UnicodeData.txt, because that data file
does not list unassigned code points.

The distinctions between some General_Category values are somewhat arbitrary for edge
cases, particularly those involving symbols and punctuation. For example, a number of
multiple-function ASCII characters, including "@", "#", "%", and "&", have long been
classified as Other_Punctuation, although they are not among the characters used as
punctuation marks in traditional Western typography. Other characters may also be
ambiguous between functioning to organize and delimit textual units (punctuation-like) or to
represent concepts (symbol-like). Likewise, it may not always be clear whether some
symbols are primarily used for mathematics or whether they are general symbols with
occasional or even common use in mathematics. For example, many arrow symbols are
classed as Other_Symbol, although they are widely used in mathematics. The
General_Category values constitute a rough partitioning of characters to make distinctions
for algorithmic processing, but do not provide a definitive classification for such overlapping
or ambiguous usage of characters.

Characters with the quotation-related General_Category values Pi or Pf may behave like
opening punctuation (gc=Ps) or closing punctuation (gc=Pe), depending on usage and
quotation conventions.

General_Category values in the table highlighted in light blue (LC, L, M, N, P, S, Z, C) stand

for groupings of related General_Category values. The classes they represent can be
derived by unions of the relevant simple values, as shown in the table. The abbreviated and
long value aliases for these classes are provided as a convenience for implementations,
such as regex, which may wish to match more generic categories, such as "letter" or
"number", rather than the detailed subtypes for General_Category. These aliases for
groupings of General_Category values do not occur in UnicodeData.txt, which instead
always specifies the enumerated subtype for the General_Category of a character.

The symbol "L&" is a label used to stand for any combination of uppercase, lowercase or
titlecase letters (Lu, Ll, or Lt), in the first part of comments in the data files of the UCD. It is
equivalent to gc=LC, but is only a label in comments, and is not expected to be used as an
identifier for regular expression matching.

The Unicode Standard does not assign non-default property values to control characters
(gc=Cc), except for certain well-defined exceptions involving the Unicode Bidirectional
Algorithm, the Unicode Line Breaking Algorithm, and Unicode Text Segmentation. Also,
implementations will usually assign behavior to certain line breaking control
characters—most notably U+000D and U+000A (CR and LF)—according to platform
conventions. See Section 5.8, Newline Guidelines in [Unicode] for more information.

5.7.2 Bidirectional Class Values

The values in the Bidi_Class field in UnicodeData.txt make use of the short, abbreviated
property value aliases for Bidi_Class. For convenience in reference, Table 13 lists all the
abbreviated and long value aliases for Bidi_Class values, reproduced from
PropertyValueAliases.txt, along with a brief description of each category.

Table 13. Bidi_Class Values

Abbr Long Description
Strong Types
L Left_To_Right any strong left-to-right character
R Right_To_Left any strong right-to-left (non-Arabic-type)

character
AL Arabic_Letter any strong right-to-left (Arabic-type) character
Weak Types
EN European_Number any ASCII digit or Eastern Arabic-Indic digit
ES European_Separator plus and minus signs
ET European_Terminator a terminator in a numeric format context, includes

currency signs
AN Arabic_Number any Arabic-Indic digit
CS Common_Separator commas, colons, and slashes
NSM Nonspacing_Mark any nonspacing mark
BN Boundary_Neutral most format characters, control codes, or

noncharacters

Neutral Types
B Paragraph_Separator various newline characters
S Segment_Separator various segment-related control codes
WS White_Space spaces
ON Other_Neutral most other symbols and punctuation marks
Explicit Formatting Types
LRE Left_To_Right_Embedding U+202A: the LR embedding control
LRO Left_To_Right_Override U+202D: the LR override control
RLE Right_To_Left_Embedding U+202B: the RL embedding control
RLO Right_To_Left_Override U+202E: the RL override control
PDF Pop_Directional_Format U+202C: terminates an embedding or override

control
LRI Left_To_Right_Isolate U+2066: the LR isolate control
RLI Right_To_Left_Isolate U+2067: the RL isolate control
FSI First_Strong_Isolate U+2068: the first strong isolate control
PDI Pop_Directional_Isolate U+2069: terminates an isolate control

Please refer to Unicode Standard Annex #9, "The Unicode Bidirectional Algorithm" [UAX9]
for an an explanation of the significance of these values when formatting bidirectional text.

The four enumerated values for the isolate controls were added in Unicode 6.3. That means
there is a discontinuity in the enumeration for Bidi_Class between Unicode 6.2 and Unicode
6.3 (and later versions) which parsers of UnicodeData.txt and DerivedBidiClass.txt must take
into account.

5.7.3 Character Decomposition Mapping

The value of the Decomposition_Mapping property for a character is provided in field 5 of
UnicodeData.txt. This is a string property, consisting of a sequence of one or more Unicode
code points. The default value of the Decomposition_Mapping property is the code point of
the character itself. The use of the default value for a character is indicated by leaving field 5
empty in UnicodeData.txt. Informally, the value of the Decomposition_Mapping property for a
character is known simply as its decomposition mapping. When a character's decomposition
mapping is other than the default value, the decomposition mapping is printed out explicitly
in the names list for the Unicode code charts.

The prefixed tags supplied with a subset of the decomposition mappings generally indicate
formatting information. Where no such tag is given, the mapping is canonical. Conversely,
the presence of a formatting tag also indicates that the mapping is a compatibility mapping
and not a canonical mapping. In the absence of other formatting information in a
compatibility mapping, the tag is used to distinguish it from canonical mappings.

In some instances a canonical mapping or a compatibility mapping may consist of a single
character. For a canonical mapping, this indicates that the character is a canonical
equivalent of another single character. For a compatibility mapping, this indicates that the

character is a compatibility equivalent of another single character.

A canonical mapping may also consist of a pair of characters, but is never longer than two
characters. When a canonical mapping consists of a pair of characters, the first character
may itself be a character with a decomposition mapping, but the second character never has
a decomposition mapping.

Compatibility mappings can be much longer than canonical mappings. For historical
reasons, the longest compatibility mapping is 18 characters long. Compatibility mappings are
guaranteed to be no longer than 18 characters, although most consist of just a few
characters.

The compatibility formatting tags used in the UCD are listed in Table 14.

Table 14. Compatibility Formatting Tags

Tag Description
 Font variant (for example, a blackletter form)
<noBreak> No-break version of a space or hyphen
<initial> Initial presentation form (Arabic)
<medial> Medial presentation form (Arabic)
<final> Final presentation form (Arabic)
<isolated> Isolated presentation form (Arabic)
<circle> Encircled form
<super> Superscript form
<sub> Subscript form
<vertical> Vertical layout presentation form
<wide> Wide (or zenkaku) compatibility character
<narrow> Narrow (or hankaku) compatibility character
<small> Small variant form (CNS compatibility)
<square> CJK squared font variant
<fraction> Vulgar fraction form
<compat> Otherwise unspecified compatibility character

Note: There is a difference between decomposition and the Decomposition_Mapping
property. The Decomposition_Mapping property is a string property whose values
(mappings) are defined in UnicodeData.txt, while the decomposition (also termed "full
decomposition") is defined in Section 3.7, Decomposition in [Unicode] to use those
mappings recursively.

The canonical decomposition is formed by recursively applying the canonical
mappings, then applying the Canonical Ordering Algorithm.

The compatibility decomposition is formed by recursively applying the canonical and
compatibility mappings, then applying the Canonical Ordering Algorithm.

Starting from Unicode 2.1.9, the decomposition mappings in UnicodeData.txt can be used to
derive the full decomposition of any single character in canonical order, without the need to
separately apply the Canonical Ordering Algorithm. However, canonical ordering of
combining character sequences must still be applied in decomposition when normalizing
source text which contains any combining marks.

The normalization of Hangul conjoining jamos and of Hangul syllables depends on
algorithmic mapping, as specified in Section 3.12, Conjoining Jamo Behavior in [Unicode].
That algorithm specifies the full decomposition of all precomposed Hangul syllables, but
effectively it is equivalent to the recursive application of pairwise decomposition mappings,
as for all other Unicode characters. Formally, the Decomposition_Mapping property value for
a Hangul syllable is the pairwise decomposition and not the full decomposition.

Each character with the Hangul_Syllable_Type value LVT will have a
Decomposition_Mapping consisting of a character with an LV value and a character with a T
value. Thus for U+CE31 the Decomposition_Mapping is <U+CE20, U+11B8>, rather than
<U+110E, U+1173, U+11B8>.

The Unihan property kCompatibilityVariant consists of a listing of the canonical
Decomposition_Mapping property values just for CJK compatibility ideographs. Because its
values are derived from UnicodeData.txt, it is formally considered to be a derived property.
The exact statement of the derivation for kCompatibilityVariant is listed in Unicode Standard
Annex #38, "Unicode Han Database (Unihan)" [UAX38].

5.7.4 Canonical Combining Class Values

The values in the Canonical_Combining_Class field in UnicodeData.txt are numerical values
used in the Canonical Ordering Algorithm. Some of those numerical values also have explicit
symbolic labels as property value aliases, to make their intended application more
understandable. For convenience in reference, Table 15 lists all the long symbolic aliases for
Canonical_Combining_Class values, reproduced from PropertyValueAliases.txt, along with a
brief description of each category. The listing for fixed position classes, with long symbolic
aliases of the form "Ccc10", and so forth, is abbreviated, as when those labels occur they
are predictable in form, based on the numeric values.

Table 15. Canonical_Combining_Class Values

Value Long Description
0 Not_Reordered Spacing and enclosing marks; also many vowel and

consonant signs, even if nonspacing
1 Overlay Marks which overlay a base letter or symbol
7 Nukta Diacritic nukta marks in Brahmi-derived scripts
8 Kana_Voicing Hiragana/Katakana voicing marks
9 Virama Viramas
10 Ccc10 Start of fixed position classes
... ...
199 End of fixed position classes

200 Attached_Below_Left Marks attached at the bottom left
202 Attached_Below Marks attached directly below
204 Marks attached at the bottom right
208 Marks attached to the left
210 Marks attached to the right
212 Marks attached at the top left
214 Attached_Above Marks attached directly above
216 Attached_Above_Right Marks attached at the top right
218 Below_Left Distinct marks at the bottom left
220 Below Distinct marks directly below
222 Below_Right Distinct marks at the bottom right
224 Left Distinct marks to the left
226 Right Distinct marks to the right
228 Above_Left Distinct marks at the top left
230 Above Distinct marks directly above
232 Above_Right Distinct marks at the top right
233 Double_Below Distinct marks subtending two bases
234 Double_Above Distinct marks extending above two bases
240 Iota_Subscript Greek iota subscript only

Some of the Canonical_Combining_Class values in the table are not currently used for any
characters but are specified here for completeness. Some values do not have long symbolic
aliases, but these two sets are not congruent and are not listed in PropertyValueAliases.txt.
Do not assume that absence of a long symbolic alias implies non-use of a particular
Canonical_Combining_Class. See DerivedCombiningClass.txt for a complete listing of the
use of Canonical_Combining_Class values for any particular version of the UCD.

For use in regular expression matching, fixed position classes (ccc=10 through ccc=199)
which actually occur in the Unicode Character Database for any version are given
predictable aliases of the form "Ccc10", "Ccc11", and so forth. The complete list of such
aliases which are actually defined can be found in PropertyValueAliases.txt.

The character property invariants regarding Canonical_Combining_Class guarantee that
values, once assigned, will never change, and that all values used will be in the range
0..254. See Invariants in Implementations.

Combining marks with ccc=224 (Left) follow their base character in storage, as for all
combining marks, but are rendered visually on the left side of them. For all past versions of
the UCD and continuing with this version of the UCD, only two tone marks used in certain
notations for Hangul syllables have ccc=224. Those marks are actually rendered visually on
the left side of the preceding grapheme cluster, in the case of Hangul syllables resulting from
sequences of conjoining jamos.

Those few instances of combining marks with ccc=Left should be distinguished from the far
more numerous examples of left-side vowel signs and vowel letters in Brahmi-derived
scripts. The Canonical_Combining_Class value is zero (Not_Reordered) for both ordinary,
left-side (reordrant) vowel signs such as U+093F DEVANAGARI VOWEL SIGN I and for
Thai-style left-side (Logical_Order_Exception=Yes) vowel letters such as U+0E40 THAI
CHARACTER SARA E. The "Not_Reordered" of ccc=Not_Reordered refers to the behavior
of the character in terms of the Canonical Ordering Algorithm as part of the definition of
Unicode Normalization; it does not refer to any issues of visual reordering of glyphs involved
in display and rendering. See "Canonical Ordering Algorithm" in Section 3.11, Normalization
Forms in [Unicode].

5.7.5 Decompositions and Normalization

Decomposition is specified in Chapter 3, Conformance of [Unicode]. That chapter also
specifies the interaction between decomposition and normalization.

A number of derived properties related to Unicode normalization are called the
"Quick_Check" properties. These are defined to enable various optimizations for
implementations of normalization, as explained in Section 9, Detecting Normalization Forms,
in Unicode Standard Annex #15, "Unicode Normalization Forms" [UAX15]. The values for
the four Quick_Check properties for all code points are listed in
DerivedNormalizationProps.txt. The interpretations of the possible property values are
summarized in Table 16.

Table 16. Quick_Check Property Values

Property Value Description
NFC_QC, NFKC_QC,
NFD_QC, NFKD_QC

No Characters that cannot ever occur in the respective
normalization form.

NFC_QC, NFKC_QC Maybe Characters that may occur in the respective
normalization, depending on the context.

NFC_QC, NFKC_QC,
NFD_QC, NFKD_QC

Yes All other characters. This is the default value for
Quick_Check properties.

5.7.6 Properties Whose Values Are Sets of Values

Most properties have a single value associated with each code point. However, some
properties may instead associate a set of multiple different values with each code point. For
example, the provisional kCantonese property, which lists Cantonese pronunciations for
unified CJK ideographs, has values which consist of a set of zero or more romanized
pronunciation strings. Thus, the Unihan Database contains an entry:

U+342B kCantonese gun3 hung1 zung1

This line is to be interpreted as associating a set of three string values, {"gun3", "hung1",
"zung1"} with the kCantonese property for U+342B.

Similarly, the provisional Script_Extensions property has values which consist of a set of one

or more Script property values. Thus the property file ScriptExtensions.txt in the UCD
contains an entry:

0640 ; Arab Mand Syrc # Lm ARABIC TATWEEL

This line is to be interpreted as associating a set of three enumerated Script property values,
{Arab, Mand, Syrc}, with the Script_Extensions property for U+0640.

In the case of Script_Extensions, in particular, the set of sets which constitute meaningful
values of the property is relatively small, and could be explicitly evaluated for any particular
Unicode version. For example:

{{Arab, Syrc}, {Arab, Thaa}, {Arab, Mand, Syrc}, {Arab, Syrc, Thaa}, {Hira, Kana}, ...}

However, an enumeration of this set of set values is unlikely to be of much implementation
value, and would be likely to change significantly between versions of the standard. In other
cases, such as for properties definining pronunciation readings for unified CJK ideographs,
these sets of sets are completely open-ended, and there is no point to attempting to provide
explicit enumerations of such sets in the UCD.

The order of the element values in such sets may or may not be significant. For example, the
order among the element values for kCantonese and for Script_Extensions is not significant.
By way of contrast, when the kMandarin property shows two values for a code point, the first
value is used to indicate a preferred pronunciation for zh-Hans (CN) and the second a
preferred pronuncation for zh-Hant (TW).

For data file format considerations regarding properties which take sets of values, see
Section 4.2.8 Multiple Values for Properties. For considerations regarding validation of such
properties, see Section 5.11.5 Validation of Multivalued Properties. See also Unicode
Technical Standard #18, "Unicode Regular Expressions" [UTS18] for a discussion of how to
handle such properties when processing regular expressions.

5.8 Property and Property Value Aliases

Both Unicode character properties themselves and their values are given symbolic aliases.
The formal lists of aliases are provided so that well-defined symbolic values are available for
XML formats of the UCD data, for regular expression property tests, and for other
programmatic textual descriptions of Unicode data. The aliases for properties are defined in
PropertyAliases.txt. The aliases for property values are defined in PropertyValueAliases.txt.

Table 17. Alias Files in the UCD

File Name Status Description
PropertyAliases.txt N Names and abbreviations for properties
PropertyValueAliases.txt N Names and abbreviations for property values

Aliases are defined as ASCII-compatible identifiers, using only uppercase or lowercase A-Z,
digits, and underscore "_". Case is not significant when comparing aliases, but the preferred
form used in the data files for longer aliases is to titlecase them.

Aliases may be translated in appropriate environments, and additional aliases may be useful
in certain contexts. There is no requirement that only the aliases defined in the alias files of

the UCD be used when referring to Unicode character properties or their values; however,
their use is recommended for interoperability in data formats or in programmatic contexts.

Aliases are not provided for provisional properties. This results from the fact that there are
stability guarantees for property aliases and property value aliases, but no stability
guarantees for provisional properties or other provisional data files.

5.8.1 Property Aliases

In PropertyAliases.txt, the first field specifies an abbreviated symbolic name for the property,
and the second field specifies the long symbolic name for the property. These are the
preferred aliases. Additional aliases for a few properties are specified in the third or
subsequent fields.

Aliases for normative and informative properties defined in the Unihan data files are included
in PropertyAliases.txt, beginning with Version 5.2.

The long symbolic name alias is self-descriptive, and is treated as the official name of a
Unicode character property. For clarity it is used whenever possible when referring to that
property in this annex and elsewhere in the Unicode Standard. For example: "The
Line_Break property is discussed in Unicode Standard Annex #14, "Unicode Line Breaking
Algorithm" [UAX14]."

The abbreviated symbolic name alias is short and less mnemonic, but is useful for
expressions such as "lb=BA" in data or in other contexts where the meaning is clear.

The property aliases specified in PropertyAliases.txt constitute a unique name space. When
using these symbolic values, no alias for one property will match an alias for another
property.

5.8.2 Property Value Aliases

In PropertyValueAliases.txt, the first field contains the abbreviated alias for a Unicode
property, the second field specifies an abbreviated symbolic name for a value of that
property, and the third field specifies the long symbolic name for that value of that property.
These are the preferred aliases. Additional aliases for some property values may be
specified in the fourth or subsequent fields. For example, for binary properties, the
abbreviated alias for the True value is "Y", and the long alias is "Yes", but each entry also
specifies "T" and "True" as additional aliases for that value, as shown in Table 18.

Table 18. Binary Property Value Aliases

Long Abbreviated Other Aliases
Yes Y True, T
No N False, F

Not every property value has an associated alias. Property value aliases are typically
supplied for catalog and enumeration properties, which have well-defined, enumerated
values. It does not make sense to specify property value aliases, for example, for the
Numeric_Value property, whose value could be any number, or for a string property such as
Simple_Lowercase_Mapping, whose values are mappings from one code point to another.

The Canonical_Combining_Class property requires special handling in
PropertyValueAliases.txt. The values of this property are numeric, but they comprise a
closed, enumerated set of values. The more important of those values are given symbolic
name aliases. In PropertyValueAliases.txt, the second field provides the numeric value, while
the third field contains the abbreviated symbolic name alias and the fourth field contains the
long symbolic name alias for that numeric value. For example:

ccc; 230; A ; Above
ccc; 232; AR ; Above_Right

Taken by themselves, property value aliases do not constitute a unique name space. The
abbreviated aliases, in particular, are often re-used as aliases for values for different
properties. All of the binary property value aliases, for example, make use of the same "Y",
"Yes", "T", "True" symbols. Property value aliases may also overlap the symbols used for
property aliases. For example, "Sc" is the abbreviated alias for the "Currency_Symbol" value
of the General_Category value, but it is also the abbreviated alias for the Script property.
However, the aliases for values for any single property are always unique within the context
of that property. That means that expressions that combine a property alias and a property
value alias, such as "lb=BA" or "gc=Sc" always refer unambiguously just to one value of one
given property, and will not match any other value of any other property.

Prior to Version 6.1.0, the property value alias entries for three properties, Age, Block, and
Joining_Group, made use of a special metavalue "n/a" in the field for the abbreviated alias.
This should be understood as meaning that no abbreviated alias was defined for that value
for that property, rather than as an alias per se. Starting with Version 6.1.0, all property
values for those three properties have abbreviated aliases, so there is no current use of the
"n/a" metavalue.

In a few cases, because of longstanding legacy practice in referring to values of a property
by short identifiers, the abbreviated alias and the long alias are the same. This can be seen,
for example, in some property value aliases for the Line_Break property and the
Grapheme_Cluster_Break property.

The provisional property Script_Extensions consists of enumerated sets of Script property
values. The set of those sets is potentially open-ended, and no property value aliases are
defined for them.

5.9 Matching Rules

When matching Unicode character property names and values, it is strongly recommended
that all Property and Property Value Aliases be recognized. For best results in matching,
rather than using exact binary comparisons, the following loose matching rules should be
observed.

5.9.1 Matching Numeric Property Values

For all numeric properties, and for properties such as Unicode_Radical_Stroke which are
constructed from combinations of numeric values, use loose matching rule UAX44-LM1
when comparing property values.

UAX44-LM1. Apply numeric equivalences.

"01.00" is equivalent to "1".

"1.666667" in the UCD is a repeating fraction, and equivalent to "10/6" or "5/3".

5.9.2 Matching Character Names

Unicode character names constitute a special case. Formally, they are values of the Name
property. While each Unicode character name for an assigned character is guaranteed to be
unique, names are assigned in such a way that the presence or absence of spaces cannot
be used to distinguish them. Furthermore, implementations sometimes create identifiers
from Unicode character names by inserting underscores for spaces. For best results in
comparing Unicode character names, use loose matching rule UAX44-LM2.

UAX44-LM2. Ignore case, whitespace, underscore ('_'), and all medial hyphens except the
hyphen in U+1180 HANGUL JUNGSEONG O-E.

"zero-width space" is equivalent to "ZERO WIDTH SPACE" or "zerowidthspace"

"character -a" is not equivalent to "character a"

In this rule "medial hyphen" is to be construed as a hyphen occurring immediately between
two letters in the normative Unicode character name, as published in the Unicode names list,
and not to any hyphen that may transiently occur medially as a result of removing
whitespace before removing hyphens in a particular implementation of matching. Thus the
hyphen in the name U+10089 LINEAR B IDEOGRAM B107M HE-GOAT is medial, and
should be ignored in loose matching, but the hyphen in the name U+0F39 TIBETAN MARK
TSA -PHRU is not medial, and should not be ignored in loose matching.

An implementation of this loose matching rule can obtain the correct results when comparing
two strings by doing the following three operations, in order:

remove all medial hyphens (except the medial hyphen in the name for U+1180)1.

remove all whitespace and underscore characters2.

apply toLowercase() to both strings3.

After applying these three operations, if the two strings compare binary equal, then they are
considered to match.

This is a logical statement of how the rule works. If programmed carefully, an implementation
of the matching rule can transform the strings in a single pass. It is also possible to compare
two name strings for loose matching while transforming each string incrementally.

Loose matching rule UAX44-LM2 is also appropriate for matching character name aliases
and the names of named character sequences, which share the namespace (and matching
behavior) of Unicode character names. See Section 4.8, Name in [Unicode]

Implementations of name matching should use extreme care when matching non-standard,
alternative names for particular characters. The Name Uniqueness Policy in the Unicode
Consortium Stability Policies [Stability] guarantees that the Unicode Standard will never add
a character whose name would match an existing encoded character, according to matching
rule UAX44-LM2. However, any other name for a character might be used in the future.

The following is a concrete example of the kind of trouble that can occur. Prior to Unicode
6.0 some implementations of regex allowed matching of the name "BELL" for the control

code U+0007. When Unicode 6.0 added a different encoded character, U+1F514 BELL for
emoji symbols, those regex implementations broke.

As of Version 6.1 of the Unicode Standard, the most commonly occurring alternative names
for control codes, as well as many commonly used abbreviations for Unicode format
characters, have been added as character name aliases. This automatically excludes all
such alternative names and abbreviations from the potential pool for future Unicode
character names, because name uniqueness is defined over the namespace which includes
both character names and character name aliases. That exclusion should reduce the
potential for surprises similar to the "BELL" case, where implementers assume that a name
for a control code is already well-defined.

5.9.3 Matching Symbolic Values

Property aliases and property value aliases are symbolic values. When comparing them, use
loose matching rule UAX44-LM3.

UAX44-LM3. Ignore case, whitespace, underscore ('_'), hyphens, and any initial prefix string
"is".

"linebreak" is equivalent to "Line_Break" or "Line-break"

"lb=BA" is equivalent to "lb=ba" or "LB=BA"

"Script=Greek" is equivalent to "Script=isGreek" or "Script=Is_Greek"

Loose matching is generally appropriate for the property values of Catalog, Enumeration,
and Binary properties, which have symbolic aliases defined for their values. Loose matching
should not be done for the property values of String properties, which do not have symbolic
aliases defined for their values; exact matching for String property values is important, as
case distinctions or other distinctions in those values may be significant.

For loose matching of symbolic values, an initial prefix string "is" is ignored. The reason for
this is that APIs returning property values are often named using the convention of prefixing
"is" (or "Is" or "Is_", and so forth) to a property value. Ignoring any initial "is" on a symbolic
value during loose matching is likely to produce the best results in application areas such as
regex. Removal of an initial "is" string for a loose matching comparison only needs to be
done once for a symbolic value, and need not be tested recursively. There are no property
aliases or property value aliases of the form "isisisisistooconvoluted" defined just to test
implementation edge cases.

Existing and future property aliases and property value aliases are guaranteed to be unique
within their relevant namespaces, even if an initial prefix string "is" is ignored. The existing
cases of note for aliases that do start with "is" are: dt=Iso (Decomposition_Type=Isolated)
and lb=IS. The Decomposition_Type value alias does not cause any problem, because there
is no contrasting value alias dt=o (Decomposition_Type=olated). For lb=IS, note that the "IS"
is the entire property value alias, and is not a prefix. There is no null value for the
Line_Break property for it to contrast with, but implementations of loose matching should be
careful of this edge case, so that "lb=IS" is not misinterpreted as matching a null value.

Implementations sometimes use other syntactic constructs that interact with loose matching.
For example, the property matching expression \p{L} may be defaulted to refer to the
Unicode General_Category property: \p{General_Category=L}. For more information about
the use of property values in regular expressions and other environments, see Section 1.2,

Properties, in Unicode Technical Standard #18, "Unicode Regular Expressions" [UTS18]

5.10 Invariants

Property values in the UCD may be subject to correction in subsequent versions of the
standard, as errors are found. Furthermore, any new version of the Unicode Standard may
introduce new property values for a given property, except where the set of allowable values
is fixed by the property type (such as for binary properties), or where the set of allowable
values is subject to a provision of the Unicode Character Encoding Stability Policy [Stability].
Finally, a new version may also introduce new properties or new data files in the UCD.

Implementers of the UCD need to be aware of such changes when updating to new
versions. However, some property values and some aspects of the file formats are
considered invariant. This section documents such invariants.

5.10.1 Character Property Invariants

All formally guaranteed invariants for properties or property values are described in the
Unicode Character Encoding Stability Policy [Stability]. That policy and the list of invariants it
enumerates are maintained outside the context of the Unicode Standard per se. They are
not part of the standard, but rather are constraints on what can and cannot change in the
standard between versions, and on what decisions the Unicode Technical Committee can
and cannot take regarding the standard.

In addition to the formally guaranteed invariants described in the Unicode Character
Encoding Stability Policy, this section notes a few additional points regarding character
property invariants in the UCD.

Some character properties are simply considered immutable: once assigned, they are never
changed. For example, a character's name is immutable, because of its importance in exact
identification of the character. The Canonical_Combining_Class and
Decomposition_Mapping of a character are immutable, because of their importance to the
stability of the Unicode Normalization Algorithm [UAX15].

The list of immutable character properties is shown in Table 19.

Table 19. Immutable Properties

Property Name Abbr Name
Name na
Jamo_Short_Name jsn
Canonical_Combining_Class ccc
Decomposition_Mapping dm
Pattern_Syntax Pat_Syn
Pattern_White_Space Pat_WS

In some cases, a property is not immutable, but the list of possible values that it can have is
considered invariant. For example, while at least some General_Category values are subject
to change and correction, the enumerated set of possible values that the General_Category
property can have is fixed and cannot be added to in the future. The same is true of the

Bidi_Class property. However, not all Enumeration properties used by Unicode algorithms
have immutable lists of property values. For example, the enumerated lists of values
associated with the Line_Break and the Word_Break properties have changed in the past,
and may be changed again in future versions of the standard.

All characters other than those of General_Category M* are guaranteed to have
Canonical_Combining_Class=0. Currently it is also true that all characters other than those
of General_Category Mn have Canonical_Combining_Class=0. However, the more
constrained statement is not a guaranteed invariant; it is possible that some new character
of General_Category Me or Mc could be given a non-zero value for
Canonical_Combining_Class in the future.

In Unicode 4.0 and thereafter, the General_Category value Decimal_Number (Nd), and the
Numeric_Type value Decimal (de) are defined to be co-extensive; that is, the set of
characters having General_Category=Nd will always be the same as the set of characters
having NumericType=de.

5.10.2 UCD File Format Invariants

There are also some constraints on allowable change in the file formats for UCD files. In
general, the file format conventions are changed as little as possible, to minimize the impact
on implementations which parse the machine-readable data files. However, some of the
constraints on allowable file format change go beyond conservatism in format and instead
have the status of invariants. These guarantees apply in particular to UnicodeData.txt, the
very first data file associated with the UCD.

The number and order of the fields in UnicodeData.txt is fixed. Any additional information
about character properties to be added to the UCD in the future will appear in separate data
files, rather than being added as an additional field to UnicodeData.txt or by reinterpretation
of any of the existing fields.

5.10.3 Invariants in Implementations

Applications may wish to take the various character property and file format invariants into
account when choosing how to implement character properties.

The Canonical_Combining_Class offers a good example. The character property invariants
regarding Canonical_Combining_Class guarantee that values, once assigned, will never
change, and that all values used will be in the range 0..254. This means that the
Canonical_Combining_Class can be safely implemented in an unsigned byte and that any
value stored in a table for an existing character will not need to be updated dynamically for a
later version.

In practice, for Canonical_Combining_Class far fewer than 256 values are used. Unicode 3.0
used 53 values; Unicode 3.1 through Unicode 4.1 used 54 values; and Unicode 5.0 through
Unicode 6.3 used 55 values. New, non-zero Canonical_Combining_Class values are seldom
added to the standard. (For details about this history, see DerivedCombiningClass.txt.)
Implementations may take advantage of this fact for compression, because only the ordering
of the non-zero values, and not their absolute values, matters for the Canonical Ordering
Algorithm. In principle, it would be possible for up to 255 values to be used in the future, but
the chances of the actual number of values exceeding 128 are remote at this point. There
are implementation advantages in restricting the number of internal class values to 128—for

example, the ability to use signed bytes without implicit widening to ints in Java.

5.11 Validation

The Unicode character property values in the UCD files can be validated by means of
regular expressions. Such validation can also be useful in testing of implementations that
return property values. The method of validation depends on the type of property, as
described below. These expressions use Perl syntax, but may of course be converted to
other formal conventions for use with other regular expression engines.

The regular expressions which are appropriate for validation of particular properties may
change in each subsequent version of the UCD. However, because of stability guarantees
for character property aliases, these regular expressions for one version of the Unicode
Standard will match valid values for previous versions of the standard.

5.11.1 Enumerated and Binary Properties

Enumerated and binary character properties can be validated by generating a regular
expression using the PropertyValueAliases.txt file. Because enumerated properties have a
defined list of possible values, the validating regular expression simply ORs together all of
the possible values. Binary properties are a special case of enumerated property, with a
predefined very short list of possible values.

For example, to validate the East_Asian_Width property in the UCD, or to test an
implementation that returns the East_Asian_Width property, parse the following relevant
lines from PropertyValueAliases.txt and produce a regular expression that concatenates
each of the short and long property alias values.

East_Asian_Width (ea)

ea ; A ; Ambiguous
ea ; F ; Fullwidth
ea ; H ; Halfwidth
ea ; N ; Neutral
ea ; Na ; Narrow
ea ; W ; Wide

The resulting regular expression would then be:

 /A|Ambiguous|F|Fullwidth|H|Halfwidth|N|Neutral|Na|Narrow|W|Wide/

For each Unicode binary character property, the regular expression can be precomputed
simply as:

 /N|No|F|False|Y|Yes|T|True/

The Catalog properties, Age, Block, and Script, are another type of enumerated character
property. All possible values of those properties for any given version of the Unicode
Standard are listed in PropertyValueAliases.txt, so a validating regular expression for a
Catalog property for that given version of the UCD can be generated by concatenating
values, as for the other enumerated properties.

5.11.2 Combining_Character_Class Property

The Combining_Character_Class (ccc) property is a hybrid type. The possible values
defined for it in UnicodeData.txt range from 0 to 254 and are numeric values. However,
Combining_Character_Class also has symbolic aliases defined for those particular values
that are in actual use; those symbolic aliases are listed in PropertyValueAliases.txt. To
produce a validating regular expression for Combining_Character_Class, concatenate
together the symbolic aliases from PropertyValueAliases.txt, and then add the numeric range
0..254.

The value 255 is reserved for use by implementations. When the ccc values are represented
by bytes, that additional value of 255 may be used by an implementation for other purposes.

The value 133 is reserved. No characters have that value. The property value alias CCC133
is retained in accordance with the stability policy regarding property value aliases.

5.11.3 Unihan Properties

The validating regular expressions for each property tag defined in the Unihan database are
described in detail in [UAX38].

5.11.4 Other Properties

Regular expressions to validate String and Miscellaneous properties in the UCD are
provided in Table 21. Although Catalog properties may use strict tests, as described in
Section 5.11.1 Enumerated and Binary Properties, generic patterns for Block and Script are
also provided in Table 21.

To simplify the presentation of these expressions, commonly occurring subexpressions are
first abstracted out as variables defined in Table 20.

Table 20. Common Subexpressions for Validation

Variable Value Notes and Examples
$digit [0-9] "0", "3"
$hexDigit [A-F0-9] "1", "A"
$alphaNum [a-zA-Z0-9] "1", "A", "z"
$digits $digit+ "0", "12345"
$label $alphaNum+ "A", "Syriac", "NGKWAEN", "123467",

"A005A"
$positiveDecimal $digits\.$digits "3.1"
$decimal -?$positiveDecimal "3.5", "-0.5"
$rational -?$digits(/$digits)? "3/4", "-3/4"
$optionalDecimal -?$digits(\.$digits)? "3.5", "-0.5", "2", "1000"
$name $label((-|- |[-_])$label)* name, with potential non-medial

hyphens

$name2 $label([-_]$label)* name, no non-medial hyphens
allowed

$annotatedName $name2(\(.*\))? name with optional parenthetical
annotation

$shortName [A-Z]{0,3} "", "O", "WA", "WAE"
$codePoint (10|$hexDigit)?$hexDigit{4} "00A0", "E0100", "10FFFF"
$codePoints $codePoint(\s$codePoint)* space-delimited list of 1 to n code

points
$codePoint0 ($codePoints)? space-delimited list of 0 to n code

points

The regular expressions listed in Table 21 cover all the straightforward cases for other
property values. For properties involving somewhat more irregular values, such as Age,
ISO_Comment, and Unicode_1_Name, details for validation can be found in [UAX42].

Table 21. Regular Expressions for Other Property Values

Abbr Name Regex for Allowable Values
nv Numeric_Value /$decimal/ Field 2

/$optionalDecimal/ Field 3
/$rational/

blk Block /$name2/
sc Script
dm Decomposition_Mapping /$codePoints/
FC_NFKC FC_NFKC_Closure
NFKC_CF NFKC_Casefold /$codePoint0/
cf Case_Folding /$codePoints/
lc Lowercase_Mapping
tc Titlecase_Mapping
uc Uppercase_Mapping
sfc Simple_Case_Folding /$codePoint/
slc Simple_Lowercase_Mapping
stc Simple_Titlecase_Mapping
suc Simple_Uppercase_Mapping
bmg Bidi_Mirroring_Glyph /$codePoint/
na Name /$name/
Name_Alias Name_Alias
-- Names for named sequences*

na1 Unicode_1_Name /$annotatedName/
JSN Jamo_Short_Name /$shortName/

* The names for Unicode named character sequences are not formally Unicode
character property values. However, they follow the same syntax as the Name and
Name_Alias property values.

5.11.5 Validation of Multivalued Properties

Some properties, such as Script_Extensions of kCantonese, have property values each
consisting of a set of element values. In the data files, these element values are separated
by spaces. Validation of the property values is performed by first splitting each set into
element values at the spaces, and then validating each element value individually. For
example, the elements for Script_Extensions are values of the Script property; they are
validated according to the validation requirements for the Script property. See also Section
5.7.6 Properties Whose Values Are Sets of Values.

The Name_Alias property has values which consist of sets of one or more name strings. In
the data file for this property, each element value occurs on a separate line and can be
validated as a separate element.

5.12 Deprecation

In the Unicode Standard, the term deprecation is used somewhat differently than it is in
some other standards. Deprecation is used to mean that a character or other feature is
strongly discouraged from use. This should not, however, be taken as indicating that
anything has been removed from the standard, nor that anything is planned for removal from
the standard. Any such change is constrained by the Unicode Consortium Stability Policies
[Stability].

For the Unicode Character Database, there are two important types of deprecation to be
noted. First, an encoded character may be deprecated. Second, a character property may
be deprecated.

When an encoded character is strongly discouraged from use, it is given the property value
Deprecated=True. The Deprecated property is a binary property defined specifically to carry
this information about Unicode characters. Very few characters are ever formally deprecated
this way; it is not enough that a character be uncommon, obsolete, disliked, or not preferred.
Only those few characters which have been determined by the UTC to have serious
architectural defects or which have been determined to cause significant implementation
problems are ever deprecated. Even in the most severe cases, such as the deprecated
format control characters (U+206A..U+206F), an encoded character is never removed from
the standard. Furthermore, although deprecated characters are strongly discouraged from
use, and should be avoided in favor of other, more appropriate mechanisms, they may occur
in data. Conformant implementations of Unicode processes such a Unicode normalization
must handle even deprecated characters correctly.

In the Unicode Character Database, a character property may also become strongly
discouraged—usually because it no longer serves the purpose it was originally defined for. In
such cases, the property is labelled "deprecated" in Table 9, Property Table. For example,
see the Grapheme_Link property.

6 Test Files

The UCD contains a number of test data files. Those provide data in standard formats which
can be used to test implementations of Unicode algorithms. The test data files distributed
with this version of the UCD are listed in Table 22.

Table 22. Unicode Algorithm Test Data Files

File Name Specification Status Unicode Algorithm
BidiTest.txt [UAX9] N Unicode Bidirectional Algorithm
BidiCharacterTest.txt [UAX9] N Unicode Bidirectional Algorithm
NormalizationTest.txt [UAX15] N Unicode Normalization Algorithm
LineBreakTest.txt [UAX14] N Unicode Line Breaking Algorithm
GraphemeBreakTest.txt [UAX29] N Grapheme Cluster Boundary

Determination
WordBreakTest.txt [UAX29] N Word Boundary Determination
SentenceBreakTest.txt [UAX29] N Sentence Boundary Determination

The normative status of these test files reflects their use to determine the correctness of
implementations claiming conformance to the respective algorithms listed in the table. There
is no requirement that any particular Unicode implementation also implement the Unicode
Line Breaking Algorithm, for example, but if it implements that algorithm correctly, it should
be able to replicate the test case results specified in the data entries in LineBreakTest.txt.

6.1 NormalizationTest.txt

This file contains data which can be used to test an implementation of the Unicode
Normalization Algorithm. (See [UAX15] and [Tests15].)

The data file has a Unicode string in the first field (which may consist of just a single code
point). The next four fields then specify the expected output results of converting that string
to Unicode Normalization Forms NFC, NFD, NFKC, and NFKD, respectively. There are
many tricky edge cases included in the input data, to ensure that implementations have
correctly implemented some of the more complex subtleties of the Unicode Normalization
Algorithm.

The header section of NormalizationTest.txt provides additional information regarding the
normalization invariant relations that any conformant implementation should be able to
replicate.

The Unicode Normalization Algorithm is not tailorable. Conformant implementations should
be expected to produce results as specified in NormalizationTest.txt and should not deviate
from those results.

6.2 Segmentation Test Files and Documentation

LineBreakTest.txt, located in the auxiliary directory of the UCD, contains data which can be
used to test an implementation of the Unicode Line Breaking Algorithm. (See [UAX14] and
and [Tests14].) The header of that file specifies the data format and the use of the test data

to specify line break opportunities. Note that non-ASCII characters are used in this test data
as field delimiters.

There is an associated documentation file, LineBreakTest.html, which displays the results of
the Line Breaking Algorithm in an interactive chart form, with a documented listing of the
rules.

The Unicode text segmentation test data files are also located in the auxiliary directory of the
UCD. (See [Tests29].) They contain data which can be used to test an implementation of the
segmentation algorithms specified in [UAX29]. The headers of those file specify the data
format and the use of the test data to specify text segmentation opportunities. Note that
non-ASCII characters are used in this test data as field delimiters.

There are also associated documentation files, which display the results of the segmentation
algorithms in an interactive chart form, with a documented listing of the rules:

GraphemeBreakTest.html

SentenceBreakTest.html

WordBreakTest.html

Unlike the Unicode Normalization Algorithm, the Unicode Line Breaking Algorithm and the
various text segmentation algorithms are tailorable, and there is every expectation that
implementations will tailor these algorithms to produce results as needed. The test data files
only test the default behavior of the algorithms. Testing of tailored implementations will need
to modify and/or extend the test cases as appropriate to match any documented tailoring.

6.3 Bidi Test Files

This file contains These files contain data which can be used to test an implementation of
the Unicode Bidirectional Algorithm. (See [UAX9] and [Tests9].)

The data in BidiTest.txt is intended to exhaustively test all possible combinations of
Bidi_Class values for strings of length four or less. To allow for the resulting very large
number of test cases, the data file has a somewhat complicated format which is described in
the header. Fundamentally, for each input string and for each possible input paragraph level,
the test data specifies the resulting bidi levels and expected reordering.

The data in BidiCharacterTest.txt is provided to test various edge cases for the algorithm. It
contains an extra field which allows for explicit control of the overall directional context for
each test case.

The Unicode Bidirectional Algorithm is tailorable within certain limits. Conformant
implementations with no tailoring are expected to produce the results as specified in
BidiTest.txt and should not deviate from those results. Tailored implementations can also use
the data in BidiTest.txt to test for overall conformance to the algorithm by changing the
assignment of properties to characters to reflect the details of their tailoring.

7 UCD Change History

This section summarizes the recent changes to the UCD—including its documentation
files—and is organized by Unicode versions.

References in the change history are often made to a Public Review Issue (PRI). See

http://www.unicode.org/review/resolved.html for more information about each of those cases.

Unicode 6.3.0

Changes in specific files:

Appropriate data files were updated to include the five new bidirectional format characters
added in Unicode 6.3.0: U+061C ARABIC LETTER MARK and the four bidirectional isolate
characters U+2066 LEFT-TO-RIGHT ISOLATE..U+2069 POP DIRECTIONAL ISOLATE. The
data file updates resulting from encoding the five new characters and from various character
property changes are summarized below, in the same grouping manner used in
Components of Unicode 6.3.0.

Note that minor editorial updates and changes to the derived and extracted data files, except
for DerivedBidiClass.txt, are not included here.

Core Data

ArabicShaping.txt

New entries were added for Mongolian, Phags-pa, and the four bidirectional
isolates.

BidiBrackets.txt

This new data file was added, defining two new normative properties,
Bidi_Paired_Bracket and Bidi_Paired_Bracket_Type.

CJKRadicals.txt

Two entries were reordered by radical number.

EastAsianWidth.txt

New entries were added for the five bidirectional format characters.

IndicSyllabicCategory.txt

Three entries were reordered by code point value.

LineBreak.txt

The five new bidirectional format characters were assigned the Line_Break
property value CM.

The default Line_Break property value PR was given to unassigned code points
in the Currency Symbols block, U+20BB..U+20CF.

The Line_Break property values of two ideographic characters were changed:
U+3000 IDEOGRAPHIC SPACE, from ID to BA, and U+3035 VERTICAL KANA
REPEAT MARK LOWER HALF, from ID to CM.

NameAliases.txt

New abbreviations were added for the five bidirectional format characters.

Formal name aliases of type correction were added for two Cuneiform
characters, U+122D4..U+122D5.

NamedSequences.txt

Nine new entries were added with sequences of Arabic characters used in
Uighur and Chagatai.

NamesList.txt

New entries were added for the five bidirectional format characters.

Content was updated with formal aliases, annotations, cross references,
alternate glyphs, subheadings, and remarks.

PropertyAliases.txt

Two new normative properties were added, Bidi_Paired_Bracket and
Bidi_Paired_Bracket_Type.

PropertyValueAliases.txt

New values were added for both existing properties (age, Bidi_Class,
Word_Break) and the two new bidirectional properties (Bidi_Paired_Bracket,
Bidi_Paired_Bracket_Type).

In particular, the Bidi_Class property was extended with four new values for
bidirectional isolates.

PropList.txt

The five bidirectional format characters were added to Bidi_Control.

White_Space and Other_Default_Ignorable_Code_Point entries were updated for
U+180E and the four bidirectional isolate characters.

Scripts.txt

The four new bidirectional isolate characters were added to script Common.

U+061C ARABIC LETTER MARK was added to script Arabic.

One Javanese character, U+A9CF, was reassigned to script Common.

ScriptExtensions.txt

Entries were updated for U+061C, one Javanese character U+A9CF shared with
Buginese, and digits shared between various scripts.

StandardizedVariants.txt

A set of 1002 standardized variation sequences was added, comprising
sequences of CJK unified ideographs and variation selectors U+FE00..U+FE02,
with an intended visual appearance of corresponding CJK compatibility
ideographs.

UnicodeData.txt

New entries were added for the five bidirectional format characters.

General_Category, Bidi_Class, and Numeric_Value property values were
updated for a total of four existing characters, U+180E, U+1A1B, and
U+12456..U+12457.

In particular, the General_Category property value of U+180E MONGOLIAN
VOWEL SEPARATOR was changed from Zs to Cf.

Unihan Database (Unihan.zip)

Unihan_DictionaryIndices.txt

The dictionary indices of a few ideographs were updated.

Unihan_DictionaryLikeData.txt

The total stroke count of one ideograph, U+8303, was updated.

Unihan_IRGSources.txt

The G source was removed from the sources of one ideograph, U+3ABF.

Unihan_OtherMappings.txt

Additions, deletions, and modifications were made in the mappings of several

ideographs to the East Asian Character Code for Bibliographic Use (the kEACC
field).

Unihan_RadicalStrokeCounts.txt

An alternative radical-stroke count was added to one ideograph, U+51E1.

Unihan_Readings.txt

The kHanyuPinlu fields were revised systematically, changing the representation
of tone marks in pinyin pronunciations to use diacritics instead of digits.

Readings such as Mandarin and Japanese kun and on yomi were updated.

Unihan_Variants.txt

Canonical decomposition mappings were added for the two compatibility
ideographs encoded in Unicode 6.1, U+FA2E..U+FA2F.

Data for UAX #45

USourceData.txt

A set of 245 new entries was added (UTC-00953 through UTC-01197).

Several ideograph status fields were updated.

Several virtual KangXi dictionary position fields were populated or updated.

USourceGlyphs.pdf

A set of 245 new entries was added (UTC-00953 through UTC-01197).

Extracted Data

DerivedBidiClass.txt

The default Bidi_Class property value ET was given to unassigned code points in
the Currency Symbols block, U+20BB..U+20CF.

Relevant properties were documented for characters with Bidi_Class property
value BN.

New entries were added for the four bidirectional isolate characters with their
individual new Bidi_Class property values.

U+061C ARABIC LETTER MARK was added with Bidi_Class property value AL.

Changes were made in Bidi_Class property values of existing characters,
deriving from modifications of their General_Category property values.

Conformance Test Data

BidiCharacterTest.txt

This new conformance test data file was added, containing test sequences of
explicit code points, in support of testing the new extensions to the Bidirectional
Algorithm.

BidiTest.txt

Test cases were added containing the newly introduced Bidi_Class property
values LRI, RLI, FSI, and PDI.

Test cases consisting of longer sequences were also added.

Auxiliary Data for UAX #14 and UAX #29

GraphemeBreakProperty.txt

The five bidirectional format characters were assigned the
Grapheme_Cluster_Break property value Control based on their
General_Category.

Other changes resulted from modifications in General_Category property values
of existing characters.

LineBreakTest.txt

Updates were made in the line-breaking results for test sequences involving
U+3000 IDEOGRAPHIC SPACE, whose Line_Break property value changed
from ID to BA.

SentenceBreakProperty.txt

The five bidirectional format characters were assigned the Sentence_Break
property value Format based on their General_Category.

Other changes resulted from modifications in General_Category property values
of existing characters.

WordBreakProperty.txt

Hebrew letters and basic punctuation marks were assigned the newly introduced
Word_Break property values Hebrew_Letter, Single_Quote, and Double_Quote.

U+003A COLON and its compatibility equivalents were removed from the set of
characters with the Word_Break property value MidLetter.

U+02D7 MODIFIER LETTER MINUS SIGN was assigned the Word_Break
property value MidLetter.

The five bidirectional format characters were assigned the Word_Break property
value Format based on their General_Category.

Other changes resulted from modifications in General_Category property values
of existing characters.

WordBreakTest.txt

Test cases were added containing the new Word_Break property values.

Test cases were updated with different exemplar characters resulting from
changes in Word_Break property values, such as changes in MidLetter and
MidNumLet, some of which also incurred changes in word-breaking results.

Documentation for Auxiliary Data

LineBreakTest.html

Updates were made in the line-breaking results for test sequences involving
U+3000 IDEOGRAPHIC SPACE, whose Line_Break property value changed
from ID to BA.

WordBreakTest.html

Changes were made in the pair table, the word segmentation rules, and the
Word_Break classification of U+0027 APOSTROPHE in the sample strings.

Unicode 6.2.0

Changes in specific files:

Appropriate data files were updated to include the single new character added in Unicode

6.2: U+20BA TURKISH LIRA SIGN.

Note that changes to the Unihan Database portion of the UCD are not called out separately
in detail here.

UnicodeData.txt

Numeric values were given to four Cuneiform numeric characters,
U+12432..U+12433, U+12456..U+12457.

BidiMirroring.txt

The correct @missing line was added.

EastAsianWidth.txt

The eaw property values for a number of Hangul jamo were corrected from W to
N.

LineBreak.txt

Updated the Line_Break property value from lb=AL or lb=AI to lb=ID for 907
pictographic symbols. See the resolution of PRI #229.

Updated the Line_Break property value for regional indicator symbols to the new
value lb=RI.

PropertyValueAliases.txt

An alias CCC132 was added for ccc=132, and CCC133 was corrected to refer to
the reserved value ccc=133.

Added aliases for new property values added to the Line_Break,
Grapheme_Cluster_Break, and Word_Break properties.

Scripts.txt

The Script property value for U+065F ARABIC WAVY HAMZA BELOW was
changed from Inherited to Arabic.

ScriptExtensions.txt

The status of the Script_Extensions property was changed from provisional to
informative.

The Script property value Takri was added to the set of Script property values for
the Script_Extensions property value of the Devanagari danda characters
(U+0964 and U+0965).

A number of new Script_Extensions property values were added for Latin, Greek,
Cyrillic, and Devanagari characters with Script=Common or Script=Inherited. See
the resolution of PRI #227.

NameAliases.txt

A formal name alias of type "correction" was added for U+0709.

NamesList.html

Documentation of support for UTF-8 as an encoding for the names list was
added.

Documentation of new syntax for listing standardized variants in the names list
was added.

USourceData.txt

New for the UCD in this release. Updated from tr45-sourcedata-6.txt in the tr45
directory.

USourceGlyphs.pdf

New for the UCD in this release. Updated from tr45-glyphs-6.pdf in the tr45
directory.

GraphemeBreakProperty.txt

New property values were assigned to regional indicator symbols.

WordBreakProperty.txt

New property values were assigned to regional indicator symbols.

LineBreakTest.txt

The test cases were updated to reflect the addition of a new Line_Break property
value and other changes to the algorithm.

GraphemeBreakTest.txt, WordBreakTest.txt

The test cases were updated to reflect changes in property values and other
changes to the algorithm.

SentenceBreakTest.txt

A few test cases were added.

LineBreakTest.html, GraphemeBreakTest.html, WordBreakTest.html

The documentation, break tables, and rule lists were updated.

Unicode 6.1.0

Changes in specific files:

Appropriate data files were updated to include the 732 new characters added in Unicode
6.1. One new provisional property (Script_Extensions) was added. Major changes that are
most likely to affect implementations are documented in Section F of Unicode 6.1.0. The
detailed list of all changes to the files is provided here.

Note that changes to the Unihan Database portion of the UCD are not called out separately
in detail here. However, there were significant format and data changes to the kMandarin
and kTotalStrokes tag values in this version. There was a format update for the
kIRG_USource tag. Also, there were many updates to the kDefinition tag values, and a few
corrections for traditional and simplified mapping values.

UnicodeData.txt

U+00A7, U+00B6, U+0F14, U+1360, and U+10102 were changed from gc=So to
gc=Po.

U+00AA and U+00BA were changed from gc=Ll to gc=Lo. See PRI #181.

U+1D62..U+1D6A and U+2C7C were changed from gc=Ll to gc=Lm. See
PRI #181.

U+302E and U+302F were changed from gc=Mn to gc=Mc, and from bc=NSM to
bc=L.

U+17B4 and U+17B5 were changed from gc=Cf to gc=Mn, and from bc=L to
bc=NSM. See PRI #176.

U+070F was changed from bc=AN to bc=AL.

U+1F48C and U+1F524 were corrected from bc=L to bc=ON.

U+3248..U+324F were changed from gc=So to gc=No, Numeric_Type=numeric,
and assigned numeric values.

Case mappings were added for U+0266, to map to the newly encoded character

U+A7AA.

ArabicShaping.txt

The short schematic names used in field 1 of the data file were updated to be
more consistently based on shape.

BidiMirroring.txt

A note was added regarding the inconsistency between the statement regarding
default values in the header of this data file and the @missing line for
Bidi_Mirroring_Glyph in PropertyValueAliases.txt. The inconsistency was
discovered too late to resolve in this version.

IndicSyllabicCategory.txt

U+ABCE, U+ABCF, and U+ABD1 were corrected from Consonant to
Vowel_Independent.

LineBreak.txt

A new Line_Break property value HL ("Hebrew Letter") was introduced, and
assigned to all Hebrew letters. See PRI #190.

A new Line_Break property value CJ ("Conditional Japanese Starter") was
introduced, and assigned to small kana and to U+30FC. See PRI #190.

NameAliases.txt

Added a type field to the data format, and added over 300 new character name
aliases for control characters, some format characters, and abbreviations for
characters. See PRI #202.

PropList.txt

U+180A was given the property Extender.

U+00AA, U+00BA, and a number of lowercase modifier letters were given the
Other_Lowercase property, to maintain stability in the derivation of casing-related
properties. See PRI #181.

U+302E and U+302F were given the Other_Grapheme_Extend property.

U+17B4 and U+17B5 were given the Other_Default_Ignorable_Code_Point
property. See PRI #176.

PropertyAliases.txt

Property aliases were added for the provisional properties Script_Extensions,
Indic_Matra_Category, and Indic_Syllabic_Category.

PropertyValueAliases.txt

The use of the "n/a" metavalue was retired. Instead, short aliases were added for
the enumerated or catalog properties which had used that metavalue. This
impacted the Age, Block, and Joining_Group properties.

For the Age property, the new short aliases reused the old aliases (of the form
"3.1", "5.0", ...), and new long aliases were added, using a form which can serve
as a programming identifier ("V3_1", "V5_0", ...).

Aliases were added for the values for the provisional properties
Indic_Matra_Category and Indic_Syllabic_Category.

"Combining_Mark" was added as an alias for the grouped General_Category
value gc=M.

Aliases of the form "CCC10", "CCC11", ... were added for fixed position classes
of the Canonical_Combining_Class.

Scripts.txt

U+0970 was changed from Script=Common to Script=Devanagari.

ScriptExtensions.txt

The data in this file was specifically recognized as constituting a new provisional
property, Script_Extensions, with the default value defined as the Script property
value of a character.

Mandaic as added to the list of scripts using U+0640 ARABIC TATWEEL.

Script_Extensions={Cprt Linb} was added to account for common Aegean
punctuation.

Script_Extensions={Deva Gujr Guru Kthi Takri} was added to account for
common North Indic number forms.

SpecialCasing.txt

A minor correction was made for a syntax error in the @missing line.

StandardizedVariants.txt

214 new variation sequences were added. These constitute 107 pairs of variation
sequences for emoji characters for which a text style versus an emoji style
distinction may need to be preserved.

StandardizedVariants.html

Glyphs were added to document the graphic forms of the 214 new variation
sequences for emoji characters.

NamedSequences.txt

Three Sinhala consonant sign named sequences were updated from provisional
to approved, and moved into this file.

NamedSequencesProv.txt

Three provisional Sinhala consonant sign named sequences were removed.

NamesList.html

The constraint that an LCTAG can only consist of lowercase letters was
removed.

GraphemeBreakProperty.txt

Surrogate code points and Default_Ignorable_Code_Point=True code points
were added to gcb=Control.

All characters in the Prepend class (Thai, Lao, Tai Viet leftside vowels) were
removed.

Many vowel signs in Southeast Asian scripts were removed from the
SpacingMark class.

For all these changes, see PRI #193.

SentenceBreakProperty.txt

A number of lowercase superscript or subscript modifier letters were changed
from sb=OLetter to sb=Lower.

LineBreakTest.txt

The test cases were updated to reflect the addition of new Line_Break property
values and other changes to the algorithm.

GraphemeBreakTest.txt, SentenceBreakTest.txt, WordBreakTest.txt

The test cases were updated to reflect changes in property values and other
changes to the algorithm.

LineBreakTest.html, GraphemeBreakTest.html, SentenceBreakTest.html,

WordBreakTest.html

The documentation was updated, and where appropriate, the break tables and
rule lists were updated.

Acknowledgments

Mark Davis and Ken Whistler are the authors of the initial version and have added to and
maintained the text of this annex. Laurențiu Iancu assisted in the documentation of UCD
changes for Version 6.3.0. Julie Allen and Asmus Freytag provided editorial suggestions for
improvement of the text. Over the years, many members of the UTC have participated in the
review of the UCD and its documentation.

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 11 [KW, LI]

Proposed Update for Unicode 6.3.0.

Removed old UCD Change History entry for Unicode 6.1.0, and added new one for
Unicode 6.3.0.

Added a clarification about Numeric_Type=Digit.

Added documentation of default values for Line_Break, added additional default values
for Bidi_Class, and clarified the usage of @missing in Section 4.2.9 Default Values.

Clarified the status of default values in Section 5.4 Derived Extracted Properties.

Added information about the derived status of kCompatibilityVariant in Section 5.7.3
Character Decomposition Mapping.

Added an entry for BidiBrackets.txt and two new bidi properties to Table 9. Property
Table and relevant links elsewhere.

Added BidiCharacterTest.txt to the list of test data files and provided a brief description
of its contents in Section 6.3 Bidi Test Files.

Added new isolate controls to Table 13. Bidi_Class Values and reordered entries to
match the listing in UAX #9.

Revision 10 [KW]

Reissued for Unicode 6.2.0.

Removed old UCD Change History entry for Unicode 6.0.0, and added new one for
Unicode 6.2.0.

Updated status of Script_Extensions to informative.

Updated type of Bidi_Mirroring_Glyph from String to Miscellaneous.

Marked Unicode_1_Name as Obsolete and updated its documentation.

Added text indicating that the UTC must approve any change to normative or
informative property values, in Section 2.3.1 Changes to Properties Between

Releases.

Corrected numbering error for Section 2.3.4 Stabilized Properties.

Updated the note about NamesList.txt being encoded in Latin-1, because starting with
Version 6.2.0, it is encoded in UTF-8. See Section 4.2.11 Text Encoding.

Added indication that ccc=133 is reserved in Section 5.11.2
Combining_Character_Class Property.

Added Section 3.6 U-Source Ideographs and UAX #45.

Added entries to Table 5 for USourceData.txt and USourceGlyphs.pdf.

Removed entry for ScriptExtensions.txt from Table 5.

Revision 9 being a proposed update, only changes between versions 10 and 8 are noted
here.

Revision 8 [KW]

Reissued for Unicode 6.1.0.

Removed old UCD Change History entry for Unicode 5.2.0, and added new one for
Unicode 6.1.0.

Added details of data file changes for Unicode 6.1.0.

Updated derivation of Default_Ignorable_Code_Point to account for U+0604.

Added a clarification about empty field values in data files for string properties in a new
Section 4.2.10 Empty Fields.

Added a warning about matching alternative, non-standard names in Section 5.9
Matching Rules.

Added new Section 4.2.8 Multiple Values for Properties.

Added new Section 5.7.6 Properties Whose Values Are Sets of Values.

Added documentation of symbolic labels for fixed position canonical combining classes
in Table 15.

Updated wording regarding addition of new property values in Section 5.10 Invariants.

Corrected URL for the Resolved PRI page reference.

Added a paragraph about aliases of the form "Ccc10" for fixed position classes in
Canonical Combining Class Values.

Clarified the current status of the "n/a" metavalue for PropertyValueAliases.txt, in
Property and Property Value Aliases.

Updated regex in Table 20 and Table 21.

Updated the description of the Name_Alias property, to account for new types of formal
name aliases now included in NameAliases.txt.

Added new Section 5.11.5 Validation of Multivalued Properties.

Added new entry for Script_Extensions in the Property Table.

Updated Invariants in Implementations and related sections to reflect change in range
for Canonical_Combining_Class from 0..255 to 0..254.

Added note to Combining_Character_Class Property regarding implementation use of
reserved value 255.

Added a gray background to entries for contributory properties in the Property Index.

Added documentation regarding abbreviations and long aliases for General_Category
groupings in Table 12. General_Category Values.

Corrected several numerical references to definitions related to casing properties in
Table 9. Property Table.

Added information regarding longest canonical and compatibility mappings in 5.7.3
Character Decomposition Mapping.

Updated status of Grapheme_Base and Grapheme_Extend to normative and corrected
their descriptions in Table 9. Property Table.

Added clarification regarding edge case treatment for Other_Punctuation,
Other_Symbol, etc. in 5.7.1 General Category Values

Added a description and example of the form of derived property definitions in 2.1
Simple and Derived Properties.

Various small editorial fixes.

Revision 7 being a proposed update, only changes between versions 8 and 6 are noted
here.

Revision 6 [KW]

Reissued for Unicode 6.0.0.

Removed old UCD Change History entries prior to Unicode 5.2.0.

Updated status of Hyphen and ISO_Comment properties to Deprecated.

Updated status of several derived normalization properties to Deprecated.

Added tables listing Deprecated and Stabilized properties.

Extended the discussion of the significance of the Bidi_Mirroring_Glyph property.

Clarified the intended application of the Ideographic and Unified_Ideograph properties.

Moved Property Summary to top of Section 5, renamed it to Property Index, and
adjusted Section 5 numbering.

Renumbered tables to account for two table insertions.

Rewrote the description of the Logical_Order_Exception and White_Space properties
for clarity.

Added clarification for UAX44-LM2 in Matching Rules.

Updated matching rule UAX44-LM3 to ignore initial "is" in Matching Rules.

Added U+110BD to the list of exceptions to the derivation of
Default_Ignorable_Code_Point.

Added anchors to the matching rules.

Updated the description fields for FC_NFKC_Closure and NFKC_Casefold.

Added entries for EmojiSources.txt and ScriptExtensions.txt to Table 5.

Added entries for Indic_Syllabic_Category and Indic_Matra_Category.

Added note clarifying that aliases are not provided for provisional properties in Section
5.8.

Added clarification on value ranges and other restrictions for decimal digits in
discussion of Numeric_Type.

Miscellaneous minor point edits.

Revision 5 being a proposed update, only changes between versions 6 and 4 are noted
here.

Revision 4 [KW]

Reissued for Unicode 5.2.0.

Completely reorganized and rewritten, to include all the content from the obsoleted
UCD.html.

Added Section 5.10 re deprecation.

Added subsection in Section 4.2 re line termination conventions.

Added Contributory as a formal status and updated the Property Table accordingly.

Added note in Section 5.3.1 to indicate that contributory properties are neither
normative nor informative.

Updated documentation for default values.

Cleaned up description of numeric properties.

Tweaked the description of NamesList.html.

Miscellaneous minor point edits.

Updated summary statement of the document.

Centered tables.

Added anchors and numbers to tables and adjusted text referencing tables accordingly.

Added clarifications about exceptional format issues for Unihan data files.

Updated references to Section 4.8, Name—Normative for derived names and for code
point labels.

Added mention of property aliases from Unihan data files to Section 5.6.1.

Added documentation for new derived properties: Cased, Case_Ignorable,
Changes_When_Lowercased, Changes_When_Uppercased,
Changes_When_Titlecased, Changes_When_Casefolded,
Changes_When_Casemapped, NFKC_Casefold, and
Changes_When_NFKC_Casefolded.

Added strong pointers to Section 3.5 and Chapter 4 of [Unicode] in the Introduction.

Added new Section 2.3.1, Changes to Properties Between Releases.

Updated default values for East_Asian_Width.

Clarified the applicability of comments in cases where properties have multiple default
values.

Restructured Section 5.1 documentation of columns in the property table, for better text
flow.

Reordered entries for DerivedCoreProperties.txt in the property table, for clarity.

Added documentation of new test file: BidiTest.txt.

Updated terminology related to the Unihan Database.

Added documentation for the new data file, CJKRadicals.txt.

Added Attached_Above for ccc=214 in Table 13.

Complete revision of Validation section and associated tables.

Minor revision of text in Section 4.1.5, File Directory Differences for Early Releases.

Added a cautionary note about the use of the Age property in regular expressions.

Added sections explaining obsolete, deprecated, and stabilized properties, and clearly
identified existing such properties in the property table.

Revision 3 being a proposed update, only changes between versions 4 and 2 are noted
here.

Revision 2

Initial approved version for Unicode 5.1.0.

Revision 1

Initial draft.

Copyright © 2000-2013 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

