
 Technical Reports

Proposed Update Unicode Standard Annex #9

Version Unicode 6.3.0 (draft 12)
Editors Mark Davis (markdavis@google.com), Aharon Lanin

(aharon@google.com), and Andrew Glass
(andrew.glass@microsoft.com)

Date 2013-05-05
This Version http://www.unicode.org/reports/tr9/tr9-28.html
Previous
Version

http://www.unicode.org/reports/tr9/tr9-27.html

Latest
Version

http://www.unicode.org/reports/tr9/

Latest
Proposed
Update

http://www.unicode.org/reports/tr9/proposed.html

Revision 28

Summary

This annex describes specifications for the positioning of characters in text containing
characters flowing from right to left, such as Arabic or Hebrew.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published online as a separate document. The Unicode Standard
may require conformance to normative content in a Unicode Standard Annex, if so
specified in the Conformance chapter of that version of the Unicode Standard. The
version number of a UAX document corresponds to the version of the Unicode
Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this annex is found in
Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.”
For the latest version of the Unicode Standard, see [Unicode]. For a list of current

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

1 of 52

rick@unicode.org
Text Box
L2/13-113

Unicode Technical Reports, see [Reports]. For more information about versions of the
Unicode Standard, see [Versions]. For any errata which may apply to this annex, see
[Errata].

Contents

1 Introduction
2 Directional Formatting Characters

2.1 Explicit Directional Embeddings
2.2 Explicit Directional Overrides
2.3 Terminating Explicit Directional Embeddings and Overrides
2.4 Explicit Directional Isolates
2.5 Terminating Explicit Directional Isolates
2.6 Implicit Directional Marks
2.7 Markup and Formatting Characters

3 Basic Display Algorithm
3.1 Definitions: BD1, BD2, BD3, BD4, BD5, BD6, BD7, BD8, BD9,
BD10, BD11, BD12, BD13, BD14, BD15, BD16
3.2 Bidirectional Character Types
3.3 Resolving Embedding Levels

3.3.1 The Paragraph Level: P1, P2, P3
3.3.2 Explicit Levels and Directions: X1, X2, X3, X4, X5, X5a,
X5b, X5c, X6, X6a, X7, X8
3.3.3 Preparations for Implicit Processing: X9, X10
3.3.4 Resolving Weak Types: W1, W2, W3, W4, W5, W6, W7
3.3.5 Resolving Neutral and Isolate Formatting Types: N0,
N1, N2
3.3.6 Resolving Implicit Levels: I1, I2

3.4 Reordering Resolved Levels: L1, L2, L3, L4
3.5 Shaping

4 Bidirectional Conformance
4.1 Boundary Neutrals
4.2 Explicit Formatting Characters
4.3 Higher-Level Protocols: HL1, HL2, HL3, HL4, HL5, HL6
4.4 Bidirectional Conformance Testing

5 Implementation Notes
5.1 Reference Code
5.2 Retaining Explicit Formatting Characters
5.3 Joiners
5.3 Migrating from 2.0 to 3.0
5.4 Vertical Text
5.4 Maximizing Compatibility for Paired Brackets on Old Systems
5.5 Usage
5.6 Separating Punctuation Marks
5.8 Conversion to Plain Text

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

2 of 52

6 Usage
6.1 Joiners
6.2 Vertical Text
6.3 Formatting
6.4 Separating Punctuation Marks
6.5 Conversion to Plain Text
6.6 Maximizing Compatibility for Paired Brackets

7 Mirroring
Migration
Acknowledgments
References
Modifications

1 Introduction

The Unicode Standard prescribes a memory representation order known as logical
order. When text is presented in horizontal lines, most scripts display characters from
left to right. However, there are several scripts (such as Arabic or Hebrew) where the
natural ordering of horizontal text in display is from right to left. If all of the text has a
uniform horizontal direction, then the ordering of the display text is unambiguous.

However, because these right-to-left scripts use digits that are written from left to right,
the text is actually bidirectional: a mixture of right-to-left and left-to-right text. In addition
to digits, embedded words from English and other scripts are also written from left to
right, also producing bidirectional text. Without a clear specification, ambiguities can
arise in determining the ordering of the displayed characters when the horizontal
direction of the text is not uniform.

This annex describes the algorithm used to determine the directionality for bidirectional
Unicode text. The algorithm extends the implicit model currently employed by a
number of existing implementations and adds explicit formatting characters for special
circumstances. In most cases, there is no need to include additional information with
the text to obtain correct display ordering.

However, in the case of bidirectional text, there are circumstances where an implicit
bidirectional ordering is not sufficient to produce comprehensible text. To deal with
these cases, a minimal set of directional formatting characters is defined to control the
ordering of characters when rendered. This allows exact control of the display ordering
for legible interchange and ensures that plain text used for simple items like filenames
or labels can always be correctly ordered for display.

The directional formatting characters are used only to influence the display ordering of
text. In all other respects they should be ignored—they have no effect on the
comparison of text or on word breaks, parsing, or numeric analysis.

Each character has an implicit bidirectional type. The bidirectional types left-to-right
and right-to-left are called strong types, and characters of those types are called strong
directional characters. The bidirectional types associated with numbers are called weak
types, and characters of those types are called weak directional characters. The
algorithm uses the implicit bidirectional types of the characters in a text to arrive at a
reasonable display ordering for text.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

3 of 52

When working with bidirectional text, the characters are still interpreted in logical
order—only the display is affected. The display ordering of bidirectional text depends
on the directional properties of the characters in the text. Note that there are important
security issues connected with bidirectional text: for more information, see [UTR36].

2 Directional Formatting Characters

Three types of explicit directional formatting characters are used to modify the
standard implicit Unicode Bidirectional Algorithm (UBA). In addition, there are implicit
directional formatting characters, the right-to-left and left-to-right marks. The effects of
all of these formatting characters are limited to the current paragraph; thus, they are
terminated by a paragraph separator. The directional types left-to-right and right-to-left
are called strong types, and characters of those types are called strong directional
characters. The directional types associated with numbers are called weak types, and
characters of those types are called weak directional characters.

These formatting characters all have the property Bidi_Control, and are divided into
three ranges:

Implicit Directional Formatting Characters

U+200E..U+200F LEFT-TO-RIGHT MARK..RIGHT-TO-LEFT MARK

Explicit Directional Embedding and Override Formatting Characters

U+202A..U+202E LEFT-TO-RIGHT EMBEDDING..RIGHT-TO-LEFT OVERRIDE

Explicit Directional Isolate Formatting Characters

U+2066..U+2069 LEFT-TO-RIGHT ISOLATE..POP DIRECTIONAL ISOLATE

On web pages, the explicit directional formatting characters (of all types – embedding,
override, and isolate) should be replaced by using the dir attribute and the elements
BDI and BDO. For more information, see [UTR20].

Although the term embedding is used for some explicit formatting characters, the text
within the scope of the embedding formatting characters is not independent of the
surrounding text. Characters within an embedding can affect the ordering of characters
outside, and vice versa. This is not the case with the isolate formatting characters,
however. Characters within an isolate cannot affect the ordering of characters outside
it, or vice versa. The effect that an isolate as a whole has on the ordering of the
surrounding characters is the same as that of a neutral character, whereas an
embedding or override roughly has the effect of a strong character.

Directional isolate characters were introduced in Unicode 6.3 after it became apparent
that directional embeddings usually have too strong an effect on their surroundings
and are thus unnecessarily difficult to use. The new characters were introduced
instead of changing the behavior of the existing ones because doing so would have
had an undesirable effect on those existing documents that do rely on the old
behavior. Nevertheless, the use of the directional isolates instead of embeddings is
encouraged in new documents – once target platforms are known to support them.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

4 of 52

2.1 Explicit Directional Embeddings

The following characters signal that a piece of text is to be treated as embedded. For
example, an English quotation in the middle of an Arabic sentence could be marked as
being embedded left-to-right text. If there were a Hebrew phrase in the middle of the
English quotation, that phrase could be marked as being embedded right-to-left text.
These codes allow for nested embeddings. Embeddings can be be nested one inside
another, and in isolates and overrides.

Abbr. Code
Point

Chart Name Description

LRE U+202A LEFT-TO-RIGHT
EMBEDDING

Treat the following text as
embedded left-to-right.

RLE U+202B RIGHT-TO-LEFT
EMBEDDING

Treat the following text as
embedded right-to-left.

The effect of right-left line direction, for example, can be accomplished by embedding
the text with RLE...PDF. (PDF will be described in section Section 2.3 Terminating
Explicit Directional Embeddings and Overrides.)

2.2 Explicit Directional Overrides

The following characters allow the bidirectional character types to be overridden when
required for special cases, such as for part numbers. They are to be avoided wherever
possible, because of security concerns. For more information, see [UTR36]. These
codes allow for nested directional overrides. Directional overrides can be be nested
one inside another, and in embeddings and isolates.

Abbr. Code
Point

Chart Name Description

LRO U+202D LEFT-TO-RIGHT
OVERRIDE

Force following characters to be
treated as strong left-to-right
characters.

RLO U+202E RIGHT-TO-LEFT
OVERRIDE

Force following characters to be
treated as strong right-to-left
characters.

The precise meaning of these characters will be made clear in the discussion of the
algorithm. The right-to-left override, for example, can be used to force a part number
made of mixed English, digits and Hebrew letters to be written from right to left.

2.3 Terminating Explicit Directional Embeddings and Overrides

The following character terminates the scope of the last LRE, RLE, LRO, or RLO
whose scope has not yet been terminated and restores the bidirectional state to what it
was before that character was encountered.

Abbr. Code
Point

Chart Name Description

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

5 of 52

PDF U+202C POP DIRECTIONAL
FORMATTING

End the scope of Restore the
bidirectional state to what it was
before the last LRE, RLE, RLO, or
LRO.

The precise meaning of this character will be made clear in the discussion of the
algorithm.

2.4 Explicit Directional Isolates

The following characters signal that a piece of text is to be treated as directionally
isolated from its surroundings. They are very similar to the embedding explicit
formatting characters. However, while an embedding roughly has the effect of a strong
character on the ordering of the surrounding text, an isolate has the effect of a neutral
like U+FFFC OBJECT REPLACEMENT CHARACTER, and is assigned the corresponding display
position in the surrounding text. Furthermore, the text inside the isolate has no effect
on the ordering of the text outside it, and vice-versa.

In addition to allowing the embedding of strongly directional text without unduly
affecting the bidirectional order of its surroundings, one of the isolate formatting
characters also offers an extra feature: embedding text while inferring its direction
heuristically from its constituent characters.

Isolates can be be nested one inside another, and in embeddings and overrides.

Abbr. Code
Point

Chart Name Description

LRI U+2066 LEFT-TO-RIGHT
ISOLATE

Treat the following text as isolated
and left-to-right.

RLI U+2067 RIGHT-TO-LEFT
ISOLATE

Treat the following text as isolated
and right-to-left.

FSI U+2068 FIRST STRONG
ISOLATE

Treat the following text as isolated
and in the direction of its first strong
directional character that is not inside
a nested isolate.

The precise meaning of these characters will be made clear in the discussion of the
algorithm.

2.5 Terminating Explicit Directional Isolates

The following character terminates the scope of the last LRI, RLI, or FSI whose scope
has not yet been terminated, as well as the scopes of any subsequent LREs, RLEs,
LROs, or RLOs whose scopes have not yet been terminated.

Abbr. Code
Point

Chart Name Description

PDI U+2069 POP DIRECTIONAL
ISOLATE

End the scope of the last LRI,
RLI, or FSI.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

6 of 52

The precise meaning of this character will be made clear in the discussion of the
algorithm.

2.6 Implicit Directional Marks

These characters are very light-weight formatting. They act exactly like right-to-left or
left-to-right characters, except that they do not display or have any other semantic
effect. Their use is more convenient than using explicit embeddings or overrides
because their scope is much more local.

Abbr. Code
Point

Chart Name Description

LRM U+200E LEFT-TO-RIGHT
MARK

Left-to-right zero-width
character

RLM U+200F RIGHT-TO-LEFT
MARK

Right-to-left zero-width
non-Arabic character

ALM U+061C ARABIC LETTER
MARK

Right-to-left zero-width Arabic
character

There is no special mention of the implicit directional marks in the following algorithm.
That is because their effect on bidirectional ordering is exactly the same as a
corresponding strong directional character; the only difference is that they do not
appear in the display.

2.7 Markup and Formatting Characters

The explicit formatting characters introduce state into the plain text, which must be
maintained when editing or displaying the text. Processes that are modifying the text
without being aware of this state may inadvertently affect the rendering of large
portions of the text, for example by removing a PDF.

The Unicode Bidirectional Algorithm is designed so that the use of explicit formatting
characters can be equivalently represented by out-of-line information, such as
stylesheet information or markup. Conflicts can arise if markup and explicitly formatting
characters are both used in the same paragraph. Where available, markup should be
used instead of the explicit formatting characters. However, for Unicode characters any
alternative representation is only to be defined by reference to the behavior of the
corresponding explicit formatting characters in this algorithm.

HTML 5 provides support for bidi markup as follows:

Unicode Equivalent markup Comment
RLI <bdi dir = "rtl">
LRI <bdi dir = "ltr">

RLO
<bdo dir = "rtl">

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

7 of 52

LRO
<bdo dir = "ltr">

RLE dir = "rtl" attribute on block or inline element
LRE dir = "ltr" attribute on block or inline element
PDF, FSI termination of markup

CSS also provides support for text direction as follows:

Property Values Effect
unicode-bidi embed The text to which this is applied will assume the

directional flow indicated by
the direction property.

bidi-override The text to which this is applied will override the
Unicode bidi algorithm according to the
directional flow indicated by
the direction property.

direction ltr Sets a base direction of LTR for the text to which
the unicode-bidi property is applied.

rtl Sets a base direction of RTL for the text to which
the unicode-bidi property is applied.

Whenever plain text is produced from a document containing markup, the equivalent
formatting characters should be introduced, so that the correct ordering is not lost. For
example, whenever cut and paste results in plain text this transformation should occur.

3 Basic Display Algorithm

The Unicode Bidirectional Algorithm (UBA) takes a stream of text as input and
proceeds in four main phases:

Separation into paragraphs. The rest of the algorithm is applied separately to
the text within each paragraph.

Initialization. A list of bidirectional character types is initialized, with one entry for
each character in the original text. The value of each entry is the Bidi_Class
property value of the respective character. After this point, the original characters
are no longer referenced until the reordering phase. A list of embedding levels,
with one level per character, is then initialized. Note that the original characters
are referenced in Section 3.3.5, Resolving Neutral Types and Isolating Formatting
Types.

Resolution of the embedding levels. A series of rules areis applied to the lists
of embedding levels and bidirectional character types. Each rule is based
operates on the current values of those lists, and can modify those values. Each
rule is applied to each of the values in sequence before continuing to the next
rule. The original characters and their Bidi_Paired_Bracket and

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

8 of 52

Bidi_Paired_Bracket_Type property values are referenced in the application of
certain rules. The result of this phase is a modified list of embedding levels; the
list of bidirectional character types is no longer needed.

Reordering. The text within each paragraph is reordered for display: first, the text
in the paragraph is broken into lines, then the resolved embedding levels are
used to reorder the text of each line for display.

The algorithm reorders text only within a paragraph; characters in one paragraph have
no effect on characters in a different paragraph. Paragraphs are divided by the
Paragraph Separator or appropriate Newline Function (for guidelines on the handling
of CR, LF, and CRLF, see Section 4.4, Directionality, and Section 5.8, Newline
Guidelines of [Unicode]). Paragraphs may also be determined by higher-level
protocols: for example, the text in two different cells of a table will be in different
paragraphs.

Combining characters always attach to the preceding base character in the memory
representation. Even after reordering for display and performing character shaping, the
glyph representing a combining character will attach to the glyph representing its base
character in memory. Depending on the line orientation and the placement direction of
base letterform glyphs, it may, for example, attach to the glyph on the left, or on the
right, or above.

This annex uses the numbering conventions for normative definitions and rules in Table
1.

Table 1. Normative Definitions and Rules

Numbering Section
BDn Definitions
Pn Paragraph levels
Xn Explicit levels and directions
Wn Weak types
Nn Neutral types
In Implicit levels
Ln Resolved levels

3.1 Definitions

BD1. The bidirectional characters types are values assigned to each Unicode character,
including unassigned characters. The formal property name in the Unicode Character
Database [UCD] is Bidi_Class.

BD2. Embedding levels are numbers that indicate how deeply the text is nested, and
the default direction of text on that level. The minimum embedding level of text is zero,
and the maximum explicit depth is level 61, a value referred to as max_depth in the rest
of this document.

As rules X1 through X8 will specify, embedding levels are set by explicit formatting
characters (embedding, isolate, and override); higher numbers mean the text is more
deeply nested. The reason for having a limitation is to provide a precise stack limit for

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

9 of 52

implementations to guarantee the same results. Sixty-one levels is far more than
sufficient for ordering, even with mechanically generated formatting; the display
becomes rather muddied with more than a small number of embeddings.

Review Note: Web applications may be constructed with various element types defined
to be directional isolates, and it is not unreasonable for an application to do so to
ensure proper display. If these elements are nested and generated programmatically, it
is possible or even likely that they will exceed the 61 level depth limit.

The UTC is considering three possible approaches:

Leave the limit as is.1.

Increase the limit to some value such as 127.2.

Keep the limit as a minimum for support, but allow implementations to support a
higher limit.

3.

If you have any information for or against any of these three possibilities, such as
whether one would cause a problem for your implementation, please submit that via
the online reporting form [Feedback].

BD3. The default direction of the current embedding level (for the character in
question) is called the embedding direction. It is L if the embedding level is even, and R
if the embedding level is odd.

For example, in a particular piece of text, Level 0 is plain English text. Level 1 is plain
Arabic text, possibly embedded within English level 0 text. Level 2 is English text,
possibly embedded within Arabic level 1 text, and so on. Unless their direction is
overridden, English text and numbers will always be an even level; Arabic text
(excluding numbers) will always be an odd level. The exact meaning of the embedding
level will become clear when the reordering algorithm is discussed, but the following
provides an example of how the algorithm works.

BD4. The paragraph embedding level is the embedding level that determines the
default bidirectional orientation of the text in that paragraph.

BD5. The direction of the paragraph embedding level is called the paragraph direction.

In some contexts the paragraph direction is also known as the base direction.

BD6. The directional override status determines whether the bidirectional type of
characters is to be reset. The directional override status is set by using explicit
directional formatting characters. This status has three states, as shown in Table 2.

Table 2. Directional Override Status

Status Interpretation
Neutral No override is currently active
Right-to-left Characters are to be reset to R
Left-to-right Characters are to be reset to L

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

10 of 52

BD7. A level run is a maximal substring of characters that have the same embedding
level. It is maximal in that no character immediately before or after the substring has
the same level (a level run is also known as a directional run).

As specified below, level runs are important at two different stages of the Bidirectional
Algorithm. The first stage occurs after rules X1 through X9 have assigned an explicit
embedding level to each character on the basis of the paragraph direction and the
explicit directional formatting characters. At this stage, in rule X10, level runs are used
to build up the units to which subsequent rules are applied. Those rules further adjust
each character’s embedding level on the basis of its implicit bidirectional type and
those of other characters in the unit – but not outside it. The level runs resulting from
these resolved embedding levels are then used in the actual reordering of the text by
rule L2. The following example illustrates level runs at this later stage of the algorithm.

Example

In this and the following examples, case is used to indicate different implicit character
types for those unfamiliar with right-to-left letters. Uppercase letters stand for right-
to-left characters (such as Arabic or Hebrew), and lowercase letters stand for
left-to-right characters (such as English or Russian).

Memory: car is THE CAR in arabic

Character types: LLL-LL-RRR-RRR-LL-LLLLLL

Paragraph level: 0

Resolved levels: 000000011111110000000000

Notice that the neutral character (space) between THE and CAR gets the level of the
surrounding characters. The level of the neutral characters could be changed by
inserting appropriate directional marks around neutral characters, or using explicit
directional formatting characters. These marks have no other effects.

BD8. An isolate initiator is a character of type LRI, RLI, or FSI.

As rules X5a through X5c will specify, an isolate initiator raises the embedding level for
the characters following it when the rules enforcing the depth limit allow it.

BD9. The matching PDI for a given isolate initiator is the one determined by the
following algorithm:

Initialize a counter to one.

Scan the text following the isolate initiator to the end of the paragraph while
incrementing the counter at every isolate initiator, and decrementing it at every
PDI.

Stop at the first PDI, if any, for which the counter is decremented to zero.

If such a PDI was found, it is the matching PDI for the given isolate initiator.
Otherwise, there is no matching PDI for it.

Note that all formatting characters except for isolate initiators and PDIs are ignored
when finding the matching PDI.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

11 of 52

Note that this algorithm assigns a matching PDI (or lack of one) to an isolate initiator
whether the isolate initiator raises the embedding level or is prevented from doing so
by the depth limit rules.

As rule X6a will specify, a matching PDI returns the embedding level to the value it had
before the isolate initiator that the PDI matches. The PDI itself is assigned the new
embedding level. If it does not match any isolate initiator, or if the isolate initiator did
not raise the embedding level, it leaves the embedding level unchanged. Thus, an
isolate initiator and its matching PDI are always assigned the same explicit embedding
level, which is the one outside the isolate. In the later stages of the Bidirectional
Algorithm, an isolate initiator and its matching PDI function as invisible neutral
characters, and their embedding level then helps ensure that the isolate has the effect
of a neutral character on the display order of the text outside it, and is assigned the
corresponding display position in the surrounding text.

BD10. An embedding initiator is a character of type LRE, RLE, LRO, or RLO.

Note that an embedding initiator initiates either a directional embedding or a directional
override; its name omits overrides only for conciseness.

As rules X2 through X5 will specify, an embedding initiator raises the embedding level
for the characters following it when the rules enforcing the depth limit allow it.

BD11. The matching PDF for a given embedding initiator is the one determined by the
following algorithm:

Initialize a counter to one.

Scan the text following the embedding initiator:

At an isolate initiator, skip past the matching PDI, or if there is no matching
PDI, to the end of the paragraph.

At the end of a paragraph, or at a PDI that matches an isolate initiator
before the embedding initiator, stop: the embedding initiator has no
matching PDF.

At an embedding initiator, increment the counter.

At a PDF, decrement the counter. If its new value is zero, stop: this is the
matching PDF.

Note that this algorithm assigns a matching PDF (or lack of one) to an embedding
initiator whether it raises the embedding level or is prevented from doing so by the
depth limit rules.

Although the algorithm above serves to give a precise meaning to the term “matching
PDF”, note that the overall Bidirectional Algorithm never actually calls for its use to find
the PDF matching an embedding initiator. Instead, rules X1 through X7 specify a
mechanism that determines what embedding initiator scope, if any, is terminated by a
PDF, i.e. which valid embedding initiator a PDF matches.

As rule X7 will specify, a matching PDF returns the embedding level to the value it had
before the embedding initiator that the PDF matches. If it does not match any
embedding initiator, or if the embedding initiator did not raise the embedding level, a

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

12 of 52

PDF leaves the embedding level unchanged.

As rule X9 will specify, once explicit directional formatting characters have been used
to assign embedding levels to the characters in a paragraph, embedding initiators and
PDFs are removed (or virtually removed) from the paragraph. Thus, the embedding
levels assigned to the embedding initiators and PDFs themselves are irrelevant. In this,
embedding initiators and PDFs differ from isolate initiators and PDIs, which continue to
play a part in determining the paragraph’s display order as mentioned above.

BD12. The directional isolate status is a Boolean value set by using isolate formatting
characters: it is true when the current embedding level was started by an isolate
initiator.

BD13. An isolating run sequence is a maximal sequence of level runs such that for all
level runs except the last one in the sequence, the last character of the run is an
isolate initiator whose matching PDI is the first character of the next level run in the
sequence. It is maximal in the sense that if the first character of the first level run in the
sequence is a PDI, it must not not match any isolate initiator, and if the last character
of the last level run in the sequence is an isolate initiator, it must not have a matching
PDI.

The set of isolating run sequences in a paragraph can be computed by the following
algorithm:

Start with an empty set of isolating run sequences.

For each level run in the paragraph whose first character is not a PDI, or is a PDI
that does not match any isolate initiator:

Create a new level run sequence, and initialize it to contain just that level
run.

While the level run currently last in the sequence ends with an isolate
initiator that has a matching PDI, append the level run containing the
matching PDI to the sequence. (Note that this matching PDI must be the
first character of its level run.)

Add the resulting sequence of level runs to the set of isolating run
sequences.

Note that:

Each level run in a paragraph belongs to exactly one isolating run sequence.

In the absence of isolate initiators, each isolating run sequence in a paragraph
consists of exactly one level run, and each level run constitutes a separate
isolating run sequence.

For any two adjacent level runs in an isolating run sequence, since one ends with
an isolate initiator whose matching PDI starts the other, the two must have the
same embedding level. Thus, all the level runs in an isolating run sequence have
the same embedding level.

When an isolate initiator raises the embedding level, both the isolate initiator and
its matching PDI, if any, get the original embedding level, not the raised one.
Thus, if the matching PDI does not immediately follow the isolate initiator in the
paragraph, the isolate initiator is the last character in its level run, but the

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

13 of 52

matching PDI, if any, is the first character of its level run and immediately follows
the isolate initiator in the same isolating run sequence. On the other hand, the
level run following the isolate initiator in the paragraph starts a new isolating run
sequence, and the level run preceding the matching PDI (if any) in the paragraph
ends its isolating run sequence.

In the following examples, assume that:

The paragraph embedding level is 0.

No character sequence texti contains explicit formatting characters or paragraph
separators.

The dots are used only to improve the example's visual clarity; they are not part
of the text.

The characters in the paragraph text are assigned embedding levels as loosely
described above such that they form the set of level runs given in each example.

Example 1

Paragraph text: text1·RLE ·text2·PDF ·RLE ·text3·PDF ·text4

Level runs:

text1 – level 0

text2·text3 – level 1

text4 – level 0

Resulting isolating run sequences:

text1 – level 0

text2·text3 – level 1

text4 – level 0

Example 2

Paragraph text: text1·RLI ·text2·PDI ·RLI ·text3·PDI ·text4

Level runs:

text1·RLI – level 0

text2 – level 1

PDI ·RLI – level 0

text3 – level 1

PDI ·text4 – level 0

Resulting isolating run sequences:

text1·RLI PDI ·RLI PDI ·text4 – level 0

text2 – level 1

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

14 of 52

text3 – level 1

Example 3

Paragraph text: text1·RLI ·text2·LRI ·text3·RLE ·text4·PDF ·text5·PDI ·text6·PDI ·text7

Level runs:

text1·RLI – level 0

text2·LRI – level 1

text3 – level 2

text4 – level 3

text5 – level 2

PDI ·text6 – level 1

PDI ·text7 – level 0

Resulting isolating run sequences:

text1·RLI PDI ·text7 – level 0

text2·LRI PDI ·text6 – level 1

text3 – level 2

text4 – level 3

text5 – level 2

As rule X10 will specify, an isolating run sequence is the unit to which the rules
following it are applied, and the last character of one level run in the sequence is
considered to be immediately followed by the first character of the next level run in the
sequence during this phase of the algorithm. Since those rules are based on the
characters' implicit bidirectional types, an isolate really does have the same effect on
the ordering of the text surrounding it as a neutral character – or, to be more precise, a
pair of neutral characters, the isolate initiator and the PDI, which behave in those rules
just like neutral characters.

The following definitions utilize the normative properties Bidi_Paired_Bracket and
Bidi_Paired_Bracket_Type defined in the BidiBrackets.txt file [Data9] of the Unicode
Character Database [UCD].

BD14. An opening paired bracket is a character whose Bidi_Paired_Bracket_Type
property value is Open.

BD15. A closing paired bracket is a character whose Bidi_Paired_Bracket_Type
property value is Close.

BD16. A bracket pair is a pair of characters consisting of an opening paired bracket and
a closing paired bracket such that the Bidi_Paired_Bracket property value of the former
equals the latter and which are algorithmically identified at specific text positions within
an isolating run sequence. The following algorithm identifies all of the bracket pairs in a
given isolating run sequence:

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

15 of 52

Create a stack for elements each consisting of a bracket character and a text
position. Initialize it to empty.

Create a list for elements each consisting of two text positions, one for an
opening paired bracket and the other for a corresponding closing paired bracket.
Initialize it to empty.

Inspect each character in the isolating run sequence in logical order.

If an opening paired bracket is found, push its Bidi_Paired_Bracket property
value and its text position onto the stack.

If a closing paired bracket is found, do the following:

Declare a variable that holds a reference to the current stack element
and initialize it with the top element of the stack.

1.

Compare the closing paired bracket being inspected to the bracket in
the current stack element.

2.

If the values match, meaning the two characters form a bracket pair,
then

Append the text position in the current stack element together
with the text position of the closing paired bracket to the list.

Pop the stack through the current stack element inclusively.

3.

Else, if the current stack element is not at the bottom of the stack,
advance it to the next element deeper in the stack and go back to step
2.

4.

Else, continue with inspecting the next character without popping the
stack.

5.

Sort the list of pairs of text positions in ascending order based on the text position
of the opening paired bracket.

Note that paired brackets can only occur in an isolating run sequence because they are
processed in rule N0 after explicit level resolution. See Section 3.3.2, Explicit Levels
and Directions.

Examples of bracket pairs

Text Pairings
1 2 3 4 5 6 7 8
a) b (c None
a (b] c None
a (b) c 2-4
a (b [c) d] 2-6
a (b] c) d 2-6
a (b) c) d 2-4
a (b (c) d 4-6
a (b (c) d) 2-8, 4-6
a (b { c } d) 2-8, 4-6

Table 3 lists additional abbreviations used in the examples and internal character types
used in the algorithm.

Table 3. Abbreviations for Examples and Internal Types

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

16 of 52

Symbol Description
NI Neutral or Separator or Isolate formatting character (B, S, WS, ON, FSI,

LRI, RLI, PDI).
e The text ordering type (L or R) that matches the embedding level

direction (even or odd).
o The text ordering type (L or R) that matches the direction opposite

the embedding level direction (even or odd).
Note that o is the opposite of e.

sos The text ordering type (L or R) assigned to the virtual position before
an isolating run sequence.

eos The text ordering type (L or R) assigned to the virtual position after
an isolating run sequence.

3.2 Bidirectional Character Types

The normative bidirectional character types for each character are specified in the
Unicode Character Database [UCD] and are summarized in Table 4. This is a summary
only: there are exceptions to the general scope. For example, certain characters such
as U+0CBF KANNADA VOWEL SIGN I are given Type L (instead of NSM) to preserve canonical
equivalence.

The term European digits is used to refer to decimal forms common in Europe
and elsewhere, and Arabic-Indic digits to refer to the native Arabic forms. (See
Section 8.2, Arabic of [Unicode], for more details on naming digits.)

Unassigned characters are given strong types in the algorithm. This is an explicit
exception to the general Unicode conformance requirements with respect to
unassigned characters. As characters become assigned in the future, these
bidirectional types may change. For assignments to character types, see
DerivedBidiClass.txt [DerivedBIDI] in the [UCD].

Private-use characters can be assigned different values by a conformant
implementation.

For the purpose of the Bidirectional Algorithm, inline objects (such as graphics)
are treated as if they are an U+FFFC OBJECT REPLACEMENT CHARACTER.

As of Unicode 4.0, the Bidirectional Character Types of a few Indic characters
were altered so that the Bidirectional Algorithm preserves canonical equivalence.
That is, two canonically equivalent strings will result in equivalent ordering after
applying the algorithm. This invariant will be maintained in the future.

Note: The Bidirectional Algorithm does not preserve compatibility equivalence.

Table 4. Bidirectional Character Types

Category Type Description General Scope
Strong L Left-to-Right LRM, most alphabetic, syllabic, Han

ideographs, non-European or
non-Arabic digits, ...

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

17 of 52

LRE Left-to-Right
Embedding

LRE

LRO Left-to-Right
Override

LRO

R Right-to-Left RLM, Hebrew alphabet, and related
punctuation

AL Right-to-Left
Arabic

ALM, Arabic, Thaana, and Syriac
alphabets, most punctuation specific to
those scripts, ...

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

Weak EN European
Number

European digits, Eastern Arabic-Indic
digits, ...

ES European
Number
Separator

PLUS SIGN, MINUS SIGN

ET European
Number
Terminator

DEGREE SIGN, currency symbols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and
thousands separators, ...

CS Common
Number
Separator

COLON, COMMA, FULL STOP (period), NO-BREAK SPACE,
...

NSM Nonspacing Mark Characters marked Mn
(Nonspacing_Mark) and Me
(Enclosing_Mark) in the Unicode
Character Database

BN Boundary Neutral Default ignorables, non-characters, and
control characters, other than those
explicitly given other types.

PDF Pop Directional
Format

PDF

Neutral B Paragraph
Separator

PARAGRAPH SEPARATOR, appropriate Newline
Functions, higher-level protocol
paragraph determination

S Segment
Separator

Tab

WS Whitespace SPACE, FIGURE SPACE, LINE SEPARATOR, FORM FEED,
General Punctuation spaces, ...

ON Other Neutrals All other characters, including OBJECT
REPLACEMENT CHARACTER

Explicit
Formatting

LRE Left-to-Right
Embedding

LRE

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

18 of 52

LRO Left-to-Right
Override

LRO

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

PDF Pop Directional
Format

PDF

LRI Left-to-Right
Isolate

LRI

RLI Right-to-Left
Isolate

RLI

FSI First Strong
Isolate

FSI

PDI Pop Directional
Isolate

PDI

3.3 Resolving Embedding Levels

The body of the Bidirectional Algorithm uses bidirectional character types, explicit
formatting characters, and bracket pairs to produce a list of resolved levels. This
resolution process consists of the following steps:

Applying rule P1 to split the text into paragraphs, and for each of these:

Applying rules P2 and P3 to determine the paragraph level.

Applying rule X1 (which employs rules X2–X8) to determine explicit
embedding levels and directions.

Applying rule X9 to remove many control characters from further
consideration.

Applying rule X10 to split the paragraph into isolating run sequences and
for each of these:

Applying rules W1–W7 to resolve weak types.

Applying rules N0–N2 to resolve neutral types.

Applying rules I1–I2 to resolve implicit embedding levels.

3.3.1 The Paragraph Level

P1. Split the text into separate paragraphs. A paragraph separator is kept with the
previous paragraph. Within each paragraph, apply all the other rules of this algorithm.

P2. In each paragraph, find the first character of type L, AL, or R while skipping over
any characters between an isolate initiator and its matching PDI or, if it has no matching
PDI, the end of the paragraph.

Note that:

Because paragraph separators delimit text in this algorithm, the character found

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

19 of 52

by this rule will generally be the first strong character after a paragraph separator
or at the very beginning of the text.

The characters between an isolate initiator and its matching PDI are ignored by
this rule because a directional isolate is supposed to have the same effect on the
ordering of the surrounding text as a neutral character, and the rule ignores
neutral characters.

The characters between an isolate initiator and its matching PDI are ignored by
this rule even if the depth limit (as defined in rules X5a through X5c below)
prevents the isolate initiator from raising the embedding level. This is meant to
make the rule easier to implement.

Embedding initiators (but not the characters within the embedding) are ignored in
this rule. This is because typically they are used to indicate that the embedded
text is the opposite direction than the paragraph level.

P3. If a character is found in P2 and it is of type AL or R, then set the paragraph
embedding level to one; otherwise, set it to zero.

Whenever a higher-level protocol specifies the paragraph level, rules P2 and P3 may
be overridden: see HL1.

3.3.2 Explicit Levels and Directions

All explicit embedding levels are determined from explicit directional formatting
characters (embedding, override, and isolate), by applying the explicit level rules X1
through X9. These rules are applied as part of the same This performs a logical pass
over the paragraph, applying rules X2–X8 to each characters in turn. The following
variables are used during this pass:

A directional status stack of at most max_depth+2 entries where each entry
consists of:

An embedding level, which is at least zero and at most max_depth.

A directional override status.

A directional isolate status.

In addition to supporting the usual destructive “pop” operation, the stack also
allows read access to its last (i.e. top) entry without popping it. For efficiency, that
last entry can be kept in a separate variable instead of on the directional status
stack, but it is easier to explain the algorithm without that optimization. At the
start of the pass, the directional status stack is initialized to an entry reflecting the
paragraph embedding level, with the directional override status neutral and the
directional isolate status false; this entry is not popped off until the end of the
paragraph. During the pass, the directional status stack always contains entries
for all the directional embeddings, overrides, and isolates within which the current
position lies – except those that would overflow the depth limit – in addition to the
paragraph level entry at the start of the stack. The last entry reflects the
innermost valid scope within which the pass's current position lies. Implementers
may find it useful to include more information in each stack entry. For example, in
an isolate entry, the location of the isolate initiator could be used to create a
mapping from the location of each valid isolate initiator to the location of the
matching PDF, or vice-versa. However, such optimizations are beyond the scope

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

20 of 52

of this specification.

A counter called the overflow isolate count.
This reflects the number of isolate initiators that were encountered in the pass so
far without encountering their matching PDIs, but were invalidated by the depth
limit and thus are not reflected in the directional status stack. They are nested
one within the other and the stack's last scope. This count is used to determine
whether a newly encountered PDI matches and terminates the scope of an
overflow isolate initiator, thus decrementing the count, as opposed to possibly
matching and terminating the scope of a valid isolate initiator, which should result
in popping its entry off the directional status stack. It is also used to determine
whether a newly encountered PDF falls within the scope of an overflow isolate
initiator and can thus be completely ignored (regardless of whether it matches an
embedding initiator within the same overflow isolate or nothing at all).

A counter called the overflow embedding count.
This reflects the number of embedding initiators that were encountered in the
pass so far without encountering their matching PDF, or encountering the PDI of
an isolate within which they are nested, but were invalidated by the depth limit,
and thus are not reflected in the directional status stack. They are nested one
within the other and the stack's last scope. This count is used to determine
whether a newly encountered PDF matches and terminates the scope of an
overflow embedding initiator, thus decrementing the count, as opposed to
possibly matching and terminating the scope of a valid embedding initiator, which
should result in popping its entry off the directional status stack. However, this
count does not include embedding initiators encountered within the scope of an
overflow isolate (i.e. encountered when the overflow isolate count above is
greater than zero). The scopes of those overflow embedding initiators fall within
the scope of an overflow isolate and are terminated when the overflow isolate
count turns zero. Thus, they do not need to be counted. In fact, if they were
counted in the overflow embedding count, there would be no way to properly
update that count when a PDI matching an overflow isolate initiator is
encountered: without a stack of the overflow scopes, there would be no way to
know how many (if any) overflow embedding initiators fall within the scope of that
overflow isolate.

A counter called the valid isolate count.
This reflects the number of isolate initiators that were encountered in the pass so
far without encountering their matching PDIs, and have been judged valid by the
depth limit, i.e. all the entries on the stack with a true directional isolate status. It
ignores all embeddings and overrides, and is used to determine without having to
look through the directional status stack whether a PDI encountered by the pass
when the overflow isolate count is zero matches some valid isolate initiator or
nothing at all. A PDI encountered when this counter is above zero terminates the
scope of the isolate initiator it matches, as well as the embeddings and overrides
nested within it – which appear above it on the stack, or are reflected in the
overflow embedding count.

Note that there is no need for a valid embedding count in order to tell whether a PDF
encountered by the pass matches a valid embedding initiator or nothing at all. That
can be decided by checking the directional isolate status of the last entry on the
directional status stack and the number of entries on the stack. If the last entry has a
true directional isolate status, it is for a directional isolate within whose scope the PDF

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

21 of 52

lies. Since the PDF cannot match an embedding initiator outside that isolate, and there
are no embedding entries within the isolate, it matches nothing at all. And if the last
entry has a false directional isolate status, but is also the only entry on the stack, it
belongs to paragraph level, and thus once again the PDF matches nothing at all.

As each character is processed, these variables’ values are modified and the
character’s explicit embedding level is set as defined by rules X2 through X8 on the
basis of the character’s bidirectional type and the variables’ current values.

X1. At the beginning of a paragraph, perform the following steps:

Set the stack to empty.

Push onto the stack an entry consisting of the paragraph embedding level, a
neutral directional override status, and a false directional isolate status.

Set the overflow isolate count to zero.

Set the overflow embedding count to zero.

Set the valid isolate count to zero.

Process each character iteratively, applying rules X2 through X8. Only embedding
levels from 0 through max_depth are valid in this phase. (Note that in the
resolution of levels in rules I1 and I2, the maximum embedding level of
max_depth+1 can be reached.)

Explicit Embeddings

X2. With each RLE, perform the following steps:

Compute the least odd embedding level greater than the embedding level of the
last entry on the directional status stack.

a. If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this RLE is valid. Push an entry consisting of
the new embedding level, neutral directional override status, and false directional
isolate status onto the directional status stack.

b. Otherwise, this is an overflow RLE. If the overflow isolate count is zero,
increment the overflow embedding count by one. Leave all other variables
unchanged.

For example, assuming the overflow counts are both zero, level 0 → 1; levels 1, 2 → 3;
levels 3, 4 → 5; ...59, 60 → 61and so on. At max_depth or if either overflow count is
non-zero, the level remains the same (overflow RLE).

X3. With each LRE, perform the following steps:

Compute the least even embedding level greater than the embedding level of the
last entry on the directional status stack.

a. If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this LRE is valid. Push an entry consisting of
the new embedding level, neutral directional override status, and false directional
isolate status onto the directional status stack.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

22 of 52

b. Otherwise, this is an overflow LRE. If the overflow isolate count is zero,
increment the overflow embedding count by one. Leave all other variables
unchanged.

For example, assuming the overflow counts are both zero, levels 0, 1 → 2; levels 2, 3
→ 4; levels 4, 5 → 6; ...58, 59 → 60and so on. At max_depth or max_depth-1 (which,
being even, would have to go to max_depth+1) or if either overflow count is non-zero,
the level remains the same (overflow LRE).

Explicit Overrides

An explicit directional override sets the embedding level in the same way the explicit
embedding formatting characters do, but also changes the bidirectional character type
of affected characters to the override direction.

X4. With each RLO, perform the following steps:

Compute the least odd embedding level greater than the embedding level of the
last entry on the directional status stack.

a. If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this RLO is valid. Push an entry consisting of
the new embedding level, right-to-left directional override status, and false
directional isolate status onto the directional status stack.

b. Otherwise, this is an overflow RLO. If the overflow isolate count is zero,
increment the overflow embedding count by one. Leave all other variables
unchanged.

X5. With each LRO, perform the following steps:

Compute the least even embedding level greater than the embedding level of the
last entry on the directional status stack.

a. If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this LRO is valid. Push an entry consisting of
the new embedding level, left-to-right directional override status, and false
directional isolate status onto the directional status stack.

b. Otherwise, this is an overflow LRO. If the overflow isolate count is zero,
increment the overflow embedding count by one. Leave all other variables
unchanged.

Isolates

X5a. With each RLI, perform the following steps:

Set the RLI’s embedding level to the embedding level of the last entry on the
directional status stack.

Compute the least odd embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid and the overflow isolate count and the overflow
embedding count are both zero, then this RLI is valid. Increment the valid isolate

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

23 of 52

count by one, and push an entry consisting of the new embedding level, neutral
directional override status, and true directional isolate status onto the directional
status stack.

Otherwise, this is an overflow RLI. Increment the overflow isolate count by one,
and leave all other variables unchanged.

X5b. With each LRI, perform the following steps:

Set the LRI’s embedding level to the embedding level of the last entry on the
directional status stack.

Compute the least even embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid and the overflow isolate count and the overflow
embedding count are both zero, then this LRI is valid. Increment the valid isolate
count by one, and push an entry consisting of the new embedding level, neutral
directional override status, and true directional isolate status onto the directional
status stack.

Otherwise, this is an overflow LRI. Increment the overflow isolate count by one,
and leave all other variables unchanged.

X5c. With each FSI, apply rules P2 and P3 to the sequence of characters between the
FSI and and its matching PDI, or if there is no matching PDI, the end of the paragraph,
as if this sequence of characters were a paragraph. If these rules decide on paragraph
embedding level 1, treat the FSI as an RLI in rule X5a. Otherwise, treat it as an LRI in
rule X5b.

Note that the new embedding level is not set to the paragraph embedding level
determined by P2 and P3. It goes up by one or two levels, as it would for an LRI or RLI.

Non-formatting characters

X6. For all types besides B, BN, RLE, LRE, RLO, LRO, PDF, RLI, LRI, FSI, and PDI:

a. Set the current character’s embedding level to the embedding level of the last
entry on the directional status stack.

b. Whenever the directional override status of the last entry on the directional
status stack is not neutral, reset the current character type according to the
directional override status of the last entry on the directional status stack.

In other words, if the directional override status of the last entry on the directional
status stack is neutral, then characters retain their normal types: Arabic characters stay
AL, Latin characters stay L, spaces stay WS, and so on. If the directional override
status is right-to-left, then characters become R. If the directional override status is
left-to-right, then characters become L.

Note that the current embedding level is not changed by this rule.

Terminating Isolates

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

24 of 52

A PDI terminates the scope of the isolate initiator it matches. It also terminates the
scopes of all embedding initiators within the scope of the matched isolate initiator for
which a matching PDF has not been encountered. If it does not match any isolate
initiator, it is ignored.

X6a. With each PDI, perform the following steps:

If the overflow isolate count is greater than zero, this PDI matches an overflow
isolate initiator. Decrement the overflow isolate count by one.

Otherwise, if the valid isolate count is zero, this PDI does not match any isolate
initiator, valid or overflow. Do nothing.

Otherwise, this PDI matches a valid isolate initiator. Perform the following steps:

Reset the overflow embedding count to zero. (This terminates the scope of
those overflow embedding initiators within the scope of the matched isolate
initiator whose scopes have not been terminated by a matching PDF, and
which thus lack a matching PDF.)

While the directional isolate status of the last entry on the stack is false, pop
the last entry from the directional status stack. (This terminates the scope of
those valid embedding initiators within the scope of the matched isolate
initiator whose scopes have not been terminated by a matching PDF, and
which thus lack a matching PDF. Given that the valid isolate count is
non-zero, the directional status stack must contain an entry with directional
isolate status true before this step, and thus after this step the last entry on
the stack will indeed have a true directional isolate status, i.e. represent the
scope of the matched isolate initiator. This cannot be the stack's first entry,
which always belongs to the paragraph level and has a false directional
status, so there is at least one more entry before it on the stack.)

Pop the last entry from the directional status stack and decrement the valid
isolate count by one. (This terminates the scope of the matched isolate
initiator. Since the preceding step left the stack with at least two entries, this
pop does not leave the stack empty.)

In all cases, set the PDI’s level to the embedding level of the last entry on the
directional status stack left after the steps above.

Note that the level assigned to an isolate initiator is always the same as that assigned
to the matching PDI.

Terminating Embeddings and Overrides

There is a single code to terminate the scope of the current explicit code, whether an
embedding or a directional override. All codes and pushed states are completely
popped at the end of paragraphs.

A PDF terminates the scope of the embedding initiator it matches. If it does not match
any embedding initiator, it is ignored.

X7. With each PDF, determine the matching embedding or override code. If there was a
valid matching code, restore (pop) the last remembered (pushed) embedding level and

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

25 of 52

directional override. perform the following steps:

If the overflow isolate count is greater than zero, do nothing. (This PDF is within
the scope of an overflow isolate initiator. It either matches and terminates the
scope of an overflow embedding initiator within that overflow isolate, or does not
match any embedding initiator.)

Otherwise, if the overflow embedding count is greater than zero, decrement it by
one. (This PDF matches and terminates the scope of an overflow embedding
initiator that is not within the scope of an overflow isolate initiator.)

Otherwise, if the directional isolate status of the last entry on the directional status
stack is false, and the directional status stack contains at least two entries, pop
the last entry from the directional status stack. (This PDF matches and terminates
the scope of a valid embedding initiator. Since the stack has at least two entries,
this pop does not leave the stack empty.)

Otherwise, do nothing. (This PDF does not match any embedding initiator.)

End of Paragraph

X8. All explicit directional embeddings, overrides and isolates are completely
terminated at the end of each paragraph. Paragraph separators are not included in any
embedding, override or isolate, and are thus assigned the paragraph embedding level.

3.3.3 Preparations for Implicit Processing

The explicit embedding levels that have been assigned to the characters by the
preceding rules will soon be further adjusted on the basis of the characters' implicit
bidirectional types. The adjustment made for a given character will then depend on the
characters around it. However, this dependency is limited by logically dividing the
paragraph into sub-units, and doing the subsequent implicit processing on each unit
independently.

X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN characters.

Note that an implementation does not have to actually remove the characters; it
just has to behave as though the characters were not present for the remainder
of the algorithm. Conformance does not require any particular placement of these
characters as long as all other characters are ordered correctly.

See Section 5, Implementation Notes, for information on implementing the
algorithm without removing the formatting characters.

The zero width joiner and non-joiner affect the shaping of the adjacent characters
—those that are adjacent in the original backing-store order, even though those
characters may end up being rearranged to be non-adjacent by the Bidirectional
Algorithm. For more information, see Section 6.1, Joiners.

Note that FSI, LRI, RLI, and PDI characters are not removed. As indicated by the
rules below, they are used, in part, to determine the paragraph’s isolating run

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

26 of 52

sequences, within which they are then treated as neutral characters.
Nevertheless, they are of course zero-width characters and, like LRM and RLM,
should not be visible in the final output.

X10. Perform the following steps:

Compute the set of isolating run sequences. These sequences are computed as
specified by BD13, based on the the bidirectional types of the characters and the
embedding levels assigned by the rules above (X1–X9).

Determine the start-of-sequence (sos) and end-of-sequence (eos) types, either L
or R, for each isolating run sequence. These depend on the higher of the two
levels on either side of the sequence boundary:

For sos, compare the level of the first character in the sequence with the
level of the character preceding it in the paragraph (not counting characters
removed by X9), and if there is none, with the paragraph embedding level.

For eos, compare the level of the last character in the sequence with the
level of the character following it in the paragraph (not counting characters
removed by X9), and if there is none or the last character of the sequence is
an isolate initiator (lacking a matching PDI), with the paragraph embedding
level.

If the higher level is odd, the sos or eos is R; otherwise, it is L.

Note that these computations must use the embedding levels assigned by
the rules above, before any changes are made to them in the steps below.

Apply rules W1–W7, N0–N2, and I1–I2, in the order in which they appear below, to
each of the isolating run sequences, applying one rule to all the characters in the
sequence in the order in which they occur in the sequence before applying another
rule to any part of the sequence. The order that one isolating run sequence is
treated relative to another does not matter. When applying a rule to an isolating
run sequence, the last character of each level run in the isolating run sequence is
treated as if it were immediately followed by the first character in the next level run
in the sequence, if any.

For example:

Levels: 0 0 0 1 1 1 2

Runs: <--- 1 ---> <--- 2 ---> <3>

Run 1 is at level 0, sor is L, eor is R.
Run 2 is at level 1, sor is R, eor is L.
Run 3 is at level 2, sor is L, eor is L.

For two adjacent runs, the eor of the first run is the same as the sor of the second.

Here are some examples, each of which is assumed to be a paragraph with base level
0 where no character sequence texti contains explicit directional formatting characters
or paragraph separators. The dots in the examples are intended to separate elements
for visual clarity; they are not part of the text.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

27 of 52

Example 1: text1·RLE ·text2·LRE ·text3·PDF ·text4·PDF ·RLE ·text5·PDF ·text6

Isolating Run Sequence Embedding Level sos eos
text1 0 L R
text2 1 R L
text3 2 L L
text4·text5 1 L R
text6 0 R L

Example 2: text1·RLI ·text2·LRI ·text3·PDI ·text4·PDI ·RLI ·text5·PDI ·text6

Isolating Run Sequence Embedding Level sos eos
text1·RLI ·PDI ·RLI ·PDI ·text6 0 L L
text2·LRI ·PDI ·text4 1 R R
text3 2 L L
text5 1 R R

Example 3: text1·RLE ·text2·LRI ·text3·RLE ·text4·PDI ·text5·PDF ·text6

Isolating Run Sequence Embedding Level sos eos
text1 0 L R
text2·LRI ·PDI ·text5 1 R R
text3 2 L R
text4 3 R R
text6 0 R L
3.3.4 Resolving Weak Types

Weak types are now resolved one isolating run sequence at a time. At isolating run
sequence boundaries where the type of the character on the other side of the
boundary is required, the type assigned to sos or eos is used.

First, each nonspacing mark is resolved based on the previous character it follows.

W1. Examine each nonspacing mark (NSM) in the isolating run sequence, and change
the type of the NSM to Other Neutral if the previous character is an isolate initiator or
PDI, and to the type of the previous character otherwise. If the NSM is at the start of the
isolating run sequence, it will get the type of sos. (Note that in an isolating run
sequence, an isolate initiator followed by an NSM or any type other than PDI must be
an overflow isolate initiator.)

Assume in this example that sos is R:

AL NSM NSM → AL AL AL

sos NSM → sos R

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

28 of 52

LRI NSM → LRI ON

PDI NSM → PDI ON

The text is next parsed for numbers. This pass will change the directional types
European Number Separator, European Number Terminator, and Common Number
Separator to be European Number text, Arabic Number text, or Other Neutral text. The
text to be scanned may have already had its type altered by directional overrides. If so,
then it will not parse as numeric.

W2. Search backward from each instance of a European number until the first strong
type (R, L, AL, or sos) is found. If an AL is found, change the type of the European
number to Arabic number.

AL EN → AL AN

AL NI EN → AL NI AN

sos NI EN → sos NI EN

L NI EN → L NI EN

R NI EN → R NI EN

W3. Change all ALs to R.

W4. A single European separator between two European numbers changes to a
European number. A single common separator between two numbers of the same type
changes to that type.

EN ES EN → EN EN EN

EN CS EN → EN EN EN

AN CS AN → AN AN AN

W5. A sequence of European terminators adjacent to European numbers changes to all
European numbers.

ET ET EN → EN EN EN

EN ET ET → EN EN EN

AN ET EN → AN EN EN

W6. Otherwise, separators and terminators change to Other Neutral.

AN ET → AN ON

L ES EN → L ON EN

EN CS AN → EN ON AN

ET AN → ON AN

W7. Search backward from each instance of a European number until the first strong

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

29 of 52

type (R, L, or sos) is found. If an L is found, then change the type of the European
number to L.

L NI EN → L NI L

R NI EN → R NI EN

3.3.5 Resolving Neutral and Isolate Formatting Types

In the next phase, neutral and isolate formatting (i.e. NI) characters are resolved one
isolating run sequence at a time. The next phase resolves the direction of the neutrals.
Its results are that all NIs become either R or L. Generally, NIs take on the direction of
the surrounding text. In case of a conflict, they take on the embedding direction. At
isolating run sequence boundaries where the type of the character on the other side of
the boundary is required, the type assigned to sos or eos is used.

Bracket pairs within an isolating run sequence are processed as units so that both the
opening and the closing paired bracket in a pair resolve to the same direction.

N0. Process bracket pairs in an isolating run sequence sequentially in the logical order
of the text positions of the opening paired brackets using the logic given below. Within
this scope, bidirectional types EN and AN are treated as R.

Identify the bracket pairs in the current isolating run sequence according to BD16.

For each bracket-pair element in the list of pairs of text positions

Inspect the bidirectional types of the characters enclosed within the bracket
pair.

a.

If any strong type (either L or R) matching the embedding direction is found,
set the type for both brackets in the pair to match the embedding direction.

o [e] o → o e e e o

o [o e] → o e o e e

o [NI e] → o e NI e e

b.

Otherwise, if there is a strong type, it is opposite the embedding direction,
so test for adjacent strong types as follows:

First, check backwards before the opening paired bracket until the first
strong type (L, R, or sos) is found. If that first preceding strong type is
opposite the embedding direction, then set the type for both brackets in
the pair to that type.

1.

Otherwise, check forwards after the closing paired bracket until the first
strong type (L, R, or eos) is found. If that first following strong type is
opposite the embedding direction, then set the type for both brackets in
the pair to that type.

2.

Otherwise, set the type for both brackets in the pair to the embedding
direction.

3.

c.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

30 of 52

o [o] e → o o o o e

o [o NI] o → o o o NI o o

e [o] o → e o o o o

e [o] e → e e o e e

e (o [o] NI) e → e e o o o o NI e e

Review Note: The UTC is considering whether resolving paired brackets
opposite to the embedding direction based on context between the
enclosed text and text outside the brackets should be done in one direction
or symmetrically:

Resolve based on preceding context, e.g., "book(s)" in an RTL
paragraph, o [o]

1.

Resolve based on following context, e.g., "(s)he" in an RTL
paragraph, [o] o

2.

Resolve based on both preceding and following context3.

If you have any information for or against any of these three possibilities
please submit that via the online reporting form [Feedback].

Otherwise, do not set the type for the current bracket pair. Note that if the
enclosed text contains no strong types the paired brackets will both resolve
to the same level when resolved individually using rules N1 and N2.

e (NI) o → e (NI) o

d.

Example 1: Paired brackets are resolved sequentially in logical order of the opening
paired brackets.

(RTL paragraph direction)

Storage AB (CD [& ef] .) gh

Bidi_Class R ON R ON ON L ON ON ON L

N0 applied (first pair) N0b:
ON→R

N0b:
ON→R

N0 applied (second
pair)

N0c3:
ON→R

N0c3:
ON→R

Display gh(.[ef&]DC)BA

Example 2: Paired brackets enclosing mixed strong types take the paragraph direction.

(RTL paragraph direction)

Storage smith (fabrikam ARABIC) HEBREW

Bidi_Class L WS ON L WS R ON WS R

N0 applied N0b: ON→R N0b: ON→R

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

31 of 52

Display WERBEH (CIBARA fabrikam) smith

Note that in the above example, the resolution of the paired brackets is stable if the
order of smith and HEBREW, or fabrikam and ARABIC, is reversed.

Example 3: Paired brackets enclosing strong types opposite the embedding direction
with additional strong-type context take the direction opposite the embedding direction.

(RTL paragraph direction)

Storage ARABIC book (s)

Bidi_Class R WS L ON L ON

N0 applied N0c1: ON→L N0c1: ON→L
Display book(s) CIBARA

N1. A sequence of NIs takes the direction of the surrounding strong text if the text on
both sides has the same direction. European and Arabic numbers act as if they were R
in terms of their influence on NIs. The start-of-sequence (sos) and end-of-sequence
(eos) types are used at isolating run sequence boundaries.

 L NI L → L L L

 R NI R → R R R

 R NI AN → R R AN

 R NI EN → R R EN

AN NI R → AN R R

AN NI AN → AN R AN

AN NI EN → AN R EN

EN NI R → EN R R

EN NI AN → EN R AN

EN NI EN → EN R EN

N2. Any remaining NIs take the embedding direction.

NI → e

The embedding direction for the given NI character is derived from its embedding level:
L if the character is set to an even level, and R if the level is odd. (See BD3.)

Assume in the following example that eos is L and sos is R. Then an application of N1
and N2 yields the following:

L NI eos → L L eos

R NI eos → R e eos

sos NI L → sos e L

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

32 of 52

sos NI R → sos R R

Examples. A list of numbers separated by neutrals and embedded in a directional run
will come out in the run’s order.

Storage: he said "THE VALUES ARE 123, 456, 789, OK".

Display: he said "KO ,789 ,456 ,123 ERA SEULAV EHT".

In this case, both the comma and the space between the numbers take on the direction
of the surrounding text (uppercase = right-to-left), ignoring the numbers. The commas
are not considered part of the number because they are not surrounded on both sides
by digits (see Section 3.3.4, Resolving Weak Types). However, if there is a preceding
left-to-right sequence, then European numbers will adopt that direction:

Storage: IT IS A bmw 500, OK.

Display: .KO ,bmw 500 A SI TI

3.3.6 Resolving Implicit Levels

In the final phase, the embedding level of text may be increased, based on the
resolved character type. Right-to-left text will always end up with an odd level, and
left-to-right and numeric text will always end up with an even level. In addition, numeric
text will always end up with a higher level than the paragraph level. (Note that it is
possible for text to end up at levels higher than 61 max_depth+1 as a result of this
process.) This results in the following rules:

I1. For all characters with an even (left-to-right) embedding level, those of type R go up
one level and those of type AN or EN go up two levels.

I2. For all characters with an odd (right-to-left) embedding level, those of type L, EN or
AN go up one level.

Table 5 summarizes the results of the implicit algorithm.

Table 5. Resolving Implicit Levels

Type Embedding Level
Even Odd

L EL EL+1
R EL+1 EL
AN EL+2 EL+1
EN EL+2 EL+1

3.4 Reordering Resolved Levels

The following rules describe the logical process of finding the correct display order. As
opposed to resolution phases, these rules act on a per-line basis and are applied after
any line wrapping is applied to the paragraph.

Logically there are the following steps:

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

33 of 52

The levels of the text are determined according to the previous rules.

The characters are shaped into glyphs according to their context (taking the
embedding levels into account for mirroring).

The accumulated widths of those glyphs (in logical order) are used to determine
line breaks.

For each line, rules L1–L4 are used to reorder the characters on that line.

The glyphs corresponding to the characters on the line are displayed in that
order.

L1. On each line, reset the embedding level of the following characters to the paragraph
embedding level:

Segment separators,1.

Paragraph separators,2.

Any sequence of whitespace characters and/or isolate formatting characters (FSI,
LRI, RLI, and PDI) preceding a segment separator or paragraph separator, and

3.

Any sequence of whitespace characters and/or isolate formatting characters (FSI,
LRI, RLI, and PDI) at the end of the line.

4.

The types of characters used here are the original types, not those modified by
the previous phase.

Because a PARAGRAPH SEPARATOR breaks lines, there will be at most one per line, at the
end of that line.

In combination with the following rule, this means that trailing whitespace will appear at
the visual end of the line (in the paragraph direction). Tabulation will always have a
consistent direction within a paragraph.

L2. From the highest level found in the text to the lowest odd level on each line,
including intermediate levels not actually present in the text, reverse any contiguous
sequence of characters that are at that level or higher.

This rule reverses a progressively larger series of substrings.

The following examples illustrate the reordering, showing the successive steps in
application of Rule L2. The original text including any embedding codes for producing
the particular levels is shown in the "Storage" row in the example tables. The invisible,
zero-width formatting characters LRI, RLI, and PDI are represented with the symbols >,
<, and =, respectively. The application of the rules from Section 3.3, Resolving
Embedding Levels and of the Rule L1 results in the resolved levels. These are listed in
the rows "Before Reordering" and "Resolved Levels" row. (Since these examples only
make use of the isolate formatting characters, Rule X9 does not remove any
characters. Note that Example 3 would not work if it used embeddings instead because
the two right-to-left phrases would have merged into a single right-to-left run, together
with the neutral punctuation in between.) Each successive row thereafter shows one
pass of reversal from Rule L2, such as "Reverse levels 1-2". At each iteration, the
underlining shows the text that has been reversed.

The paragraph embedding level for the first, second, and third examples is 0 (left-
to-right direction), and for the second and fourth example is 1 (right-to-left direction).

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

34 of 52

Example 1 (embedding level = 0)

Storage: car means CAR.

Before Reordering: car means CAR.

Resolved levels: 00000000001110

Reverse level 1: car means RAC.

Display: car means RAC.

Example 2 (embedding level = 0)

Storage: <car MEANS CAR.=

Before Reordering: <car MEANS CAR.=

Resolved levels: 0222111111111110

Reverse level 2: <rac MEANS CAR.=

Reverse levels 1-2: <.RAC SNAEM car=

Display: .RAC SNAEM car

Example 3 (embedding level = 0)

Storage: he said “<car MEANS CAR=.” “<IT DOES=,” she agreed.

Before Reordering: he said “<car MEANS CAR=.” “<IT DOES=,” she agreed.

Resolved levels: 000000000022211111111110000001111111000000000000000

Reverse level 2: he said “<rac MEANS CAR=.” “<IT DOES=,” she agreed.

Reverse levels 1-2: he said “<RAC SNAEM car=.” “<SEOD TI=,” she agreed.

Display: he said “RAC SNAEM car.” “SEOD TI,” she agreed.

Example 4 (embedding level = 1)

Storage: DID YOU SAY ’>he said “<car MEANS CAR=”=‘?

Before Reordering: DID YOU SAY ’>he said “<car MEANS CAR=”=‘?

Resolved levels: 111111111111112222222222444333333333322111

Reverse level 4: DID YOU SAY ’>he said “<rac MEANS CAR=”=‘?

Reverse levels 3-4: DID YOU SAY ’>he said “<RAC SNAEM car=”=‘?

Reverse levels 2-4: DID YOU SAY ’>”=rac MEANS CAR<“ dias eh=‘?

Reverse levels 1-4: ?‘=he said “<RAC SNAEM car=”>’ YAS UOY DID

Display: ?‘he said “RAC SNAEM car”’ YAS UOY DID

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

35 of 52

L3. Combining marks applied to a right-to-left base character will at this point precede
their base character. If the rendering engine expects them to follow the base characters
in the final display process, then the ordering of the marks and the base character must
be reversed.

Many font designers provide default metrics for combining marks that support
rendering by simple overhang. Because of the reordering for right-to-left characters, it
is common practice to make the glyphs for most combining characters overhang to the
left (thus assuming the characters will be applied to left-to-right base characters) and
make the glyphs for combining characters in right-to-left scripts overhang to the right
(thus assuming that the characters will be applied to right-to-left base characters). With
such fonts, the display ordering of the marks and base glyphs may need to be
adjusted when combining marks are applied to “unmatching” base characters. See
Section 5.13, Rendering Nonspacing Marks of [Unicode], for more information.

L4. A character is depicted by a mirrored glyph if and only if (a) the resolved
directionality of that character is R, and (b) the Bidi_Mirrored property value of that
character is trueYes.

The Bidi_Mirrored property is defined by Section 4.7, Bidi Mirrored—Normative of
[Unicode]; the property values are specified in [UCD].

This rule can be overridden in certain cases; see HL6.

For example, U+0028 LEFT PARENTHESIS—which is interpreted in the Unicode Standard as an
opening parenthesis—appears as “(” when its resolved level is even, and as the
mirrored glyph “)” when its resolved level is odd. Note that for backward compatibility
the characters U+FD3E (﴾) ORNATE LEFT PARENTHESIS and U+FD3F (﴿) ORNATE RIGHT PARENTHESIS are
not mirrored.

3.5 Shaping

Cursively connected scripts, such as Arabic or Syriac, require the selection of positional
character shapes that depend on adjacent characters (see Section 8.2, Arabic of
[Unicode]). Shaping is logically applied after the Bidirectional Algorithm is used and is
limited to characters within the same level run. (Note that there is no practical
difference between limiting shaping to a level run and an isolating run sequence
because the isolate initiator and PDI characters are defined to have joining type U, i.e.
non-joining. Thus, the characters before and after a directional isolate will not join
across the isolate, even if the isolate is empty or overflows the depth limit.) Consider
the following example string of Arabic characters, which is represented in memory as
characters 1, 2, 3, and 4, and where the first two characters are overridden to be LTR.
To show both paragraph directions, the next two are embedded, but with the normal
RTL direction.

1 2 3 4

062C
JEEM

0639
AIN

0644
LAM

0645
MEEM

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

36 of 52

L L R R

One can use explicit directional formatting characters to achieve this effect in plain text
or use markup in HTML, as in the examples below. (The bold text would be for the
right-to-left paragraph direction.)

LRM/RLM LRO JEEM AIN PDF RLO LAM MEEM PDF

<p dir="ltr"/"rtl">LRO JEEM AIN PDF RLO LAM MEEM PDF</p>

<p dir="ltr"/"rtl"><bdo dir="ltr">JEEM AIN</bdo>
 <bdo dir="rtl">LAM MEEM</bdo></p>

The resulting shapes will be the following, according to the paragraph direction:

Left-Right Paragraph Right-Left Paragraph

1 2 4 3

JEEM-F AIN-I MEEM-F LAM-I

4 3 1 2

MEEM-F LAM-I JEEM-F AIN-I

3.5.1 Shaping and Line Breaking

The process of breaking a paragraph into one or more lines that fit within particular
bounds is outside the scope of the Bidirectional Algorithm. Where character shaping is
involved, the width calculations must be based on the shaped glyphs.

Note that the soft-hyphen (SHY) works in cursively connected scripts as it does in other
scripts. That is, it indicates a point where the line could be broken in the middle of a
word. If the rendering system breaks at that point, the display—including shaping
—should be what is appropriate for the given language. For more information on this
and other line breaking issues, see Unicode Standard Annex #14, “Line Breaking
Properties” [UAX14].

4 Bidirectional Conformance

A process that claims conformance to this specification shall satisfy the following
clauses:

UAX9-C1.
In the absence of a permissible higher-level protocol, a process
that renders text shall display all visible representations of
characters (excluding formatting characters) in the order described
by Section 3, Basic Display Algorithm, of this annex. In particular,
this includes definitions BD1–BD16 and steps P1–P3, X1–X10,
W1–W7, N0–N2, I1–I2, and L1–L4.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

37 of 52

As is the case for all other Unicode algorithms, this is a logical description
—particular implementations can have more efficient mechanisms as long as they
produce the same results. See C18 in Chapter 3, Conformance of [Unicode], and
the notes following.

The Bidirectional Algorithm specifies part of the intrinsic semantics of right-to-left
characters and is thus required for conformance to the Unicode Standard where
any such characters are displayed.

UAX9-C2.
The only permissible higher-level protocols are those listed in
Section 4.3, Higher-Level Protocols. They are HL1, HL2, HL3, HL4,
HL5, and HL6.

Use of higher-level protocols is discouraged, because it introduces interchange
problems and can lead to security problems. For more information, see Unicode
Technical Report #36, “Unicode Security Considerations” [UTR36].

4.1 Boundary Neutrals

The goal in marking a formatting or control character as BN is that it have no effect on
the rest of the algorithm. (ZWJ and ZWNJ are exceptions; see X9). Because
conformance does not require the precise ordering of formatting characters with
respect to others, implementations can handle them in different ways as long as they
preserve the ordering of the other characters.

4.2 Explicit Formatting Characters

As with any Unicode characters, systems do not have to support any particular explicit
directional formatting character (although it is not generally useful to include a
terminating character without including the initiator). Generally, conforming systems
will fall into four classes:

No bidirectional formatting. This implies that the system does not visually interpret
characters from right-to-left scripts.

Implicit bidirectionality. The implicit Bidirectional Algorithm and the directional
marks ALM, RLM and LRM are supported.

Non-isolate bidirectionality. The implicit Bidirectional Algorithm, the implicit
directional marks, and the explicit non-isolate directional formatting characters
are supported: ALM, RLM, LRM, LRE, RLE, LRO, RLO, PDF.

Full bidirectionality. The implicit Bidirectional Algorithm, the implicit directional
marks, and all the explicit directional formatting characters are supported: ALM,
RLM, LRM, LRE, RLE, LRO, RLO, PDF, FSI, LRI, RLI, PDI.

4.3 Higher-Level Protocols

The following clauses are the only permissible ways for systems to apply higher-level
protocols to the ordering of bidirectional text. Some of the clauses apply to segments of
structured text. This refers to the situation where text is interpreted as being structured,
whether with explicit markup such as XML or HTML, or internally structured such as in

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

38 of 52

a word processor or spreadsheet. In such a case, a segment is span of text that is
distinguished in some way by the structure.

HL1. Override P3, and set the paragraph embedding level explicitly. This does
not apply when deciding how to treat FSI in rule X5c.

A higher-level protocol may set any paragraph level. This can be
done on the basis of the context, such as on a table cell, paragraph,
document, or system level. (P2 may be skipped if P3 is overridden).
Note that this does not allow a higher-level protocol to override the
limit specified in BD2.
A higher-level protocol may apply rules equivalent to P2 and P3 but
default to level 1 (RTL) rather than 0 (LTR) to match overall RTL
context.
A higher-level protocol may use an entirely different algorithm that
heuristically auto-detects the paragraph embedding level based on
the paragraph text and its context. For example, it could base it on
whether there are more RTL characters in the text than LTR. As
another example, when the paragraph contains no strong
characters, its direction could be determined by the levels of the
paragraphs before and after.

HL2. Override W2, and set EN or AN explicitly.

A higher-level protocol may reset characters of type EN to AN, or
vice versa, and ignore W2. For example, style sheet or markup
information can be used within a span of text to override the
setting of EN text to be always be AN, or vice versa.

HL3. Emulate explicit directional formatting characters.

A higher-level protocol can impose a directional embedding, isolate
or override on a segment of structured text. The behavior must
always be defined by reference to what would happen if the
equivalent explicit directional formatting characters as defined in
the algorithm were inserted into the text. For example, a style sheet
or markup can modify the embedding level on a span of text.

HL4. Apply the Bidirectional Algorithm to segments.

The Bidirectional Algorithm can be applied independently to one or
more segments of structured text. For example, when displaying a
document consisting of textual data and visible markup in an
editor, a higher-level process can handle syntactic elements in the
markup separately from the textual data.

HL5. Provide artificial context.

Text can be processed by the Bidirectional Algorithm as if it were
preceded by a character of a given type and/or followed by a

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

39 of 52

character of a given type. This allows a piece of text that is
extracted from a longer sequence of text to behave as it did in the
larger context.

HL6. Additional mirroring.

Certain characters that do not have the Bidi_Mirrored property can
also be depicted by a mirrored glyph in specialized contexts. Such
contexts include, but are not limited to, historic scripts and
associated punctuation, private-use characters, and characters in
mathematical expressions. (See Section 6, Mirroring.) These
characters are those that fit at least one of the following conditions:

Characters with a resolved directionality of R1.
Characters with a resolved directionality of L and whose bidi
classbidirectional type is R or AL

2.

Clauses HL1 and HL3 are specialized applications of the more general clauses HL4
and HL5. They are provided here explicitly because they directly correspond to
common operations.

As an example of the application of HL4, suppose an XML document contains the
following fragment. (Note: This is a simplified example for illustration: element names,
attribute names, and attribute values could all be involved.)

ARABICenglishARABIC<e1 type='ab'>ARABICenglish<e2 type='cd'>english

This can be analyzed as being five different segments:

ARABICenglishARABICa.

<e1 type='ab'>b.

ARABICenglishc.

<e2 type='cd'>d.

englishe.

To make the XML file readable as source text, the display in an editor could order these
elements all in a uniform direction (for example, all left-to-right) and apply the
Bidirectional Algorithm to each field separately. It could also choose to order the
element names, attribute names, and attribute values uniformly in the same direction
(for example, all left-to-right). For final display, the markup could be ignored, allowing
all of the text (segments a, c, and e) to be reordered together.

4.4 Bidirectional Conformance Testing

The BidiTest.txt file in the Unicode Character Database [UCD] provides a
conformance test for UBA implementations. It is designed to be reasonably compact,
and yet provide a thorough test of all cases up to a given limit (currently 4). The format
is described in detail in the header of the file.

The Unicode Character Database [UCD] includes two files that provide conformance

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

40 of 52

tests for implementations of the Bidirectional Algorithm [Tests9]. One of the test files,
BidiTest.txt, comprises exhaustive test sequences of bidirectional types up to a given
length, currently 4. The other test file, BidiCharacterTest.txt, contains test
sequences of explicit code points, including, for example, paired brackets. The format
of each test file is described in the header of that file.

5 Implementation Notes

5.1 Reference Code

There are two versions of BIDI reference code available. Both have been tested to
produce identical results. One version is written in Java, and the other is written in C++.
The Java version is designed to closely follow the steps of the algorithm as described
below. The C++ code is designed to show one of the optimization methods that can be
applied to the algorithm, using a state table for one phase.

One of the most effective optimizations is to first test for right-to-left characters and not
invoke the Bidirectional Algorithm unless they are present.

There are two directories containing source code for reference implementations at
[Code9]. Implementers are encouraged to use this resource to test their
implementations. There is an online demo of bidi code at http://unicode.org/cldr/utility
/bidi.jsp, which shows the results, plus the levels and the rules invoked for each
character.

A reference implementation of the Bidirectional Algorithm written in Java is available.
The source code can be downloaded from [Code9]. Implementers are encouraged to
use this resource to test their implementations. An online demo is also available at
[Demo9], which shows the results of the Bidirectional Algorithm, as well as the
embedding levels and the rules invoked for each character.

The reference code is designed to follow the steps of the algorithm without applying
any optimizations. An example of an effective optimization is to first test for right-to-left
characters and invoke the Bidirectional Algorithm only if they are present. Another
example of optimization is in matching paired brackets. The bidirectional paired
brackets (the characters with Bidi_Paired_Bracket_Type property values Open and
Close) constitute a subset of the characters with bidirectional type ON. Conversely, the
characters with a bidirectional type distinct from ON have the
Bidi_Paired_Bracket_Type property value None. Therefore, lookup of
Bidi_Paired_Bracket_Type property values for the identification of paired brackets can
be optimized by restricting the processing to characters whose bidirectional type is ON.

5.2 Retaining Explicit Formatting Characters

Some implementations may wish to retain the explicit directional embedding and
override formatting characters when running the algorithm. The following provides a
summary of how this may be done. Note that this summary is an informative
implementation guideline; it should provide the same results as the explicit algorithm
above, but in case of any deviation the explicit algorithm is the normative statement for
conformance.

In rule X9, instead of removing the embedding and override formatting

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

41 of 52

characters, assign the embedding level to each formatting character, and turn it
into BN.

In rule X10, assign L or R to the last of a sequence of adjacent BNs according to
the eor / sor, and set the level to the higher of the two levels when determining
the sos and eos for an isolating run sequence, skip over any BNs when looking
for the character preceding the isolating run sequence's first character and
following its last character.

In rule W1, search backward from each NSM to the first character in the isolating
run sequence whose bidirectional type is not BN, and set the NSM to ON if it is
an isolate initiator or PDI, and to its type otherwise. If the NSM is the first non-BN
character, change the NSM to the type of sos.

In rule W4, scan past BN types that are adjacent to ES or CS.

In rule W5, change all appropriate sequences of ET and BN, not just ET.

In rule W6, change all BN types adjacent to ET, ES, or CS to ON as well.

In rule W7, scan past BN.

In rules N0–N2, treat BNs that adjoining neutrals the same as those neutrals.

In rules I1 and I2, ignore BN.

In rule L1, include the embedding and override formatting characters and BN
together with whitespace characters and isolate formatting characters in the
sequences whose level gets reset before a separator or line break. Resolve any
LRE, RLE, LRO, RLO, PDF, or BN to the level of the preceding character if there
is one, and otherwise to the base level.

Implementations that display visible representations of formatting characters will want
to adjust this process to position the formatting characters optimally for editing.

Review Note:

Sections 5.3 Joiners, 5.4 Vertical Text, 5.5 Usage, and 5.6 Separating
Punctuation Marks have been moved to the new Section 6 Usage, and
renumbered 6.1 through 6.4.

Section 5.7 has been moved to Migration

Section 5.8 Conversion to Plain Text has been moved to the new Section 6
Usage, and renumbered 6.5.

5.3 Maximizing Compatibility for Paired Brackets on Old Systems

Implementers wishing to get the paired bracket behavior specified in rule N0 on
systems using implementations prior to Unicode 6.3 should add appropriate directional
marks (RLM or LRM) on both sides of any parentheses that are resolved with rule N0.

6 Usage

6.1 Joiners

As described under X9, the zero width joiner and non-joiner affect the shaping of the
adjacent characters—those that are adjacent in the original backing-store order—even
though those characters may end up being rearranged to be non-adjacent by the

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

42 of 52

Bidirectional Algorithm. To determine the joining behavior of a particular character after
applying the Bidirectional Algorithm, there are two main strategies:

When shaping, an implementation can refer back to the original backing store to
see if there were adjacent ZWNJ or ZWJ characters.

Alternatively, the implementation can replace ZWJ and ZWNJ by an out-of-band
character property associated with those adjacent characters, so that the
information does not interfere with the Bidirectional Algorithm and the information
is preserved across rearrangement of those characters. Once the Bidirectional
Algorithm has been applied, that out-of-band information can then be used for
proper shaping.

6.2 Vertical Text

In the case of vertical line orientation, the Bidirectional Algorithm is still used to
determine the levels of the text. However, these levels are not used to reorder the text,
because the characters are usually ordered uniformly from top to bottom. Instead, the
levels are used to determine the rotation of the text. Sometimes vertical lines follow a
vertical baseline in which each character is oriented as normal (with no rotation), with
characters ordered from top to bottom whether they are Hebrew, numbers, or Latin.
When setting text using the Arabic script in vertical lines, it is more common to employ
a horizontal baseline that is rotated by 90° counterclockwise so that the characters are
ordered from top to bottom. Latin text and numbers may be rotated 90° clockwise so
that the characters are also ordered from top to bottom.

The Bidirectional Algorithm is used when some characters are ordered from bottom to
top. For example, this happens with a mixture of Arabic and Latin glyphs when all the
glyphs are rotated uniformly 90° clockwise. The Unicode Standard does not specify
whether text is presented horizontally or vertically, or whether text is rotated. That is left
up to higher-level protocols.

6.3 Formatting

Because of the implicit character types and the heuristics for resolving neutral and
numeric directional behavior, the implicit bidirectional ordering will generally produce
the correct display without any further work. However, problematic cases may occur
when a right-to-left paragraph begins with left-to-right characters, or there are nested
segments of different-direction text, or there are weak characters on directional
boundaries. In these cases, embeddings or directional marks may be required to get
the right display. Part numbers may also require directional overrides.

The most common problematic case is that of neutrals on the boundary of an
embedded language. This can be addressed by setting the level of the embedded text
correctly. For example, with all the text at level 0 the following occurs:

Memory: he said "I NEED WATER!", and expired.

Display: he said "RETAW DEEN I!", and expired.

If the exclamation mark is to be part of the Arabic quotation, then the user can select
the text I NEED WATER! and explicitly mark it as embedded Arabic, which produces
the following result:

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

43 of 52

Memory: he said "RLII NEED WATER!PDI", and expired.

Display: he said "!RETAW DEEN I", and expired.

However, an often simpler and better method of doing this is to place a right directional
mark (RLM) after the exclamation mark. Because the exclamation mark is now not on a
directional boundary, this produces the correct result. This is the best approach when
manually editing text or programmatically generating text meant to be edited, or
dealing with an application that simply does not support explicit formatting characters.

Memory: he said "I NEED WATER!RLM", and expired.

Display: he said "!RETAW DEEN I", and expired.

This latter approach is preferred because it does not make use of the explicit formatting
characters, which can easily get out of sync if not fully supported by editors and other
string manipulation. Nevertheless, the explicit formatting characters are generally
needed only for more complex (and rare)absolutely necessary in cases such as
double embeddings,where text of one direction contains text of the opposite direction
which itself contains text of the original direction. Such cases are not as rare as one
might think, because Latin-script brand names, technical terms, and abbreviations are
often written in their original Latin characters when used in non-Latin-script text,
including right-to-left text, as in the following:

Memory: DID YOU SAY ‘LREhe said "I NEED WATER!RLM", and expired.PDF’?

Display: ?‘he said "!RETAW DEEN I", and expired.’ YAS UOY DID

Memory: it is called "RLIAN INTRODUCTION TO javaPDI" - $19.95 in hardcover.

Display: it is called "java OT NOITCUDORTNI NA" - $19.95 in hardcover.

Thus, when text is programmatically generated by inserting data into a template, and is
not intended for later manual editing, and a particular insert happens to be of the
opposite direction to the template's text, it is easiest to wrap the insert in explicit
formatting characters (or their markup equivalent) declaring its direction, without
analyzing whether it is really necessary to do so, or if the job could be done just with
stateless directional marks.

Furthermore, in this common scenario, it is highly recommended to use directional
isolate formatting characters as opposed to directional embedding formatting
characters (once targeted display platforms are known to support isolates). This is
because embeddings affect the surrounding text similarly to a strong character,
whereas directional isolates have the effect of a neutral. The embeddings' stronger
effect is often difficult to anticipate and is rarely useful. To demonstrate, here is the
example above with embeddings instead of isolates:

Memory: it is called "RLEAN INTRODUCTION TO javaPDF" - $19.95 in hardcover.

Display: it is called "$19.95 - "java OT NOITCUDORTNI NA in hardcover.

This, of course, is not the intended display, and is due to the number “sticking” to the
preceding RTL embedding (along with all the neutral characters in between), just as it
would “stick” to a preceding RTL character.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

44 of 52

Directional isolates also offer a solution to the very common case where the direction of
the text to be programmatically inserted is not known. Instead of analyzing the
characters of the text to be inserted in order to decide whether to use an LRE or RLE
(or LRI or RLI - or nothing at all), the software can take the easy way out and always
wrap each unknown-direction insert in an FSI and PDI. Thus, an FSI instead of an RLI
in the example above would produce the same display. FSI's first-strong heuristic is not
infallible, but it will work most of the time even on mixed-script text.

Although wrapping inserts in isolates is a useful technique, it is best not to wrap text
that is known to contain no opposite-direction characters that are not already wrapped
in an isolate. Unnecessary layers of wrapping not only add bulk and complexity; they
can also wind up exceeding the depth limit and rendering ineffective the innermost
isolates, which can make the text display incorrectly. One very common case of an
insert that does not need wrapping is one known to be localized to the context locale,
e.g. a translated message with all its inserted values either themselves localized, or
wrapped in an isolate.

Review Note: Should still more examples of isolate usage, e.g. those in the isolates
proposal, be added here?

6.4 Separating Punctuation Marks

A common problem case is where the text really represents a sequence of items with
separating punctuation marks, often programmatically concatenated. These separators
are often strings of neutral characters. For example, a web page might have the
following at the bottom:

advertising programs - business solutions - privacy policy - help - about

This might be built up on the server by concatenating a variable number of strings with
" - " as a separator, for example. If all of the text is translated into Arabic or Hebrew and
the overall page direction is set to be RTL, then the right result occurs, such as the
following:

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS SSENISUB - SMARGORP
GNISITREVDA

However, suppose that in the translation, there remain some LTR characters. This is
not uncommon for company names, product names, technical terms, and so on. If one
of the separators is bounded on both sides by LTR characters, then the result will be
badly jumbled. For example, suppose that "programs" in the first term and "business"
in the second were left in English. Then the result would be

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS programs - business
GNISITREVDA

The result is a jumble, with the apparent first term being "advertising business" and the
second being "programs solutions". The simplest solution for this problem is to include
an RLM character in each separator string. That will cause each separator to adopt a
right-to-left direction, and produce the correct output:

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS business - programs

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

45 of 52

GNISITREVDA

The explicit formatting characters (LRE, RLE, and PDF or LRI, RLI, FSI, and PDI) can
be used to achieve the same effect; web pages would use spans with the attributes
dir="ltr" or dir="rtl". Each separate field would be embedded, excluding the separators.
In general, LRM and RLM are preferred to the explicit formatting characters because
their effects are more local in scope, and are more robust than the dir attributes when
text is copied. (Ideally programs would convert dir attributes to the corresponding
explicit formatting characters when converting to plain text, but that is not generally
supported.)

6.5 Conversion to Plain Text

For consistent appearance, when bidirectional text subject to a higher-level protocol is
to be converted to Unicode plain text, formatting characters should be inserted to
ensure that the display order resulting from the application of the Unicode Bidirectional
Algorithm matches that specified by the higher-level protocol. The same principle
should be followed whenever text using a higher-level protocol is converted to
marked-up text that is unaware of the higher-level protocol. For example, if a
higher-level protocol sets the paragraph direction to 1 (R) based on the number of L
versus R/AL characters, when converted to plain text the paragraph would be
embedded in a bracketing pair of RLE..PDF formatting characters. If the same text
were converted to HTML4.0 the attribute dir = "rtl" would be added to the paragraph
element.

6.6 Maximizing Compatibility for Paired Brackets

To maximize display consistency for text containing paired brackets on systems using
implementations prior to Unicode 6.3, authors should use the directional marks LRM
and RLM to ensure that paired brackets resolve to the same level under rules N1 and
N2. Text authored on older systems should use semantically correct brackets to ensure
correct display on systems with implementations after Unicode 6.3.

7 Mirroring

The mirrored property is important to ensure that the correct characters are used for
the desired semantic. This is of particular importance where the name of a character
does not indicate the intended semantic, such as with U+0028 “(” LEFT PARENTHESIS. While
the name indicates that it is a left parenthesis, the character really expresses an open
parenthesis—the leading character in a parenthetical phrase, not the trailing one.

Some of the characters that do not have the Bidi_Mirrored property may be rendered
with mirrored glyphs, according to a higher level protocol that adds mirroring: see
Section 4.3, Higher-Level Protocols, especially HL6. Except in such cases, mirroring
must be done according to rule L4, to ensure that the correct character code is used to
express the intended semantic of the character, and to avoid interoperability and
security problems.

Implementing rule L4 calls for mirrored glyphs. These glyphs may not be exact
graphical mirror images. For example, clearly an italic parenthesis is not an exact mirror
image of another— “(” is not the mirror image of “)”. Instead, mirror glyphs are those

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

46 of 52

acceptable as mirrors within the normal parameters of the font in which they are
represented.

In implementation, sometimes pairs of characters are acceptable mirrors for one
another—for example, U+0028 “(” LEFT PARENTHESIS and U+0029 “)” RIGHT PARENTHESIS or U+22E0
“⋠” DOES NOT PRECEDE OR EQUAL and U+22E1 “⋡” DOES NOT SUCCEED OR EQUAL. Other characters such
as U+2231 “∱” CLOCKWISE INTEGRAL do not have corresponding characters that can be used
for acceptable mirrors. The informative BidiMirroring.txt data file [Data9], lists the paired
characters with acceptable mirror glyphs. The formal property name for this data in the
Unicode Character Database [UCD] is Bidi_Mirroring_Glyph. A comment in the file
indicates where the pairs are “best fit”: they should be acceptable in rendering,
although ideally the mirrored glyphs may have somewhat different shapes.

Migration

There are two major enhancements in the Unicode 6.3 version of the UBA:

Directional isolates

Paired brackets

Implementations of the new directional isolates should see very few compatibility
issues; the UBA has been carefully modified to minimize differences for older text
written without them. There are a few edge cases near the limit of the number of levels
where there are some differences, but those are not likely to be encountered in
practice.

With paired brackets, there may be more changes. The problem is that without
knowing (or having good UI access to) the directional marks or embeddings, people
have constructed text with the correct visual appearance but incorrect underlying
structure (eg …[…[…, appearing as …[…]…). The new algorithm catches cases like
these, because such malformed sequences of brackets are not matched.

However, there are some cases where older implementations without rule N0 produced
the desired appearance, and newer implementations will not. The user feedback on
implementations was sufficiently positive that the decision was made to add N0.

There are also incompatibilities from some implementation's failing to updating
correctly to previous versions of Unicode, notably in the mishandling solidus such that
"T 1/2" (T is an Arabic character) appears incorrectly as "2/1 T".

To mitigate compatibility problems, it is strongly recommended tht implementations
take the following steps:

Add appropriate directional marks (RLM or LRM) on both sides of any
parentheses that are resolved with rule N0.

Add the appropriate explicit embedding around any sequence of numbers + / +
numbers.

In Unicode 6.3, there was significant reorganization of the text. The following table
shows the new and old section numbers.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

47 of 52

Unicode 6.3 Unicode 6.2
2.4 Explicit Directional Isolates n/a
2.5 Terminating Explicit Directional Isolates n/a
2.6 Implicit Directional Marks 2.4
3.3.3 Preparations for Implicit Processing n/a
3.3.4 Resolving Weak Types
…3.3.6 Resolving Implicit Levels

3.3.3
…3.3.5

6.1 Joiners 5.3
6.2 Vertical Text 5.4
6.3 Formatting 5.5
6.4 Separating Punctuation Marks 5.6
6.5 Conversion to Plain Text n/a
6.6 Maximizing Compatibility for Paired Brackets n/a
Migration 5.7

Acknowledgments

Mark Davis created the initial version of this annex and maintains the text. Aharon
Lanin and Andrew Glass made substantial additions to Revision 28 (Unicode 6.3.0).

Thanks to the following people for their contributions to the Bidirectional Algorithm or
for their feedback on earlier versions of this annex: Ahmed Talaat (أحمد طلعت), Alaa
Ghoneim (علاء غنيم), Ahmed Talaat (أحمد طلعت), Asmus Freytag, Avery Bishop, Ayman
Aldahleh (أيمن الدحلة), Behdad Esfahbod (بھداد اسفھبد), Doug Felt, Dwayne Robinson, Eric
Mader, Ernest Cline, Gidi Shalom-Bendor (גידי שלום-בן דור), Gilead Almosnino (גלעד
,Joe Becker, John McConnell ,(ישראל גידלי) Isai Scheinberg, Israel Gidali ,(אלמוסנינו
Jonathan Kew, Jonathan Rosenne (יונתן רוזן), Khaled Sherif (خالد شريف), Kamal Mansour
Laurențiu Iancu, Maha Hassan ,(خالد شريف) Kenneth Whistler, Khaled Sherif ,(كمال منصور)
,Michel Suignard ,(מתתיהו אלוש) Markus Scherer, Martin Dürst, Mati Allouche ,(مھا حسن)
Mike Ksar (ميشيل قصار), Murray Sargent, Paul Nelson, Peter Constable, Rick McGowan,
Robert Steen, Roozbeh Pournader (روزبه پورنادر), Steve Atkin, and Thomas Milo (ْتُومَاس
.(مِيلوُ

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 28

Draft 11

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

48 of 52

Moved 5.3 to a new Migration section, removing text specific to Unicode 3.0, and
adding a table of old and new section numbers.

Added 2.7 Markup and Formatting Characters.

Major extension of the algorithm to allow for the implementation of directional
isolates and the introduction of new isolate-related values to the Bidi_Class
property.

Adds BD8, BD9, BD10, BD11, BD12, BD13, BD14, BD15, and BD16, Sections
2.4 and 2.5, and Rules X5a, X5b, X5c and X6a.

Extensively revises Section 3.3.2, Explicit Levels and Directions and its existing X
rules to formalize the algorithm for matching a PDF with the embedding or
override initiator whose scope it terminates.

Moves Rules X9 and X10 into a separate new Section 3.3.3, Preparations for
Implicit Processing.

Modifies Rule X10 to make the isolating run sequence the unit to which
subsequent rules are applied.

Invalidates an RLE or RLO nested inside the scope of an LRE or LRO nested
inside embedding level 60 (where that LRE or LRO was already invalid). This was
required to allow nesting embeddings and overrides in isolates and vice-versa.

Modifies Rule W1 to change an NSM preceded by an isolate initiator or PDI into
ON.

Adds Rule N0 and makes other changes to Section 3.3.5, Resolving Neutral
Types to resolve paired brackets to the same level.

Adds the new ARABIC LETTER MARK (U+061C) character to Section 2.6, Implicit
Directional Marks and Table 4 Bidirectional Character Types.

Changes the examples after L2 to use isolates instead of embeddings.

Moves usage-related sub-sections of Section 5, Implementation Notes to a new
Section 6, Usage, and renumbers Mirroring to 7.

Renames old Section 5.5, Usage to 6.3, Formatting and adds to it suggestions
for and examples of directional isolate usage.

Adds Sections 5.4 and 6.6 with guidelines on maximizing compatibility for paired
brackets.

Proposed Update for Unicode 6.3.0.

Revision 27

Reissued for Unicode 6.2.0.

Revision 26 being a proposed update, only changes between versions 23 and 27 are
noted here.

Revision 25

Reissued for Unicode 6.1.0.

Revision 24 being a proposed update, only changes between versions 23 and 25 are
noted here.

Revision 23

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

49 of 52

Reissued for Unicode 6.0.0.

Added anchors on tables.

Added text to clarify HL1, and clarified statement in P3.

Added links on rules.

Added section heading for 5.3 Migrating from 2.0 to 3.0

Moved text from the end of 4.3 Higher-Level Protocols to a new section 5.8
Conversion to Plain Text

Rephrased the relationship between clauses HL1 and HL3 and HL4 and HL5

Revision 22 being a proposed update, only changes between versions 21 and 23 are
noted here.

Revision 21

Reissued for Unicode 5.2.0.

Added Section 4.4 Bidirectional Conformance Testing.

Added BN to Rule X6 (removing certain characters).

Clarified examples in Rule N1 (affecting characters next to EN or AN characters).

Added to HL6 the clause: Those with a resolved directionality of L and whose bidi
classbidirectional type is R or AL.

Clarified the text at the start of 3 Basic Display Algorithm.

Added Bidi_Class and Bidi_Mirroring_Glyph property names.

Added clarifications to 3.3.2 Explicit Levels and Directions, to X6, and to N2.

Fixed typos in 3.4 Reordering Resolved Levels.

Added links on items in Table 4, and clarified BN there.

Removed a note in N1.

Revision 20 being a proposed update, only changes between versions 19 and 21 are
noted here.

Revision 19

Updated for Version 5.1.0.

Clarified BD6.

Made some examples more explicit.

Added the common problem case of separators in Section 6.3 Formatting.

Added notes on security concerns with RLO and LRO, and the use of dir="ltr" or
"rtl" with web pages.

Fixed example under N2.

Fixed example in Section 3.3.4 Resolving Neutral Types

Made last part of Section 6.3 Formatting into a new Section 6.4 Separating
Punctuation Marks, changed the term "Separators" and added a note on stateful
formatting characters.

Revision 18 being a proposed update, only changes between versions 19 and 17 are
noted here.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

50 of 52

Revision 17

This revision incorporates successive changes. The latest changes were on
2006-02-24.

Modified L4 and HL6, in conjunction with proposed property change to
Bidi_Mirrored (PRI #80)

Added note on U+ FD3E (﴾) ORNATE LEFT PARENTHESIS and U+ FD3F (﴿)
ORNATE RIGHT PARENTHESIS.

Used new format for conformance clause numbering.

Added caution on use of higher-level protocols, after UAX9-C2.

Some wording changes in 7 Mirroring, for consistency with new L4 and HL6.

Moved text to Shaping and Line Breaking, and added note on SHY in 3.4 there

Removed two notes indicating that the conformance clauses override clause C13
of Unicode 4.0.

Changed some references to Unicode4.0

Revision 16 being a proposed update, only changes between versions 17 and 15 are
noted here.

Revision 15:

Minor editing

Fixed section Number for Mirroring

Changed “Tracking Number” to Revision

Added note on U+0CBF KANNADA VOWEL SIGN I

Added note after N1, and clarified example after N2.

Fixed references to sections of the Unicode Standard

Revision 14:

Aliased directional run and level run

Pointed to DerivedBidiClass.txt for unassigned character assignments.

Revision 13:

4. Bidirectional Conformance: added explicit clauses.

4.3. Higher-Level Protocols:

Added clarifying text, and renumbered options.

Removed option regarding number shaping (because it was irrelevant to
bidirectional ordering).

Broadened the ability to override on the basis of context, and clarified
number handling.

Made clear that bidiUBA could be applied to segments

1. Introduction: added note that the changes in 4. Bidirectional Conformance
override clause C13 of Unicode 4.0 [Unicode], and tighten the conformance
requirements from what they had been previously.

Minor editing for clarification.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

51 of 52

Revision 11:

Updated for Unicode 4.0.

Added note on canonical equivalence

Added Joiners section on ZWJ and ZWNJ

Clarified L2 and examples following.

Added a section on the interaction of shaping and bidirectional reordering.

Moved lists for unassigned characters into UCD.html (also now explicit in
DerivedBidiClass.txt)

Updated references for Newline Guidelines (because the UAX is incorporated into
the 4.0 book)

The first two sections were rearranged, with Reference Code going into
Implementation Notes, and Mirroring in its own section at the end.

This is not highlighted in the proposed text.

Sections were renumbered and the table of contents is more detailed.

This is not highlighted in the proposed text.

Misc. editing.

Revision 10:

Updated for Unicode 3.2.

Updated UAX boilerplate in the status section.

Revision 9:

Clarified the language of P2

Corrected the implementation note on “Retaining Explicit Formatting Characters”
in Implementation Notes

Minor editing

Copyright © 2000-2013 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

file:///C:/L2-Doc/Temp/draft/reports/tr9/tr9.html

52 of 52

