

 TCW_#_α-0»:¥TRUNK¥MULTI-IO¥TEXT¥BOM-1.rtf
 G+2013-05-03-5.zz.h03:33:

Terry Carl Walker
1739 East Palm Lane

Phoenix, AZ 85006-1930
United States
1-480-929-9628

waxymat@aztecfreenet.org

 BOM-1 Proposal

BOM-1 Proposal Page 1 of 3

rick@unicode.org
Text Box
L2/13-107

 BOM-1 Proposal

There is a problem with the current Byte Order Mark or BOM. To illustrate
this, the following table shows the byte values of the BOM in hexidecimal
in every format.

 ╔════════════════════════════╗
 ║ BOM-0 = @.0`feff ║
 ╠═════════╤═════════════╤════╣
 ║ UTF-7 │@.2f`7b`3f │/{? ║
 ╟─────────┼─────────────┼────╢
 ║ UTF-8 │@.ef`bb`bf │ ║
 ╟─────────┼─────────────┼────╢
 ║UTF-16-BE│@.fe`ff │ ║
 ╟─────────┼─────────────┼────╢
 ║UTF-16-LE│@.ff`fe │ ║
 ╟─────────┼─────────────┼────╢
 ║UTF-32-BE│@.00`00`fe`ff│ ║
 ╟─────────┼─────────────┼────╢
 ║UTF-32-LE│@.ff`fe`00`00│ ║
 ╚═════════╧═════════════╧════╝

The UTF-16-LE BOM, when followed by the ASCII character null (@.00), becomes
identical to the byte pattern for the UTF-32-LE BOM. If such an occurrence
happens in UTF-16-LE, the file will be incorrectly interpreted as UTF-32-LE.
The proposal is to have an optional replacement BOM available on a code
point other than on the Base Multilingual Plane (BMP, plane zero).

As pointed out in the Unicode standards document, the sub-plane value of
@.feff, when the bytes are swapped, produces a value in the sub-plane that
is an invalid code point because it is one of the two highest possible sub-plane
values -- which is prohibited. The two different byte values mean that the
order of the bytes can be determined. Together, this makes it possible to
detect when the bytes are swapped. The result, when combined with the
different word length formats and the extreme unlikeliness of having this
particular value point as the first text code point, makes this a good choice
for a BOM in plane zero. Unfortunately, the current BOM refers to a code
point that is actually valid as a text value. If the replacement BOM has
the same sub-plane value as the current BOM but in a different plane and
with a code point that is declared as invalid, then there should be no confusion
when it is encountered that it is a BOM and that it clearly identifies the
exact format of the text. Because it is a format-only code point, this
alternate BOM should only occur once (if at all) in any file -- as the first
code point of the file. If it is present, it should not be interpreted as
part of the text.

BOM-1 Proposal Page 2 of 3

The original BOM in plane zero will hereby be called BOM-0 -- in order to
distinguish it from the alternate BOM. The sub-plane value of the BOM is
valid as a text code point in planes zero, fifteen, and sixteen. The last
two planes are entirely reserved for user-defined code points and are therfore
not available for use as possible BOMs. This leaves planes one through
fourteen. If we use the lowest available plane (plane one) so as to reserve
the higher planes for future assigned code points, then the alternate BOM
can be referred to as BOM-1. The resulting values for the alternate BOM
are therefore as follows:

 ╔════════════════════════════╗
 ║ BOM-1 = @.1`feff ║
 ╠═════════╤═════════════╤════╣
 ║ UTF-7 │@.3c`4f`7b`3f│<O{?║
 ╟─────────┼─────────────┼────╢
 ║ UTF-8 │@.f0`9f`bb`bf│ ║
 ╟─────────┼─────────────┼────╢
 ║UTF-16-BE│@.d8`3f`de`ff│ ? ║
 ╟─────────┼─────────────┼────╢
 ║UTF-16-LE│@.3f`d8`ff`de│? ║
 ╟─────────┼─────────────┼────╢
 ║UTF-32-BE│@.00`01`fe`ff│ ║
 ╟─────────┼─────────────┼────╢
 ║UTF-32-LE│@.ff`fe`01`00│ ║
 ╚═════════╧═════════════╧════╝

With the BOM-1 values taking up four bytes in all formats and the values
being different for both BOMs in every coding scheme (except for the UTF-16-LE
BOM-0 possibly matching either UTF-32-LE BOM), it is recommended that new
files start with a BOM-1. Files may therefore start with a BOM-0, a BOM-1,
or neither. Newer programs will recognize a BOM-0 or a BOM-1 as a formatting
code point and not as a text code point. Older programs will, unfortunately,
see the BOM-1 as one or two unrecognized code points (depending on the format
and the age of the program) and may display them as error values. As usual,
no BOM should be in the middle of the file -- a rule that should cause any
program that concatenates files to remove the BOMs from the beginning of
all files (except the first) in the resultant combined file. Also, a file
that is split should only duplicate the BOM (if any) from the original file
into each new file.

BOM-1 Proposal Page 3 of 3

