

 TCW_#_α-0»:¥TRUNK¥MULTI-IO¥TEXT¥UTF-7.rtf
 G+2013-05-03-5.zz.h02:33:

Terry Carl Walker
1739 East Palm Lane

Phoenix, AZ 85006-1930
United States
1-480-929-9628

waxymat@aztecfreenet.org

 Proposal for UTF-7 Standard

Proposal for UTF-7 Standard Page 1 of 13

rick@unicode.org
Text Box
L2/13-108

 Proposal for UTF-7 Standard

Occasionally, an ASCII (American Standard Code for Information Interchange)
or Unicode file needs to be decoded into standard ASCII symbols in order
to see what a file really contains or what a program is doing in creating
a file. The proposal in this document creates a new seven bit (BInary digiT)
per eight bit byte standard (with each byte representing one word) that
displays every Unicode code point in terms of one through four ASCII standard
symbols. The following terms in this document are needed in order to describe
the resulting shorthand.

Choose one: A list of items within a pair of braces ({}) with the individual
items separated by commas. The list of items may include a range of items
with the extreme values separated by a colon. Two lists of items that are
equivalent will each be enclosed in angle brackets (<>) with only a space
(or nothing) between the two lists.

Optional: An item or group of items inside a pair of brackets ([]).
Everything inside the brackets is optional.

Comment: An item, group of items, or message that is not part of the list
or text and can be ignored. It is enclosed inside a pair of paranthesis
("()").

Binary coding: A group of symbols starting with "1@." followed by display
characters in which each symbol (except an accent (`)) represents a binary
digit position whose value is either zero (0) or one (1). An actual binary
digit represents a constant. A letter (<a:z><A:Z>), a question mark (?)
or a number sign (#) represents one binary digit of either value. All number
signs have the same binary digit value. The letters and question marks have
unrelated values within a number even when the same letter or question mark
is repeated. However, when the entire string of identical letters show up
in two related numbers, the corresponding string of binary digit values
is the same in both numbers. An accent is used to separate groups of four
binary digits (for easier reading) starting from the extreme right. Two
consecutive accents are used to separate groups of sixteen binary digits
(again, for easier reading) starting from the extreme right.

Proposal for UTF-7 Standard Page 2 of 13

Hexidecimal coding: A group of symbols starting with "@." followed by a
group of hexidecimal digits and or question marks in which each symbol (digit
or question mark) represents four binary digits. The hexidecimal digits
are {0:9,<a:f><A:F>}. An actual hexidecimal digit is a constant. A question
mark repersents a hexidecimal digit of any value. An accent is used to separate
groups of four hexidecimal digits (for easier reading) starting from the
extreme right. If the number contains five hexidecimal digits, the highest
order (lestmost) hexidecimal digit may instead be an expanded digit with
the additional symbols {<g:h><G:H>} that represents higher valued digits.

ASCII: A set of characters whose character values are represented by eight
binary digits or two hexidecimal digits. Each character value refers to
a character description rather than an actual shape (called the font) or
size (usually measured in points). A reference to a character will refer
to an ASCII character. All such character values are described with two
hexidecimal digits or eight binary digits. All characters have the same
height but can vary in width, creating a rectangular cell for each character.
The character meanings are standardized for the range 1@.0???`???? (standard
ASCII) but vary according to the code page number for the ASCII range
1@.1???`???? (extended ASCII). The standard ASCII characters are further
divided into the control characters 1@.000?`???? (which tell devices what
to do rather than displaying a character), the space @.20 (" "), the symbol
characters @.21:@.7e (which displays a symbol against the background cell
in which the symbol does not touch at least two adjacent edges of the cell
-- the same edges for all such symbol characters with the possible exception
of the underscore @.5f ("_") (depending on the font)), and the delete @.7f
(which is not completely defined). Depending on the code page, the delete
character and some or all of the control characters may or may not have
symbols associated with them -- and the symbols may be different for different
code pages. The standard symbol characters are further divided into the
Arabic-based decimal digits @.30:@.39 (0:9) which are hereby called the
Low digits or Lows, the uppercase Roman letters @.41:@.5a (A:Z), the lowercase
Roman letters @.61:@.7a (a:z) and the special symbols which comprise all
of the remaining standard characters.

Proposal for UTF-7 Standard Page 3 of 13

╔═══
══════╗
 ║ ASCII Code Page 437 ║

╠═══╤╤═╤═╤═╤═╦═╤═╤═╤═╦═╤═╤═╤═╦═╤═╤═╤═╤╤═╤═╤═╤═╦═╤═╤═╤═╦═╤═╤═╤═╦═╤═╤═╤═
╤╤════╣

║224││α│ß│Γ│π║Σ│σ│µ│τ║Φ│Θ│Ω│δ║∞│φ│ε│∩││≡│±│≥│≤║⌠│⌡│÷│≈║°│·│·│√║ⁿ│²│■│
││@.ff║

╟───┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─
┤├────╢

║192││└│┴│┬│├║─│┼│╞│╟║╚│╔│╩│╦║╠│═│╬│╧││╨│╤│╥│╙║╘│╒│╓│╫║╪│┘│┌│█║▄│▌│▐│▀
││@.df║

╠═══╡╞═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╡╞═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═
╡╞════╣

║160││á│í│ó│ú║ñ│Ñ│ª│º║¿│⌐│¬│½║¼│¡│«│»││░│▒│▓││║┤│╡│╢│╖║╕│╣│║│╗║╝│╜│╛│┐
││@.bf║

╟───┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─
┤├────╢

║128││Ç│ü│é│â║ä│à│å│ç║ê│ë│è│ï║î│ì│Ä│Å││É│æ│Æ│ô║ö│ò│û│ù║ÿ│Ö│Ü│¢║£│¥│₧│ƒ
││@.9f║

╠═══╡╞═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╡╞═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═
╡╞════╣
 ║
96││`│a│b│c║d│e│f│g║h│i│j│k║l│m│n│o││p│q│r│s║t│u│v│w║x│y│z│{║|│}│~│⌂││
@.7f║

╟───┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─
┤├────╢
 ║
64││@│A│B│C║D│E│F│G║H│I│J│K║L│M│N│O││P│Q│R│S║T│U│V│W║X│Y│Z│[║¥│]│^│_││
@.5f║

╠═══╡╞═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╡╞═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═╬═╪═╪═╪═
╡╞════╣
 ║ 32││
│!│"│#║$│%│&│'║(│)│*│+║,│-│.│/││0│1│2│3║4│5│6│7║8│9│:│;║<│=│>│?││@.3f║

╟───┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─┤├─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─╫─┼─┼─┼─
┤├────╢
 ║ 0││ │☺│☻│♥║♦│♣│♠│Ȣ║◘│○│◙│♂║♀│♪│♬ │☼││▶ │◀

│↕│‼║¶│§│‗│↨║↑│↓│→│←║˛│↔│▲│▼││@.1f║

╚═══╧╧═╧═╧═╧═╩═╧═╧═╧═╩═╧═╧═╧═╩═╧═╧═╧═╧╧═╧═╧═╧═╩═╧═╧═╧═╩═╧═╧═╧═╩═╧═╧═╧═
╧╧════╝

Unicode: The Unicode Transform Format (UTF) which assigns character
descriptions to various values called code points. They are called code
points rather than characters because some characters are formed from a
base character followed by zero or more add-on characters. Since Unicode
is designed to represent the world's written characters (present and past),
it is divided into 17 planes (numbered from zero through sixteen) of sixteen
bits each, with the base plane (Basic Multilingual Plane or BMP) as plane
zero and the next plane as map zero, the map numbers going up consecutively
along with the plane numbers. Map numbers are therefore always one standard
hexidecimal digit or four bits long. A code point value is represented as
a five digit hexidecimal number (with an extension digit) or as a twenty-one
bit number. It should be noted that map numbers above fifteen and the surrogate
code points 1@.0`0000``1101`1???`????`???? are not available in UTF-7 and
UTF-16 (sixteen bits or two bytes per word). Although other code points
may be invalid or unassigned in the standard, all Unicode formats can still
represent them. Any unspecified highest order (leftmost) binary or
hexidecimal Unicode digits are assumed to have a digit value of zero. Since
the lowest code point value descriptions correspond exactly with the standard
ASCII value character descriptions, Unicode can be thought of as a (very)
expanded version of standard ASCII.

In this document, the binary version of a code point has a generalized form
of 1@.t`tttt``uuuu`vwww`wxyz`zzzz. The map number 1@.rrss corresponds to
a plane number of 1@.t`tttt minus one.

Proposal for UTF-7 Standard Page 4 of 13

The ASCII character codes are divided into several catagories for the purpose
of defining a UTF-7 standard. Any one ASCII character code belongs to one
and only one catagory. The final status of a character code depends on both
its catagory and in how it is used. All control codes (1@.000?`????), the
delete code (@.7f), and all extended codes (1@.1???`????) are in the Dummy
catagory which always gets the status Ignore (as the character is always
treated as if it was not there) because the character does not have a standard
symbol (or has no symbol), would be displayed differently (or not at all)
under different page codes, and may therefore not be visible or may be
misinterpreted -- thereby violating the reason for the existance of the
UTF-7 standard. The space (@.20) (" ") is also a Dummy character because,
without a symbol in its cell, it is sometimes difficult to tell how many
spaces exist in a string of spaces. Also, it is often impossible to visually
detect spaces at the end of a line. All other character codes are standard
symbol display codes. The catagory of High digits (or Highs), when the final
status is Hexagon, uses the least significant (rightmost) six bits of a
character code as a bit string that is concatenated with other bit strings
to create the Unicode code point. The range is 1@.01??`???? (except delete
(1@.0111`1111)) (this includes all of the uppercase (@.41:@.5a) (A:Z) and
lowercase (@.61:@.7a) (a:z) Roman letters) but also includes 1@.0011`1111
("?") since the delete character is not available. There is only one character
in the Stop catagory -- the colon (@.3a) (":"). Characters in the Start
catagory, when the character has the proper number of High characters following
it, starts an escape sequence that translates a group of characters into
a single code point. In this case, the final status of the Start character
is the Begin character. If the Start character and any High digits after
it cannot form an escape sequence because the sequence ends prematurely
with a Stop character, the Stop character becomes an Ignore character.
Excluding the Stop character in this situation, any standard display symbol
that is not part of a valid escape sequence is given the final status of
a Lone character. An escape sequence always starts with a Start character
and always translates into only one code point. Any standard symbol
characters that are not in one of the other catagories is in the Core catagory
and always has the final status of a Lone character. The value of the Lone
character code becomes the value of the corresponding code point. Note that
a Stop character can end a potential escape sequence even when the escape
sequence would have been invalid anyway. Combining this with the fact that
a Stop character can be positioned in different places in a potential escape
sequence, there is often two or more ways to encode the same set of Unicode
code points. Although it is more ASCII characters, it is recommended (for
ease of implementation and for reading clarity) to insert a Stop character
after every Start character that is to be interpreted as a Lone character.
Also note that when a Stop character is needed as a Lone character when
the Stop character would otherwise be interpreted as an Ignore character,
two Stop characters are actually needed.

Proposal for UTF-7 Standard Page 5 of 13

The Start catagory is split into two sub-catagories. Start symbols requiring
three High digits to form a valid escape sequence are called Triples. They
have the value 1@.0011`11rr (except "?" (1@.0011`1111)) (<,=,>) but also
includes 1@.0011`1011 (;) since the "?" character is not available. The
complete sequence for a Triple is 1@.0011`1?rr 1@.0?ss`uuuu 1@.0?vw`wwwx
1@.0?yz`zzzz (where 1@.rrss is the map number) creating the code point
1@.t`tttt``uuuu`vwww`wxyz`zzzz. Note that this covers all code points
except the BMP. Start symbols requiring two High digits to form a valid
escape sequence are called Doubles. They have the value 1@.0010`uuuu (except
space " " (1@.0010`0000)) (!,'"',#,$,%,&,"'",(,),*,+,",",-,.,/) but also
includes 1@.0011`0000 (zero "0") since the space character is not available.
The complete sequence for a Double is 1@.001?`uuuu 1@.0?vw`wwwx 1@.0?yz`zzzz
creating the code point 1@.0`0000``uuuu`vwww`wxyz`zzzz. To avoid encoding
a surrogate code point, the two character escape sequence 1@.0010`1101 (-)
1@.0?1z`zzzz is defined as valid (when the second character is a High digit)
and causes the dash (-) to become a Single Start character, the High digit
a Pentagon, and the code point to become the value
1@.0`0000``0000`0000`000z`zzzz -- an ASCII control character. In
combination with ASCII standard symbol characters, these escape codes cover
the entire BMP except the space and the delete. To avoid a duplication of
ASCII standard characters, the two character escape sequence 1@.0011`0000
(0) 1@.0100`000# (@,A) is defined as valid and causes the zero (0) to become
a Single Start character, the High digit a Mono, and the code point to become
the value 1@.0`0000``0000`0000`0#1#`#### (space, delete). This
methodology results in all valid Unicode code points being represented in
one through four UTF-7 bytes -- one or two bytes for code points up to seven
bits, three bytes for code points from eight bits through sixteen bits,
and four bytes for any code point outside of the BMP. This system guarantees
that if a UTF-7 file is examined starting from an arbitrary byte position,
at most only four standard symbol characters need to be examined in order
to determine the corresponding code point value -- up to three standard
symbol characters back and or up to three standard symbol characters forward.

Proposal for UTF-7 Standard Page 6 of 13

In laying out the symbols for the catagories and sub-catagories, an attempt
was made to use character values that were as contiguous as possible. Since
this meant that the High digits were going to cover at least one band of
Roman letters (uppercase or lowercase), the decision was made to cover both
bands. Similiarly, the Doubles were either going to cover all of the Low
digits or only the digit zero. Avoiding the use of Low digits as Start symbols
as much as possible would make it easier to read a UTF-7 file with a lot
of numbers (for instance, in a table of numbers). For the same reasons,
the Triples and then the Stop symbol were chosen accordingly. Note that
all of the Low digits (except zero (0)) -- and only Low digits -- are Core
symbols. Also note that all of the Core symbols are contigous.

The one exception to the idea that a Dummy character can appear anywhere
in a UTF-7 file is in the Byte Order Mark or BOM. A true BOM (which in UTF-7
is "/{?" (1@.0010`1111 1@.0111`1011 1@.0011`1111)
(1@.0`0000``1111`1110`1111`1111) has no preceeding or embedded characters.
If the first Unicode code point in the file has this value and has any preceeding
or embedded Dummy characters in it, then it is a fake BOM and should be
treated as the first actual text code point. Any conversion to another format
(including UTF-7) would have to insert a true BOM (no preceeding or embedded
Dummy characters) before the first byte of the old file. A true BOM simply
tells a program what text format that the file is in and alerts the program
that the file is in Unicode. The true BOM is not considered to be an actual
text code point. If the first code point of a file does not translate to
that of a BOM, then any translation should not insert a BOM at the beginning
of the new file.

When two UTF-7 files are concatenated, a true BOM in the second file needs
to be removed. Care should also be taken to avoid turning a failed escape
sequence at the end of the first file into a valid one as a result of the
concatenation by inserting a Stop character between the two files if necessary.

When a UTF-7 file is split, the split should be between two adjacent code
points. Care should be taken to avoid turning a Stop character from an Ignore
character into a Lone character. A true BOM should be added to the beginning
of the split file if and only if the original file has (or should have)
a true BOM. Be careful not to turn a fake BOM into a true BOM if the file
is split there.

Proposal for UTF-7 Standard Page 7 of 13

Formatting a UTF-7 file simply means inserting Dummy characters in various
places (except a true BOM) into either the file itself or a display of the
contents. The most common method is to insert a carriage return (@.0d)
(control-M) followed by a line feed (@.0a) (control-J) before the first
display symbol that will not fit on the end of the line so that it instead
appears as the first character of a new line (wraparound). This creates
a block listing of the file without regard to any interpretation of the
file contents. A second method involves also repeatedly inserting a space
after a fixed number of symbol characters and repeatedly adding a blank
line after a fixed number of lines. This is a table listing. Numbering
the lines is not an option in UTF-7 since the visible symbols forming the
numbers would be mistaken as part of the valid text. Another method involves
a variation of the block display by inserting a space (or a new line if
at the end of the line) before every character (other than a true BOM) that
starts a new code point value -- the interpreted file. Near the end of the
page, a form feed (@.0c) (control-L) may be inserted in order to move to
the top of the next page or to the top of the screen.

Proposal for UTF-7 Standard Page 8 of 13

 UTF-7 Character Catagories:

extended: 1@.1???`????.
delete: . 1@.0111`1111.
Hexagon: . 1@.01??`???? (not 1@.0111`1111 (delete)) or 1@.0011`1111 (?).
 (@,A:Z,[,¥,],^,_,`,a:z,{,|,},~,?).
Pentagon: 1@.011z`zzzz (not 1@.0111`1111 (delete)) or 1@.0011`1111 (?).
 (`,a:z,{,|,},~,?).
Mono: . 1@.0100`000#.
 (@,A).
High: . . Hexagon, Pentagon, or Mono.
Triple: . 1@.0011`11rr (not 1@.0011`1111 (?)) or 1@.0011`1011 (;).
 (<,=,>,;).
Stop: . . 1@.0011`1010.
 (:).
Core: . . 1@.0011`qqqq (range: 1@.0001 ≤ 1@.qqqq ≤ 1@.1001).
 (1:9).
Double: . 1@.0010`uuuu (not 1@.0010`0000 (space)) or 1@.0011`0000 (zero).
 (zero,!,'"',#,$,%,&,"'",(,),*,+,",",-,.,/)
Single: . 1@.0010`1101 (-) or 1@.0011`0000 (zero).
 (-,zero).
Start: . . Triple, Double, or Single.
space: 1@.0010`0000.
 (" ").
control: . 1@.000z`zzzz.
Note: . . 1@.t`tttt = 1@.rrss+1.

Proposal for UTF-7 Standard Page 9 of 13

 Unicode Code Points to UTF-7 ASCII Characters:
--

1@.0`0000``1111`1110`1111`1111 = (Byte Order Mark (BOM))
 1@.0010`1111 1@.0111`1011 1@.0011`1111 (/{?).
 Double Hexagon Hexagon.
1@.t`tttt``uuuu`vwww`wxyz`zzzz = (Range: 1@.0`0001 ≤ 1@.t`tttt ≤
1@.1`0000)
 1@.0011`1?rr 1@.0?ss`uuuu 1@.0?vw`wwwx 1@.0?yz`zzzz (1@rrss =
1@t`tttt-1)
 Triple Hexagon Hexagon Hexagon.
1@.0`0000``uuuu`vwww`wxyz`zzzz = (Range: 1@.1110 ≤ 1@.uuuu ≤ 1@.1111)
 1@.001?`uuuu 1@.0?vw`wwwx 1@.0?yz`zzzz.
 Double Hexagon Hexagon.
1@.0`0000``1101`1www`wxyz`zzzz = (Surrogate code points -- invalid).
1@.0`0000``uuuu`vwww`wxyz`zzzz = (Range: 1@.0000`1 ≤ 1@.uuuu`v ≤
1@.1101`0)
 1@.001?`uuuu 1@.0?vw`wwwx 1@.0?yz`zzzz.
 Double Hexagon Hexagon.
1@.0`0000``0000`0www`wxyz`zzzz = (Range: 1@.000`1 ≤ 1@.www`w ≤ 1@.111`1)
 1@.0011`0000 1@.010w`wwwx 1@.0?yz`zzzz (0).
 Double Hexagon Hexagon.
1@.0`0000``0000`0000`0111`1111 = (delete)
 1@.0011`0000 1@.0100`0001 (0A).
 Single Mono.
1@.0`0000``0000`0000`01yz`zzzz = (not 1@.yz`zzzz = 1@.11`1111 (delete))
 1@.01yz`zzzz.
 High.

Proposal for UTF-7 Standard Page 10 of 13

 Unicode Code Points to UTF-7 ASCII Characters (continued):
--

1@.0`0000``0000`0000`0011`1111 = (?)
 1@.0011`1111 (?).
 High.
1@.0`0000``0000`0000`0011`11rr = (not 1@.rr = 1@.11 (?))
 1@.0011`11rr 1@.0011`1010 (:)
 Triple Stop.
1@.0`0000``0000`0000`0011`1011 = (;)
 1@.0011`1011 1@.0011`1010 (;:)
 Triple Stop.
1@.0`0000``0000`0000`0011`1010 = (:)
 1@.0011`1010 (:)
 Stop.
1@.0`0000``0000`0000`0011`mmmm = (Range: 1@.0001 ≤ 1@.mmmm ≤ 1001 (1:9))
 1@.0011`zzzz (1:9).
 Core.
1@.0`0000``0000`0000`0011`0000 = (zero)
 1@.0011`0000 1@.0011`1010 (0:)
 Double Stop.
1@.0`0000``0000`0000`0010`uuuu = (not 1@.uuuu = 1@.0000 (space))
 1@.0010`uuuu 1@.0011`1010 (:)
 Double Stop.
1@.0`0000``0000`0000`0010`0000 = (space)
 1@.0011`0000 1@.0100`0000 (0@).
 Single Mono.
1@.0`0000``0000`0000`000z`zzzz = (control)
 1@.0010`1101 1@.0?1z`zzzz (-).
 Single Pentagon.

Proposal for UTF-7 Standard Page 11 of 13

 UTF-7 ASCII Characters to Unicode Code Points:
 --

/{? . . . 1@.0010`1111 1@.0111`1011 1@.0011`1111 (BOM (Byte Order Mark))
 ("/{?") =
 1@.0`0000``1111`1110`1111`1111.
extended: 1@.1???`???? (Dummy) (Ignore).
delete: . 1@.0111`1111 (Dummy) (Ignore).
High: . . 1@.01yz`zzzz (not 1@.0111`1111 (delete))
 (@,A:Z,[,¥,],^,_,`,a:z,{,|,},~) =
 1@.0`0000``0000`0000`01yz`zzzz.
High: . . 1@.0011`1111
 (?) =
 1@.0`0000``0000`0000`0011`1111.
Triple: . 1@.0011`11rr (not 1@.0011`1111 (?)) or 1@.0011`1011 (;)
 (<,=,>,;).
Triple Hexagon Hexagon Hexagon = (1@.t`tttt = 1@.rrss+1)
 1@.0011`1?rr 1@.0?ss`uuuu 1@.0?vw`wwwx 1@.0?yz`zzzz =
 1@.t`tttt``uuuu`vwww`wxyz`zzzz.
Triple Hexagon Hexagon [Stop] =
 1@.0011`1pqq 1@.0ooo`oooo 1@.0nnn`nnnn [1@.0011`1010] =
 1@.0`0000``0000`0000`0011`1pqq
 1@.0`0000``0000`0000`0ooo`oooo
 1@.0`0000``0000`0000`0nnn`nnnn.
Triple Hexagon [Stop] =
 1@.0011`1pqq 1@.0ooo`oooo [1@.0011`1010] =
 1@.0`0000``0000`0000`0011`1pqq
 1@.0`0000``0000`0000`0ooo`oooo.
Triple [Stop] =
 1@.0011`1pqq [1@.0011`1010] =
 1@.0`0000``0000`0000`0011`1pqq.

Proposal for UTF-7 Standard Page 12 of 13

 UTF-7 ASCII Characters to Unicode Code Points (continued):
--

Stop: . . 1@.0011`1010.
 (:).
 1@.0`0000``0000`0000`0011`1010.
Core: . . 1@.0011`mmmm (1@.0001 ≤ 1@.mmmm ≤ 1@.1001) =
 (1:9).
 1@.0`0000``0000`0000`0011`mmmm.
Single Mono = 1@.0011`0000 1@.0100`000# =
 ("0"{@,A})
 1@.0`0000``0000`0000`0#1#`####.
Single Pentagon = 1@.0010`1101 1@.0?1z`zzzz =
 ("-"{`,a:z,{,|,},~,?})
 1@.0`0000``0000`0000`000z`zzzz.
Double: . 1@.0010`uuuu (not 1@.0010`0000 (space)) or 1@.0011`0000 (zero)
 (zero,!,'"',#,$,%,&,"'",(,),*,+,",",-,.,/).
Double Hexagon Hexagon =
 1@.001?`uuuu 1@.0?vw`wwwx 1@.0?yz`zzzz =
 1@.0`0000``uuuu`vwww`wxyz`zzzz.
Double Hexagon [Stop] =
 1@.001l`llll 1@.0ooo`oooo [1@.0011`1010] =
 1@.0`0000``0000`0000`001l`llll
 1@.0`0000``0000`0000`0ooo`oooo.
Double [Stop] =
 1@.001l`llll [1@.0011`1010] =
 1@.0`0000``0000`0000`001l`llll.
space: . 1@.0010`0000 (Dummy) (Ignore).
control: 1@.000?`???? (Dummy) (Ignore).

Proposal for UTF-7 Standard Page 13 of 13

