Response to feedback on draft UCA 6.3

(UTS #10 r27)

This document started with the accumulated feedback as of 2013-May-02.

Responses added begin with “—”.

L2/13-109R

Author: Markus Scherer
Date: 2013-05-02

UTS #10 r27 is currently at draft 5. (http://www.unicode.org/L2/L.2013/13100-uts 10-27-draft.pdf)

Some of the proposed changes to UTS #10 would require fairly significant text changes. | suggest that we

postpone those to the next version of UCA, to provide more time for editing and review.

Changes that are specifically proposed for UCA 6.3 are introduced with “For UCA 6.3, ...”. Some further

editorial changes might be appropriate for UCA 6.3, or for the next version of UCA.

Accumulated Feedback on PRI #235

This page is a compilation of formal public feedback received so far. See Feedback for further information on

this issue, how to discuss it, and how to provide feedback.

Date/Time: Mon Nov 26 13:17:14 CST 2012

Contact: yoshito_umaoka@us.ibm.com

Name: Yoshito Umaoka

Report Type: Error Report

Opt Subject: UTS#10 - 1.3 Contextual Sensitivity

UTS#10 Unicode Collation Algorithm - 1.3 Contextual Sensitivity
[http://www.unicode.org/reports/tr10/#Contextual_Sensitivity] contains
following description:

Both contractions and expansions can be combined:

that is, two (or more) characters may sort as if they were a different
sequence of two (or more) characters. In the third example, for
Japanese, a length mark sorts like the vowel of the previous syllable:
as an A after KA and as an | after K.

Also, Table 4. Context Sensitivity contains an example of above:

71— < 711, but
F—>F1

http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2Freports%2Ftr10%2Ftr10-27.html&sa=D&sntz=1&usg=AFQjCNE9orRsAxgMIe5cuW3ZdXbpqq6roQ
http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2Freports%2Ftr10%2Ftr10-27.html&sa=D&sntz=1&usg=AFQjCNE9orRsAxgMIe5cuW3ZdXbpqq6roQ
http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2FL2%2FL2013%2F13100-uts10-27-draft.pdf&sa=D&sntz=1&usg=AFQjCNHY4Z1BuKdOBk7sGFV5JJUvvtDZlg
http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2Freview%2Fpri235%2Ffeedback.html&sa=D&sntz=1&usg=AFQjCNEf9WVAhIMP6Xqcr_bE27ttOHSCKA
http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2Freview%2F%23feedback&sa=D&sntz=1&usg=AFQjCNFZPIfAEy3k-xlgwyyiII3cPeefTA
rick@unicode.org
Text Box
L2/13-109R

The description "as an A after KA and as an | after KI." is correct,
but example is bad. "1— < 731" is correct, but "¥— > F1" is incorrect.

71— is an contraction and equivalent to 5177 at level 1, therefore 71— < 11 is
correct. ¥— is also an contraction and its primary weight is equivalent to -,
but it is still less than & at lower level.

To illustrate the nature of contraction followed by expansion,
the example should be like:

H— < A7 < 734, but
F7 <F—<HA

or, simply

71— < A7, but
7 <F—

— Eixed by draft 5

Feedback above this line was reviewed at UTC #134, Feb 2013.

Date/Time: Wed Feb 13 15:49:25 CST 2013
Contact: richard.wordingham@ntlworld.com
Name: Richard Wordingham

Report Type: Error Report

Opt Subject: UCA conformance test invalid

The UCA conformance test is fundamentally invalid!

The conformance test purports to test an implementation of the UCA by
checking its results when using DUCET. The validity of this test is
presumably based on Conformance requirement C1 Paragraph 1: 'Given a
well-formed Unicode Collation Element Table, a conformant
implementation shall replicate the same comparisons of strings as those
produced by Section 4, Main Algorithm." However, as stated in Section
3.6.4, DUCET is not well formed. Therefore, a conformant

implementation of the UCA is free to use whatever collation it likes

when instructed to use DUCET!

These problems also apply to Draft 1 of DUCET 6.3.0 and UCA Version
6.3.0 Draft 2.

So far as | am aware, the only well-formedness requirements needed for
the collation algorithm to work are WF3 and WF4. | see three options:

1) Fix DUCET to make it satisfy WF5 (already rejected by the UTC).

2) Remove WF5.

3) Reword requirement C1 Paragraph 1 to explain what well-formednesses
may not be relied upon by a compliant implementation.

— Not true. C1 simply makes no statement of conformance in the presence of an ill-formed Collation Element
Table. This does not affect the CollationTest* files: Regardless of whether the DUCET is well-formed, a
conformant implementation of the Unicode Collation Algorithm, together with the DUCET, will yield the ordering
of the test files.

— TODO (UTC consensus): For UCA 6.3, replace “Given a well-formed Unicode Collation Element Table” in
C1 with “For a given Unicode Collation Element Table”. Conformance to the algorithm need not be bound to a
well-formed CET.

— Mark said: The reason we put that in is that we didn't want to have to describe the behavior for an ill-formed
CET, because it could be ill-formed in so many ways.

Date/Time: Tue Mar 12 17:19:18 CDT 2013

Contact: richard.wordingham@ntlworld.com

Name: Richard Wordingham

Report Type: Public Review Issue

Opt Subject: PRI 235 / Problems with UTS#10, UCA

Only the first comment strictly related to PRI 235, except in so far as the
other comments could be taken as referring to missed opportunities to correct
Version 6.2.0.

1 .If the LDML specification is to be updated at the same time as this
document, the reference from Section 5.1 to LDML Section 5.14.3 will break,
for that section will be moved to a different file.

— TODO: CLDR 23 has been released, and the LDML reorganized. For UCA 6.3, update the reference to
“Section 5.14.13, Case Parameters” appropriately.

2. Last sentence of 3.6 'All collation elements with primary weights from 1 to
that maximum are variables; all other collation elements are not' is wrong.

— |tis not wrong/no action. This sentence simply rephrases the well-formedness conditions WF3 & WF4.

This is false for the CLDR root collation and all tailorings thereof
conforming to CLDR rules. Suggest rephrasing paragraph as,

'Primaries for variable collation elements are *barely* interleaved with other
primary weights. This allows for more compact storage of memory tables.
Rather than using a bit per collation element to determine whether the

collation element is variable, the implementation only needs to store the
minimum and maximum primary value for all the variable elements. All
collation elements with primary weights from *that minimum* to that maximum
are variables; all other collation elements are not.'

Changes are marked by *...*.

— Not false for CLDR/no action for UCA. CLDR adheres to how the UCA handles variable primary weights as
a contiguous range from the lowest non-ignorable weight to some maximum. (CLDR does tailor the ordering of
some characters, and uses a different “last variable” than the DUCET.) One difference is that CLDR assigns
special meaning to U+FFFE which must not be treated as “variable”; | made a note of this in CLDR ticket
#5962 “specify CLDR collation algorithm”.

3. In proposed 9.1 / old 3.6.1, the text says that there may be lines for
'parametric attributes'. However, the BNF provides no productions for them,
and it is not clear to me what these attributes may be. Are they just the
forward/reverse ordering at level 2 and the form of variable weighting
employed, or do they include the full parametric tailoring? Section 3 list
things that an abstract 'collation element table' contains, but is it

exhaustive and is it meant to include level 2 ordering and variable weighting
scheme?

— Eixed by draft 5. The section is now explicitly labeled as documenting the format of the allkeys.txt file (only).
The text “optional lines for parametric attributes, and” was removed. (Previous versions of this text were
hold-overs from when the DUCET was published in the form of several files with more varied syntax.)

4. A significant tailoring worth mentioning in Section 5 is removing specific
contractions. Itis an extremely common optimisation in the search collations
of the CLDR.

— Eixed by draft 5

5. In Section 5, changing the secondary level direction and variable weighting
options should only be described as changing the collation element table if

these settings are part of the abstract collation element table. The former

does not change the mapping from NFD strings of codepoints to strings of
collation elements, and if the latter does, it then creates mappings for the

infinite number of sequences of spaces and punctuation followed by one or more

http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Ftrac%2Fticket%2F5962&sa=D&sntz=1&usg=AFQjCNGSwPFjwx_sEmQ3AoWt-rL1pE2Bjw
http://www.google.com/url?q=http%3A%2F%2Funicode.org%2Fcldr%2Ftrac%2Fticket%2F5962&sa=D&sntz=1&usg=AFQjCNGSwPFjwx_sEmQ3AoWt-rL1pE2Bjw

Latin script diacritics.

— Eixed by draft 5. The new introductory paragraph of the Tailoring section says that not all forms of tailoring
modify the table.

6. Contrary to Section 5, turning off normalisation does not transform UCETSs.
In so far as it changes the collation, the collation has ceased to be an
application of the UCA, which requires that canonically equivalent strings
collate as equal.

— Eixed by draft 5 (ditto)

7. If applying the LDML parametric tailoring numeric="true” is indeed a
tailoring in the UCA sense, then the mapping part of a well-formed UCET may
be infinite. This has implications for Requirement C1. When is a conformant
implementation of the UCA required to handle infinite UCETs? I'd suggest it
only be required to do so when the UCET is an LDML parametric tailoring of
DUCET or the root CLDR collation. (Obviously it must handle a well-formed
infinite UCET correctly or simply fail to handle it.)

— Eixed by draft 5 (ditto)

Date/Time: Wed Mar 13 14:20:55 CDT 2013

Contact: richard.wordingham@ntlworld.com

Name: Richard Wordingham

Report Type: Error Report

Opt Subject: UTS#10 - Additional contractions in DUCET

At the start of paragraph 5 of Section 3.8 of Draft 4 of Version 6.3.0 of

UTS#10, the Unicode Collation Algorithm, it says "Those are the only classes
of contractions allowed in the Default Unicode Collation Element Table.'. It

has said this for some time. However, it is not a true statement. There are
also 6 NFD and 2 non-NFD contractions for the compatibility decompositions of

U+013F LATIN CAPITAL LETTER L WITH MIDDLE DOT,
U+0140 LATIN SMALL LETTER L WITH MIDDLE DOT,
U+0E33 THAI CHARACTER SARA AM,

U+0EB3 LAO VOWEL SIGN AM,

U+0F77 TIBETAN VOWEL SIGN VOCALIC RR, and
U+0F79 TIBETAN VOWEL SIGN VOCALIC LL.

A simple remedy would be to change 'contractions are necessary where a
canonical decomposable character requires a distinct primary weight in the
table' in paragraph 3 to 'contractions are necessary or desirable where a

decomposable character requires a distinct primary weight in the table'.

— TODO: For UCA 6.3, | suggest we simply remove the sentence “Those are the only classes of contractions
allowed in the Default Unicode Collation Element Table.” Otherwise, we would have to put into place a process
of updating this section whenever the set of DUCET contractions changes. It is not necessary for this section
to describe all DUCET contractions.

Date/Time: Wed Mar 13 17:57:57 CDT 2013

Contact: richard.wordingham@ntlworld.com

Name: Richard Wordingham

Report Type: Public Review Issue

Opt Subject: PRI 235 - UTS#10 (for Unicode 6.3.0)
These comments are made on Draft 4 of Version 6.3.0.

1) There is no upper bound on the values of weights in a collation element table.
Formerly (Version 6.1.0) it was FFFF, though this was breached by the now discarded
fourth weight in DUCET. Consequently, the following changes are needed:

a) In Section 3.6 'Variable Weighting', it should be noted that FFFF denotes an
arbitrarily selected value greater than the primary weight of any variable
collation element.

— Agreed/TODO: Collation element tables need not store 16-bit weights. Make appropriate changes to the
text.

b) In Section 6.1.2 'L2/L3 in 8 bits', there should be a note that the same
number of bytes should be used for each L1 weight.

— No action. Weights of different levels can be stored using different, independent designs, as long as the
ordering behavior is maintained.

c) In Section 6.2 'Large Weight Values', the starting premise is no longer
necessarily true. The opening sentence could be reworded to:

'Some old implementations may not support more than 65,5345 weight values
(or 65,024 values where zero bytes are avoided. A need for more weight values
can still be accommodated...'

The example from DUCET may need to be reworded if the suggestion in point
(e) is taken up.

— Agreed/TODQO: Collation element tables need not store 16-bit weights. Make appropriate changes to the
text.

d) In 6.4 'Avoiding Zero Bytes' it should be noted that analogous preprocessing
is available for weight ranges larger than 16 bits.

— Agreed/TODO (ditto)

The following opportunities present themselves:

e) Implicit weights (Section 7.1.3) no longer need to be generated as two
elements. With suitably revised values of WEIGHT, a single primary weight
of BASE + CP could be chosen instead.

— Agreed/TODO: Add a note that this algorithm is used as part of UCA+DUCET, and that implementations
need to adjust it to how they encode primary weights.

f) The principle of a fixed range for trailing weights (Section 7.1.4)
makes no sense if there are no bounds on primary weights.

— Agreed/TODO (ditto)

Indeed, it makes sense for the implicit weights, trailing weights and weights reserved for
special collation elements to be aspects of the collation element, especially
if 2nd level order and variable weighting are part of the collation element table.

— No agction. | think this is a misunderstanding based on the old introduction to the Tailoring section.
2) There are a few faults in the code example in Section 6.10:

a) The code assumes that primary values FFEO..FFFF are not allowed.
However, U+FFFD has primary weight FFFD and the CLDR assigns primary
weight FFFF to U+FFFF.

— TODO: This is true. In general, as stated, the code is incomplete and overly simplistic. It has had bugs
before, and | don’t think it is particularly valuable. For UCA 6.3, | suggest we delete section 6.10 “Flat File
Example” and its subsections, including the Sample Code.
(http://www.unicode.org/reports/tr10/#Flat_File Example)

b) Variable weights have an upper and a lower limit, not just an upper limit.

— No action. The exclusive lower limit is 0, implied by WF3, other text, and by the sample data structure
documenting “Every CE below this value that has a non-zero primary is variable.” (my emphasis)

Date/Time: Wed Mar 13 18:06:54 CDT 2013

Contact: richard.wordingham@ntlworld.com

Name: Richard Wordingham

Report Type: Error Report

Opt Subject: UTS#10 - Error in 'Escape Hatch'

The fault reported below has been present in the UCA since at least Version
6.1.0.

http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2Freports%2Ftr10%2F%23Flat_File_Example&sa=D&sntz=1&usg=AFQjCNGqHGkyNJlpDKw4DA6yNansrDv6KA

The section entitled 'Escape Hatch' suggests one can encode a large number of
secondary differences by varying z and n in 2-element collation keys of the
form

[.yyyy.00zz.00ww] [.0000.00nn.0001]

However, the relative orderings of single collating elements would not be
stable if the French accents (= level 2 ordering) setting were toggled. To
provide stability, it is necessary to use a palindromic 3-element collation
key of the form

[.yyyy.00zz.00ww] [.0000.00nn.0001] [.0000.00zz.0001]

— TODO: For UCA 6.3, add a note that secondary-backwards processing needs to compare complete
weights, with most significant bits first, even if they are spread out over multiple data structure CEs. Not for
UCA 6.3: Consider merging this with the Large Weight Values section.

— Rename the idiomatic “Escape Hatch” to “Large values for secondary or tertiary weights”.

Date/Time: Sat Mar 16 07:51:47 CDT 2013

Contact: richard.wordingham@ntlworld.com

Name: Richard Wordingham

Report Type: Error Report

Opt Subject: UCA (UTS#10) Conformance Requirements

The definition of the 'standard UCA parametric tailoring' is subcontracted to

the LDML specification (UTS#35). An implementation claiming conformance to it
should therefore specify the relevant version numbers — LDML and possibly CLDR
for data held in FractionalUCA.txt, which is no longer identified by UCA

version. For example, there is a proposal to change the meaning of the
variableTop parameter (http://unicode.org/cldr/trac/ticket/5016 Comment 8),

and | believe it will be accepted. I'm not sure whether this belongs in
Requirement C4 or C6.

— Possible action: Since UTS #10 itself does indeed not specify parametric tailorings any more in detail, |
suggest we delete C6.

— Mark says: | don't think so. | remember some other spec referencing these. It could be cleaned up a bit to
point directly at LDML.

— TODO (UTC consensus): For UCA 6.3, remove C6. Add a note there, and a statement in the Migration
section: A former claim to conformance to C6 is to be interpreted as a claim of conformance to LDML
parametric tailoring.

The standard UCA parametric tailoring parameter 'reorder" is in general
undefined — see last paragraph of
http://unicode.org/repos/cldr/trunk/specs/Idmli/tr35-collation.html Section

3.12 or, for the latest released version, Section 5.14.12 of UTS#35 Version
22.1. The text of the LDML specification says, "The reordering groups for the
DUCET are not specified here'. For the LDML, this has also been raised as
http://unicode.org/cldr/trac/ticket/5813 .

— TODO: For UCA 6.3, add a note that an implementation that supports reordering based not on CLDR should
specify the reordering groups.

