
 Technical Reports

Proposed Update Unicode Standard Annex #9

Version Unicode 7.0.0 (draft 1)
Editors Mark Davis (markdavis@google.com), Aharon Lanin

(aharon@google.com), and Andrew Glass
(andrew.glass@microsoft.com)

Date 2014-04-04
This Version http://www.unicode.org/reports/tr9/tr9-30.html
Previous
Version

http://www.unicode.org/reports/tr9/tr9-29.html

Latest
Version

http://www.unicode.org/reports/tr9/

Latest
Proposed
Update

http://www.unicode.org/reports/tr9/proposed.html

Revision 30

Summary

This annex describes specifications for the positioning of characters in text containing
characters flowing from right to left, such as Arabic or Hebrew.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published online as a separate document. The Unicode Standard
may require conformance to normative content in a Unicode Standard Annex, if so
specified in the Conformance chapter of that version of the Unicode Standard. The
version number of a UAX document corresponds to the version of the Unicode
Standard of which it forms a part.

http://www.unicode.org/reports/tr9/tr9-30.html 1 of 51

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this annex is found in
Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.”
For the latest version of the Unicode Standard, see [Unicode]. For a list of current
Unicode Technical Reports, see [Reports]. For more information about versions of the
Unicode Standard, see [Versions]. For any errata which may apply to this annex, see
[Errata].

Contents

1 Introduction
2 Directional Formatting Characters

2.1 Explicit Directional Embeddings
2.2 Explicit Directional Overrides
2.3 Terminating Explicit Directional Embeddings and Overrides
2.4 Explicit Directional Isolates
2.5 Terminating Explicit Directional Isolates
2.6 Implicit Directional Marks
2.7 Markup and Formatting Characters

3 Basic Display Algorithm
3.1 Definitions

3.1.1 Basics: BD1, BD2, BD3, BD4, BD5, BD6, BD7
3.1.2 Matching Explicit Directional Formatting Characters:
BD8, BD9, BD10, BD11, BD12, BD13
3.1.3 Paired Brackets: BD14, BD15, BD16
3.1.4 Additional Abbreviations

3.2 Bidirectional Character Types
3.3 Resolving Embedding Levels

3.3.1 The Paragraph Level: P1, P2, P3
3.3.2 Explicit Levels and Directions: X1, X2, X3, X4, X5, X5a,
X5b, X5c, X6, X6a, X7, X8
3.3.3 Preparations for Implicit Processing: X9, X10
3.3.4 Resolving Weak Types: W1, W2, W3, W4, W5, W6, W7
3.3.5 Resolving Neutral and Isolate Formatting Types: N0, N1,
N2
3.3.6 Resolving Implicit Levels: I1, I2

3.4 Reordering Resolved Levels: L1, L2, L3, L4
3.5 Shaping

4 Bidirectional Conformance
4.1 Boundary Neutrals
4.2 Explicit Formatting Characters
4.3 Higher-Level Protocols: HL1, HL2, HL3, HL4, HL5, HL6
4.4 Bidirectional Conformance Testing

5 Implementation Notes
5.1 Reference Code
5.2 Retaining Explicit Formatting Characters

6 Usage
6.1 Joiners
6.2 Vertical Text
6.3 Formatting
6.4 Separating Punctuation Marks
6.5 Conversion to Plain Text

http://www.unicode.org/reports/tr9/tr9-30.html 2 of 51

7 Mirroring
Migration Issues

Section Reorganization
Acknowledgments
References
Modifications

1 Introduction

The Unicode Standard prescribes a memory representation order known as logical
order. When text is presented in horizontal lines, most scripts display characters from
left to right. However, there are several scripts (such as Arabic or Hebrew) where the
natural ordering of horizontal text in display is from right to left. If all of the text has a
uniform horizontal direction, then the ordering of the display text is unambiguous.

However, because these right-to-left scripts use digits that are written from left to right,
the text is actually bidirectional: a mixture of right-to-left and left-to-right text. In addition
to digits, embedded words from English and other scripts are also written from left to
right, also producing bidirectional text. Without a clear specification, ambiguities can
arise in determining the ordering of the displayed characters when the horizontal
direction of the text is not uniform.

This annex describes the algorithm used to determine the directionality for bidirectional
Unicode text. The algorithm extends the implicit model currently employed by a number
of existing implementations and adds explicit formatting characters for special
circumstances. In most cases, there is no need to include additional information with the
text to obtain correct display ordering.

However, in the case of bidirectional text, there are circumstances where an implicit
bidirectional ordering is not sufficient to produce comprehensible text. To deal with these
cases, a minimal set of directional formatting characters is defined to control the
ordering of characters when rendered. This allows exact control of the display ordering
for legible interchange and ensures that plain text used for simple items like filenames
or labels can always be correctly ordered for display.

The directional formatting characters are used only to influence the display ordering of
text. In all other respects they should be ignored—they have no effect on the
comparison of text or on word breaks, parsing, or numeric analysis.

Each character has an implicit bidirectional type. The bidirectional types left-to-right and
right-to-left are called strong types, and characters of those types are called strong
directional characters. The bidirectional types associated with numbers are called weak
types, and characters of those types are called weak directional characters. With the
exception of the directional formatting characters, the remaining bidirectional types and
characters are called neutral. The algorithm uses the implicit bidirectional types of the
characters in a text to arrive at a reasonable display ordering for text.

When working with bidirectional text, the characters are still interpreted in logical
order—only the display is affected. The display ordering of bidirectional text depends on
the directional properties of the characters in the text. Note that there are important
security issues connected with bidirectional text: for more information, see [UTR36].

http://www.unicode.org/reports/tr9/tr9-30.html 3 of 51

2 Directional Formatting Characters

Three types of explicit directional formatting characters are used to modify the standard
implicit Unicode Bidirectional Algorithm (UBA). In addition, there are implicit directional
formatting characters, the right-to-left and left-to-right marks. The effects of all of these
formatting characters are limited to the current paragraph; thus, they are terminated by
a paragraph separator.

These formatting characters all have the property Bidi_Control, and are divided into
three groups:

Implicit Directional Formatting Characters LRM, RLM, ALM

Explicit Directional Embedding and Override Formatting
Characters

LRE, RLE, LRO, RLO,
PDF

Explicit Directional Isolate Formatting Characters LRI, RLI, FSI, PDI

On web pages, the explicit directional formatting characters (of all types – embedding,
override, and isolate) should be replaced by using the dir attribute and the elements BDI
and BDO. This does not apply to the implicit directional formatting characters. For more
information, see [UTR20].

Although the term embedding is used for some explicit formatting characters, the text
within the scope of the embedding formatting characters is not independent of the
surrounding text. Characters within an embedding can affect the ordering of characters
outside, and vice versa. This is not the case with the isolate formatting characters,
however. Characters within an isolate cannot affect the ordering of characters outside it,
or vice versa. The effect that an isolate as a whole has on the ordering of the
surrounding characters is the same as that of a neutral character, whereas an
embedding or override roughly has the effect of a strong character.

Directional isolate characters were introduced in Unicode 6.3 after it became apparent
that directional embeddings usually have too strong an effect on their surroundings and
are thus unnecessarily difficult to use. The new characters were introduced instead of
changing the behavior of the existing ones because doing so might have had an
undesirable effect on those existing documents that do rely on the old behavior.
Nevertheless, the use of the directional isolates instead of embeddings is encouraged in
new documents – once target platforms are known to support them.

2.1 Explicit Directional Embeddings

The following characters signal that a piece of text is to be treated as embedded. For
example, an English quotation in the middle of an Arabic sentence could be marked as
being embedded left-to-right text. If there were a Hebrew phrase in the middle of the
English quotation, that phrase could be marked as being embedded right-to-left text.
Embeddings can be nested one inside another, and in isolates and overrides.

Abbr. Code Chart Name Description

http://www.unicode.org/reports/tr9/tr9-30.html 4 of 51

Point

LRE U+202A LEFT-TO-RIGHT
EMBEDDING

Treat the following text as
embedded left-to-right.

RLE U+202B RIGHT-TO-LEFT
EMBEDDING

Treat the following text as
embedded right-to-left.

The effect of right-left line direction, for example, can be accomplished by embedding
the text with RLE...PDF. (PDF will be described in section Section 2.3 Terminating
Explicit Directional Embeddings and Overrides.)

2.2 Explicit Directional Overrides

The following characters allow the bidirectional character types to be overridden when
required for special cases, such as for part numbers. They are to be avoided wherever
possible, because of security concerns. For more information, see [UTR36]. Directional
overrides can be be nested one inside another, and in embeddings and isolates.

Abbr. Code
Point

Chart Name Description

LRO U+202D
LEFT-TO-RIGHT
OVERRIDE

Force following characters to be
treated as strong left-to-right
characters.

RLO U+202E
RIGHT-TO-LEFT
OVERRIDE

Force following characters to be
treated as strong right-to-left
characters.

The precise meaning of these characters will be made clear in the discussion of the
algorithm. The right-to-left override, for example, can be used to force a part number
made of mixed English, digits and Hebrew letters to be written from right to left.

2.3 Terminating Explicit Directional Embeddings and Overrides

The following character terminates the scope of the last LRE, RLE, LRO, or RLO whose
scope has not yet been terminated.

Abbr. Code
Point

Chart Name Description

PDF U+202C POP DIRECTIONAL
FORMATTING

End the scope of the last LRE,
RLE, RLO, or LRO.

The precise meaning of this character will be made clear in the discussion of the
algorithm.

http://www.unicode.org/reports/tr9/tr9-30.html 5 of 51

2.4 Explicit Directional Isolates

The following characters signal that a piece of text is to be treated as directionally
isolated from its surroundings. They are very similar to the explicit embedding formatting
characters. However, while an embedding roughly has the effect of a strong character
on the ordering of the surrounding text, an isolate has the effect of a neutral like
U+FFFC OBJECT REPLACEMENT CHARACTER, and is assigned the corresponding display position in
the surrounding text. Furthermore, the text inside the isolate has no effect on the
ordering of the text outside it, and vice versa.

In addition to allowing the embedding of strongly directional text without unduly affecting
the bidirectional order of its surroundings, one of the isolate formatting characters also
offers an extra feature: embedding text while inferring its direction heuristically from its
constituent characters.

Isolates can be nested one inside another, and in embeddings and overrides.

Abbr. Code
Point

Chart Name Description

LRI U+2066 LEFT-TO-RIGHT
ISOLATE

Treat the following text as isolated
and left-to-right.

RLI U+2067
RIGHT-TO-LEFT
ISOLATE

Treat the following text as isolated
and right-to-left.

FSI U+2068
FIRST STRONG
ISOLATE

Treat the following text as isolated
and in the direction of its first strong
directional character that is not inside
a nested isolate.

The precise meaning of these characters will be made clear in the discussion of the
algorithm.

2.5 Terminating Explicit Directional Isolates

The following character terminates the scope of the last LRI, RLI, or FSI whose scope
has not yet been terminated, as well as the scopes of any subsequent LREs, RLEs,
LROs, or RLOs whose scopes have not yet been terminated.

Abbr. Code
Point

Chart Name Description

PDI U+2069 POP DIRECTIONAL
ISOLATE

End the scope of the last LRI,
RLI, or FSI.

The precise meaning of this character will be made clear in the discussion of the
algorithm.

http://www.unicode.org/reports/tr9/tr9-30.html 6 of 51

2.6 Implicit Directional Marks

These characters are very light-weight formatting. They act exactly like right-to-left or
left-to-right characters, except that they do not display or have any other semantic
effect. Their use is more convenient than using explicit embeddings or overrides
because their scope is much more local.

Abbr. Code
Point

Chart Name Description

LRM U+200E LEFT-TO-RIGHT
MARK Left-to-right zero-width character

RLM U+200F RIGHT-TO-LEFT
MARK

Right-to-left zero-width
non-Arabic character

ALM U+061C
ARABIC LETTER
MARK

Right-to-left zero-width Arabic
character

There is no special mention of the implicit directional marks in the following algorithm.
That is because their effect on bidirectional ordering is exactly the same as a
corresponding strong directional character; the only difference is that they do not appear
in the display.

2.7 Markup and Formatting Characters

The explicit formatting characters introduce state into the plain text, which must be
maintained when editing or displaying the text. Processes that are modifying the text
without being aware of this state may inadvertently affect the rendering of large portions
of the text, for example by removing a PDF.

The Unicode Bidirectional Algorithm is designed so that the use of explicit formatting
characters can be equivalently represented by out-of-line information, such as
stylesheet information or markup. Conflicts can arise if markup and explicitly formatting
characters are both used in the same paragraph. Where available, markup should be
used instead of the explicit formatting characters. However, any alternative
representation is only to be defined by reference to the behavior of the corresponding
explicit formatting characters in this algorithm, to ensure conformance with the Unicode
Standard.

HTML 5 provides support for bidi markup as follows:

Unicode Equivalent markup Comment

RLI <bdi dir = "rtl">

LRI <bdi dir = "ltr">

FSI <bdi> or <bdi dir = "auto">

http://www.unicode.org/reports/tr9/tr9-30.html 7 of 51

RLO <bdo dir = "rtl">

LRO <bdo dir = "ltr">

RLE dir = "rtl" attribute on block or inline element

LRE dir = "ltr" attribute on block or inline element

PDF, PDI termination of markup

Whenever plain text is produced from a document containing markup, the equivalent
formatting characters should be introduced, so that the correct ordering is not lost. For
example, whenever cut and paste results in plain text this transformation should occur.

3 Basic Display Algorithm

The Unicode Bidirectional Algorithm (UBA) takes a stream of text as input and proceeds
in four main phases:

Separation into paragraphs. The rest of the algorithm is applied separately to
the text within each paragraph.

Initialization. A list of bidirectional character types is initialized, with one entry for
each character in the original text. The value of each entry is the Bidi_Class
property value of the respective character. A list of embedding levels, with one
level per character, is then initialized. Note that the original characters are
referenced in Section 3.3.5, Resolving Neutral and Isolate Formatting Types.

Resolution of the embedding levels. A series of rules is applied to the lists of
embedding levels and bidirectional character types. Each rule operates on the
current values of those lists, and can modify those values. The original characters
and their Bidi_Paired_Bracket and Bidi_Paired_Bracket_Type property values are
referenced in the application of certain rules. The result of this phase is a modified
list of embedding levels; the list of bidirectional character types is no longer
needed.

Reordering. The text within each paragraph is reordered for display: first, the text
in the paragraph is broken into lines, then the resolved embedding levels are used
to reorder the text of each line for display.

The algorithm reorders text only within a paragraph; characters in one paragraph have
no effect on characters in a different paragraph. Paragraphs are divided by the
Paragraph Separator or appropriate Newline Function (for guidelines on the handling of
CR, LF, and CRLF, see Section 4.4, Directionality, and Section 5.8, Newline Guidelines
of [Unicode]). Paragraphs may also be determined by higher-level protocols: for
example, the text in two different cells of a table will be in different paragraphs.

Combining characters always attach to the preceding base character in the memory
representation. Even after reordering for display and performing character shaping, the
glyph representing a combining character will attach to the glyph representing its base
character in memory. Depending on the line orientation and the placement direction of
base letterform glyphs, it may, for example, attach to the glyph on the left, or on the

http://www.unicode.org/reports/tr9/tr9-30.html 8 of 51

right, or above.

This annex uses the numbering conventions for normative definitions and rules in Table
1.

Table 1. Normative Definitions and Rules

Numbering Section
BDn Definitions
Pn Paragraph levels
Xn Explicit levels and directions
Wn Weak types
Nn Neutral types
In Implicit levels
Ln Resolved levels

3.1 Definitions

3.1.1 Basics

BD1. The bidirectional character types are values assigned to each Unicode character,
including unassigned characters. The formal property name in the Unicode Character
Database [UCD] is Bidi_Class.

BD2. Embedding levels are numbers that indicate how deeply the text is nested, and
the default direction of text on that level. The minimum embedding level of text is zero,
and the maximum explicit depth is 125, a value referred to as max_depth in the rest of
this document.

As rules X1 through X8 will specify, embedding levels are set by explicit formatting
characters (embedding, isolate, and override); higher numbers mean the text is more
deeply nested. The reason for having a limitation is to provide a precise stack limit for
implementations to guarantee the same results. A total of 125 levels is far more than
sufficient for ordering, even with mechanically generated formatting; the display
becomes rather muddied with more than a small number of embeddings.

BD3. The default direction of the current embedding level (for the character in question)
is called the embedding direction. It is L if the embedding level is even, and R if the
embedding level is odd.

For example, in a particular piece of text, Level 0 is plain English text. Level 1 is plain
Arabic text, possibly embedded within English level 0 text. Level 2 is English text,
possibly embedded within Arabic level 1 text, and so on. Unless their direction is
overridden, English text and numbers will always be an even level; Arabic text
(excluding numbers) will always be an odd level. The exact meaning of the embedding
level will become clear when the reordering algorithm is discussed, but the following
provides an example of how the algorithm works.

http://www.unicode.org/reports/tr9/tr9-30.html 9 of 51

BD4. The paragraph embedding level is the embedding level that determines the default
bidirectional orientation of the text in that paragraph.

BD5. The direction of the paragraph embedding level is called the paragraph direction.

In some contexts the paragraph direction is also known as the base direction.

BD6. The directional override status determines whether the bidirectional type of
characters is to be reset. The directional override status is set by using explicit
directional formatting characters. This status has three states, as shown in Table 2.

Table 2. Directional Override Status

Status Interpretation
Neutral No override is currently active
Right-to-left Characters are to be reset to R
Left-to-right Characters are to be reset to L

BD7. A level run is a maximal substring of characters that have the same embedding
level. It is maximal in that no character immediately before or after the substring has the
same level (a level run is also known as a directional run).

As specified below, level runs are important at two different stages of the Bidirectional
Algorithm. The first stage occurs after rules X1 through X9 have assigned an explicit
embedding level to each character on the basis of the paragraph direction and the
explicit directional formatting characters. At this stage, in rule X10, level runs are used
to build up the units to which subsequent rules are applied. Those rules further adjust
each character’s embedding level on the basis of its implicit bidirectional type and those
of other characters in the unit – but not outside it. The level runs resulting from these
resolved embedding levels are then used in the actual reordering of the text by rule L2.
The following example illustrates level runs at this later stage of the algorithm.

Example

In this and the following examples, case is used to indicate different implicit character
types for those unfamiliar with right-to-left letters. Uppercase letters stand for right-to-left
characters (such as Arabic or Hebrew), and lowercase letters stand for left-to-right
characters (such as English or Russian).

Memory: car is THE CAR in arabic

Character types: LLL-LL-RRR-RRR-LL-LLLLLL

Paragraph level: 0

Resolved levels: 000000011111110000000000

Notice that the neutral character (space) between THE and CAR gets the level of the
surrounding characters. The level of the neutral characters could be changed by
inserting appropriate directional marks around neutral characters, or using explicit

http://www.unicode.org/reports/tr9/tr9-30.html 10 of 51

directional formatting characters.

3.1.2 Matching Explicit Directional Formatting Characters

BD8. An isolate initiator is a character of type LRI, RLI, or FSI.

As rules X5a through X5c will specify, an isolate initiator raises the embedding level for
the characters following it when the rules enforcing the depth limit allow it.

BD9. The matching PDI for a given isolate initiator is the one determined by the
following algorithm:

Initialize a counter to one.

Scan the text following the isolate initiator to the end of the paragraph while
incrementing the counter at every isolate initiator, and decrementing it at every
PDI.

Stop at the first PDI, if any, for which the counter is decremented to zero.

If such a PDI was found, it is the matching PDI for the given isolate initiator.
Otherwise, there is no matching PDI for it.

Note that all formatting characters except for isolate initiators and PDIs are ignored
when finding the matching PDI.

Note that this algorithm assigns a matching PDI (or lack of one) to an isolate initiator
whether the isolate initiator raises the embedding level or is prevented from doing so by
the depth limit rules.

As rule X6a will specify, a matching PDI returns the embedding level to the value it had
before the isolate initiator that the PDI matches. The PDI itself is assigned the new
embedding level. If it does not match any isolate initiator, or if the isolate initiator did not
raise the embedding level, it leaves the embedding level unchanged. Thus, an isolate
initiator and its matching PDI are always assigned the same explicit embedding level,
which is the one outside the isolate. In the later stages of the Bidirectional Algorithm, an
isolate initiator and its matching PDI function as invisible neutral characters, and their
embedding level then helps ensure that the isolate has the effect of a neutral character
on the display order of the text outside it, and is assigned the corresponding display
position in the surrounding text.

BD10. An embedding initiator is a character of type LRE, RLE, LRO, or RLO.

Note that an embedding initiator initiates either a directional embedding or a directional
override; its name omits overrides only for conciseness.

As rules X2 through X5 will specify, an embedding initiator raises the embedding level
for the characters following it when the rules enforcing the depth limit allow it.

BD11. The matching PDF for a given embedding initiator is the one determined by the
following algorithm:

Initialize a counter to one.

Scan the text following the embedding initiator:

http://www.unicode.org/reports/tr9/tr9-30.html 11 of 51

At an isolate initiator, skip past the matching PDI, or if there is no matching
PDI, to the end of the paragraph.

At the end of a paragraph, or at a PDI that matches an isolate initiator before
the embedding initiator, stop: the embedding initiator has no matching PDF.

At an embedding initiator, increment the counter.

At a PDF, decrement the counter. If its new value is zero, stop: this is the
matching PDF.

Note that this algorithm assigns a matching PDF (or lack of one) to an embedding
initiator whether it raises the embedding level or is prevented from doing so by the
depth limit rules.

Although the algorithm above serves to give a precise meaning to the term “matching
PDF”, note that the overall Bidirectional Algorithm never actually calls for its use to find
the PDF matching an embedding initiator. Instead, rules X1 through X7 specify a
mechanism that determines what embedding initiator scope, if any, is terminated by a
PDF, i.e. which valid embedding initiator a PDF matches.

As rule X7 will specify, a matching PDF returns the embedding level to the value it had
before the embedding initiator that the PDF matches. If it does not match any
embedding initiator, or if the embedding initiator did not raise the embedding level, a
PDF leaves the embedding level unchanged.

As rule X9 will specify, once explicit directional formatting characters have been used to
assign embedding levels to the characters in a paragraph, embedding initiators and
PDFs are removed (or virtually removed) from the paragraph. Thus, the embedding
levels assigned to the embedding initiators and PDFs themselves are irrelevant. In this,
embedding initiators and PDFs differ from isolate initiators and PDIs, which continue to
play a part in determining the paragraph’s display order as mentioned above.

BD12. The directional isolate status is a Boolean value set by using isolate formatting
characters: it is true when the current embedding level was started by an isolate
initiator.

BD13. An isolating run sequence is a maximal sequence of level runs such that for all
level runs except the last one in the sequence, the last character of the run is an isolate
initiator whose matching PDI is the first character of the next level run in the sequence.
It is maximal in the sense that if the first character of the first level run in the sequence
is a PDI, it must not match any isolate initiator, and if the last character of the last level
run in the sequence is an isolate initiator, it must not have a matching PDI.

The set of isolating run sequences in a paragraph can be computed by the following
algorithm:

Start with an empty set of isolating run sequences.

For each level run in the paragraph whose first character is not a PDI, or is a PDI
that does not match any isolate initiator:

Create a new level run sequence, and initialize it to contain just that level
run.

http://www.unicode.org/reports/tr9/tr9-30.html 12 of 51

While the level run currently last in the sequence ends with an isolate
initiator that has a matching PDI, append the level run containing the
matching PDI to the sequence. (Note that this matching PDI must be the first
character of its level run.)

Add the resulting sequence of level runs to the set of isolating run
sequences.

Note that:

Each level run in a paragraph belongs to exactly one isolating run sequence.

In the absence of isolate initiators, each isolating run sequence in a paragraph
consists of exactly one level run, and each level run constitutes a separate
isolating run sequence.

For any two adjacent level runs in an isolating run sequence, since one ends with
an isolate initiator whose matching PDI starts the other, the two must have the
same embedding level. Thus, all the level runs in an isolating run sequence have
the same embedding level.

When an isolate initiator raises the embedding level, both the isolate initiator and
its matching PDI, if any, get the original embedding level, not the raised one. Thus,
if the matching PDI does not immediately follow the isolate initiator in the
paragraph, the isolate initiator is the last character in its level run, but the matching
PDI, if any, is the first character of its level run and immediately follows the isolate
initiator in the same isolating run sequence. On the other hand, the level run
following the isolate initiator in the paragraph starts a new isolating run sequence,
and the level run preceding the matching PDI (if any) in the paragraph ends its
isolating run sequence.

In the following examples, assume that:

The paragraph embedding level is 0.

No character sequence text
i
 contains explicit formatting characters or paragraph

separators.

The dots are used only to improve the example's visual clarity; they are not part of
the text.

The characters in the paragraph text are assigned embedding levels as loosely
described above such that they form the set of level runs given in each example.

Example 1

Paragraph text: text
1
·RLE ·text

2
·PDF ·RLE ·text

3
·PDF ·text

4

Level runs:

text
1

 – level 0

text
2
·text

3
 – level 1

text
4

 – level 0

http://www.unicode.org/reports/tr9/tr9-30.html 13 of 51

Resulting isolating run sequences:

text
1

 – level 0

text
2
·text

3
 – level 1

text
4

 – level 0

Example 2

Paragraph text: text
1
·RLI ·text

2
·PDI ·RLI ·text

3
·PDI ·text

4

Level runs:

text
1
·RLI – level 0

text
2

 – level 1

PDI ·RLI – level 0

text
3

 – level 1

PDI ·text
4

 – level 0

Resulting isolating run sequences:

text
1
·RLI PDI ·RLI PDI ·text

4
 – level 0

text
2

 – level 1

text
3

 – level 1

Example 3

Paragraph text: text
1
·RLI ·text

2
·LRI ·text

3
·RLE ·text

4
·PDF ·text

5
·PDI ·text

6
·PDI ·text

7

Level runs:

text
1
·RLI – level 0

text
2
·LRI – level 1

text
3

 – level 2

text
4

 – level 3

text
5

 – level 2

PDI ·text
6

 – level 1

PDI ·text
7

 – level 0

Resulting isolating run sequences:

http://www.unicode.org/reports/tr9/tr9-30.html 14 of 51

text
1
·RLI PDI ·text

7
 – level 0

text
2
·LRI PDI ·text

6
 – level 1

text
3

 – level 2

text
4

 – level 3

text
5

 – level 2

As rule X10 will specify, an isolating run sequence is the unit to which the rules following
it are applied, and the last character of one level run in the sequence is considered to
be immediately followed by the first character of the next level run in the sequence
during this phase of the algorithm. Since those rules are based on the characters'
implicit bidirectional types, an isolate really does have the same effect on the ordering of
the text surrounding it as a neutral character – or, to be more precise, a pair of neutral
characters, the isolate initiator and the PDI, which behave in those rules just like neutral
characters.

3.1.3 Paired Brackets

The following definitions utilize the normative properties Bidi_Paired_Bracket and
Bidi_Paired_Bracket_Type defined in the BidiBrackets.txt file [Data9] of the Unicode
Character Database [UCD].

BD14. An opening paired bracket is a character whose Bidi_Paired_Bracket_Type
property value is Open.

BD15. A closing paired bracket is a character whose Bidi_Paired_Bracket_Type
property value is Close.

BD16. A bracket pair is a pair of characters consisting of an opening paired bracket and
a closing paired bracket such that the Bidi_Paired_Bracket property value of the former
or its canonical equivalent equals the latter or its canonical equivalent and which are
algorithmically identified at specific text positions within an isolating run sequence. The
following algorithm identifies all of the bracket pairs in a given isolating run sequence:

Create a stack for elements each consisting of a bracket character and a text
position. Initialize it to empty.

Create a list for elements each consisting of two text positions, one for an opening
paired bracket and the other for a corresponding closing paired bracket. Initialize it
to empty.

Inspect each character in the isolating run sequence in logical order.

If an opening paired bracket is found, push its Bidi_Paired_Bracket property
value and its text position onto the stack.

If a closing paired bracket is found, do the following:

Declare a variable that holds a reference to the current stack element
and initialize it with the top element of the stack.

1.

Compare the closing paired bracket being inspected or its canonical
equivalent to the bracket in the current stack element.

2.

http://www.unicode.org/reports/tr9/tr9-30.html 15 of 51

If the values match, meaning the two characters form a bracket pair,
then

Append the text position in the current stack element together
with the text position of the closing paired bracket to the list.

Pop the stack through the current stack element inclusively.

3.

Else, if the current stack element is not at the bottom of the stack,
advance it to the next element deeper in the stack and go back to step
2.

4.

Else, continue with inspecting the next character without popping the
stack.

5.

Sort the list of pairs of text positions in ascending order based on the text position
of the opening paired bracket.

Note that bracket pairs can only occur in an isolating run sequence because they are
processed in rule N0 after explicit level resolution. See Section 3.3.2, Explicit Levels
and Directions.

Examples of bracket pairs

Text Pairings
1 2 3 4 5 6 7 8
a) b (c None
a (b] c None
a (b) c 2-4
a (b [c) d] 2-6
a (b] c) d 2-6
a (b) c) d 2-4
a (b (c) d 4-6
a (b (c) d) 2-8, 4-6
a (b { c } d) 2-8, 4-6

3.1.4 Additional Abbreviations

Table 3 lists additional abbreviations used in the examples and internal character types
used in the algorithm.

Table 3. Abbreviations for Examples and Internal Types

Symbol Description
NI Neutral or Isolate formatting character (B, S, WS, ON, FSI, LRI, RLI, PDI).
e The text ordering type (L or R) that matches the embedding level

direction (even or odd).
o The text ordering type (L or R) that matches the direction opposite the

embedding level direction (even or odd).
Note that o is the opposite of e.

sos The text ordering type (L or R) assigned to the virtual position before
an isolating run sequence.

http://www.unicode.org/reports/tr9/tr9-30.html 16 of 51

eos The text ordering type (L or R) assigned to the virtual position after an
isolating run sequence.

3.2 Bidirectional Character Types

The normative bidirectional character types for each character are specified in the
Unicode Character Database [UCD] and are summarized in Table 4. This is a summary
only: there are exceptions to the general scope. For example, certain characters such
as U+0CBF KANNADA VOWEL SIGN I are given Type L (instead of NSM) to preserve canonical
equivalence.

The term European digits is used to refer to decimal forms common in Europe and
elsewhere, and Arabic-Indic digits to refer to the native Arabic forms. (See
Section 8.2, Arabic of [Unicode], for more details on naming digits.)

Unassigned characters are given strong types in the algorithm. This is an explicit
exception to the general Unicode conformance requirements with respect to
unassigned characters. As characters become assigned in the future, these
bidirectional types may change. For assignments to character types, see
DerivedBidiClass.txt [DerivedBIDI] in the [UCD].

Private-use characters can be assigned different values by a conformant
implementation.

For the purpose of the Bidirectional Algorithm, inline objects (such as graphics)
are treated as if they are an U+FFFC OBJECT REPLACEMENT CHARACTER.

As of Unicode 4.0, the Bidirectional Character Types of a few Indic characters
were altered so that the Bidirectional Algorithm preserves canonical equivalence.
That is, two canonically equivalent strings will result in equivalent ordering after
applying the algorithm. This invariant will be maintained in the future.

Note: The Bidirectional Algorithm does not preserve compatibility equivalence.

Table 4. Bidirectional Character Types

Category Type Description General Scope
Strong L Left-to-Right LRM, most alphabetic, syllabic, Han

ideographs, non-European or
non-Arabic digits, ...

R Right-to-Left RLM, Hebrew alphabet, and related
punctuation

AL Right-to-Left
Arabic

ALM, Arabic, Thaana, and Syriac
alphabets, most punctuation specific to
those scripts, ...

Weak EN European
Number

European digits, Eastern Arabic-Indic
digits, ...

http://www.unicode.org/reports/tr9/tr9-30.html 17 of 51

ES European
Number
Separator

PLUS SIGN, MINUS SIGN

ET European
Number
Terminator

DEGREE SIGN, currency symbols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and
thousands separators, ...

CS Common
Number
Separator

COLON, COMMA, FULL STOP (), NO-BREAK SPACE,
...

NSM Nonspacing Mark Characters marked Mn
(Nonspacing_Mark) and Me
(Enclosing_Mark) in the Unicode
Character Database

BN Boundary Neutral Default ignorables, non-characters, and
control characters, other than those
explicitly given other types.

Neutral B Paragraph
Separator

PARAGRAPH SEPARATOR, appropriate Newline
Functions, higher-level protocol
paragraph determination

S Segment
Separator

WS Whitespace SPACE, FIGURE SPACE, LINE SEPARATOR, FORM FEED,
General Punctuation spaces, ...

ON Other Neutrals All other characters, including OBJECT

REPLACEMENT CHARACTER

Explicit
Formatting

LRE Left-to-Right
Embedding

LRE

LRO Left-to-Right
Override

LRO

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

http://www.unicode.org/reports/tr9/tr9-30.html 18 of 51

PDF Pop Directional
Format

PDF

LRI Left-to-Right
Isolate

LRI

RLI Right-to-Left
Isolate

RLI

FSI First Strong
Isolate

FSI

PDI Pop Directional
Isolate

PDI

3.3 Resolving Embedding Levels

The body of the Bidirectional Algorithm uses bidirectional character types, explicit
formatting characters, and bracket pairs to produce a list of resolved levels. This
resolution process consists of the following steps:

Applying rule P1 to split the text into paragraphs, and for each of these:

Applying rules P2 and P3 to determine the paragraph level.

Applying rule X1 (which employs rules X2–X8) to determine explicit
embedding levels and directions.

Applying rule X9 to remove many control characters from further
consideration.

Applying rule X10 to split the paragraph into isolating run sequences and for
each of these:

Applying rules W1–W7 to resolve weak types.

Applying rules N0–N2 to resolve neutral types.

Applying rules I1–I2 to resolve implicit embedding levels.

3.3.1 The Paragraph Level

P1. Split the text into separate paragraphs. A paragraph separator is kept with the
previous paragraph. Within each paragraph, apply all the other rules of this algorithm.

P2. In each paragraph, find the first character of type L, AL, or R while skipping over
any characters between an isolate initiator and its matching PDI or, if it has no matching
PDI, the end of the paragraph.

Note that:

Because paragraph separators delimit text in this algorithm, the character found
by this rule will generally be the first strong character after a paragraph separator
or at the very beginning of the text.

The characters between an isolate initiator and its matching PDI are ignored by

http://www.unicode.org/reports/tr9/tr9-30.html 19 of 51

this rule because a directional isolate is supposed to have the same effect on the
ordering of the surrounding text as a neutral character, and the rule ignores
neutral characters.

The characters between an isolate initiator and its matching PDI are ignored by
this rule even if the depth limit (as defined in rules X5a through X5c below)
prevents the isolate initiator from raising the embedding level. This is meant to
make the rule easier to implement.

Embedding initiators (but not the characters within the embedding) are ignored in
this rule.

P3. If a character is found in P2 and it is of type AL or R, then set the paragraph
embedding level to one; otherwise, set it to zero.

Whenever a higher-level protocol specifies the paragraph level, rules P2 and P3 may be
overridden: see HL1.

3.3.2 Explicit Levels and Directions

All explicit embedding levels are determined from explicit directional formatting
characters (embedding, override, and isolate), by applying the explicit level rule X1. This
performs a logical pass over the paragraph, applying rules X2–X8 to each characters in
turn. The following variables are used during this pass:

A directional status stack of max_depth+2 entries where each entry consists of:

An embedding level, which is at least zero and at most max_depth.

A directional override status.

A directional isolate status.

In addition to supporting the usual destructive “pop” operation, the stack also
allows read access to its last (i.e. top) entry without popping it. For efficiency, that
last entry can be kept in a separate variable instead of on the directional status
stack, but it is easier to explain the algorithm without that optimization. At the start
of the pass, the directional status stack is initialized to an entry reflecting the
paragraph embedding level, with the directional override status neutral and the
directional isolate status false; this entry is not popped off until the end of the
paragraph. During the pass, the directional status stack always contains entries
for all the directional embeddings, overrides, and isolates within which the current
position lies – except those that would overflow the depth limit – in addition to the
paragraph level entry at the start of the stack. The last entry reflects the innermost
valid scope within which the pass's current position lies. Implementers may find it
useful to include more information in each stack entry. For example, in an isolate
entry, the location of the isolate initiator could be used to create a mapping from
the location of each valid isolate initiator to the location of the matching PDI, or
vice versa. However, such optimizations are beyond the scope of this
specification.

A counter called the overflow isolate count.
This reflects the number of isolate initiators that were encountered in the pass so
far without encountering their matching PDIs, but were invalidated by the depth
limit and thus are not reflected in the directional status stack. They are nested one
within the other and the stack's last scope. This count is used to determine

http://www.unicode.org/reports/tr9/tr9-30.html 20 of 51

whether a newly encountered PDI matches and terminates the scope of an
overflow isolate initiator, thus decrementing the count, as opposed to possibly
matching and terminating the scope of a valid isolate initiator, which should result
in popping its entry off the directional status stack. It is also used to determine
whether a newly encountered PDF falls within the scope of an overflow isolate
initiator and can thus be completely ignored (regardless of whether it matches an
embedding initiator within the same overflow isolate or nothing at all).

A counter called the overflow embedding count.
This reflects the number of embedding initiators that were encountered in the pass
so far without encountering their matching PDF, or encountering the PDI of an
isolate within which they are nested, but were invalidated by the depth limit, and
thus are not reflected in the directional status stack. They are nested one within
the other and the stack's last scope. This count is used to determine whether a
newly encountered PDF matches and terminates the scope of an overflow
embedding initiator, thus decrementing the count, as opposed to possibly
matching and terminating the scope of a valid embedding initiator, which should
result in popping its entry off the directional status stack. However, this count does
not include embedding initiators encountered within the scope of an overflow
isolate (i.e. encountered when the overflow isolate count above is greater than
zero). The scopes of those overflow embedding initiators fall within the scope of
an overflow isolate and are terminated when the overflow isolate count turns zero.
Thus, they do not need to be counted. In fact, if they were counted in the overflow
embedding count, there would be no way to properly update that count when a
PDI matching an overflow isolate initiator is encountered: without a stack of the
overflow scopes, there would be no way to know how many (if any) overflow
embedding initiators fall within the scope of that overflow isolate.

A counter called the valid isolate count.
This reflects the number of isolate initiators that were encountered in the pass so
far without encountering their matching PDIs, and have been judged valid by the
depth limit, i.e. all the entries on the stack with a true directional isolate status. It
ignores all embeddings and overrides, and is used to determine without having to
look through the directional status stack whether a PDI encountered by the pass
when the overflow isolate count is zero matches some valid isolate initiator or
nothing at all. A PDI encountered when this counter is above zero terminates the
scope of the isolate initiator it matches, as well as the embeddings and overrides
nested within it – which appear above it on the stack, or are reflected in the
overflow embedding count.

Note that there is no need for a valid embedding count in order to tell whether a PDF
encountered by the pass matches a valid embedding initiator or nothing at all. That can
be decided by checking the directional isolate status of the last entry on the directional
status stack and the number of entries on the stack. If the last entry has a true
directional isolate status, it is for a directional isolate within whose scope the PDF lies.
Since the PDF cannot match an embedding initiator outside that isolate, and there are
no embedding entries within the isolate, it matches nothing at all. And if the last entry
has a false directional isolate status, but is also the only entry on the stack, it belongs to
paragraph level, and thus once again the PDF matches nothing at all.

As each character is processed, these variables’ values are modified and the

http://www.unicode.org/reports/tr9/tr9-30.html 21 of 51

character’s explicit embedding level is set as defined by rules X2 through X8 on the
basis of the character’s bidirectional type and the variables’ current values.

X1. At the beginning of a paragraph, perform the following steps:

Set the stack to empty.

Push onto the stack an entry consisting of the paragraph embedding level, a
neutral directional override status, and a false directional isolate status.

Set the overflow isolate count to zero.

Set the overflow embedding count to zero.

Set the valid isolate count to zero.

Process each character iteratively, applying rules X2 through X8. Only embedding
levels from 0 through max_depth are valid in this phase. (Note that in the
resolution of levels in rules I1 and I2, the maximum embedding level of
max_depth+1 can be reached.)

Explicit Embeddings

X2. With each RLE, perform the following steps:

Compute the least odd embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this RLE is valid. Push an entry consisting of
the new embedding level, neutral directional override status, and false directional
isolate status onto the directional status stack.

Otherwise, this is an overflow RLE. If the overflow isolate count is zero, increment
the overflow embedding count by one. Leave all other variables unchanged.

For example, assuming the overflow counts are both zero, level 0 → 1; levels 1, 2 → 3;
levels 3, 4 → 5; and so on. At max_depth or if either overflow count is non-zero, the
level remains the same (overflow RLE).

X3. With each LRE, perform the following steps:

Compute the least even embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this LRE is valid. Push an entry consisting of
the new embedding level, neutral directional override status, and false directional
isolate status onto the directional status stack.

Otherwise, this is an overflow LRE. If the overflow isolate count is zero, increment
the overflow embedding count by one. Leave all other variables unchanged.

For example, assuming the overflow counts are both zero, levels 0, 1 → 2; levels 2, 3 →
4; levels 4, 5 → 6; and so on. At max_depth or max_depth-1 (which, being even, would
have to go to max_depth+1) or if either overflow count is non-zero, the level remains the
same (overflow LRE).

http://www.unicode.org/reports/tr9/tr9-30.html 22 of 51

Explicit Overrides

An explicit directional override sets the embedding level in the same way the explicit
embedding formatting characters do, but also changes the bidirectional character type
of affected characters to the override direction.

X4. With each RLO, perform the following steps:

Compute the least odd embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this RLO is valid. Push an entry consisting of
the new embedding level, right-to-left directional override status, and false
directional isolate status onto the directional status stack.

Otherwise, this is an overflow RLO. If the overflow isolate count is zero, increment
the overflow embedding count by one. Leave all other variables unchanged.

X5. With each LRO, perform the following steps:

Compute the least even embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid, and the overflow isolate count and overflow
embedding count are both zero, then this LRO is valid. Push an entry consisting of
the new embedding level, left-to-right directional override status, and false
directional isolate status onto the directional status stack.

Otherwise, this is an overflow LRO. If the overflow isolate count is zero, increment
the overflow embedding count by one. Leave all other variables unchanged.

Isolates

X5a. With each RLI, perform the following steps:

Set the RLI’s embedding level to the embedding level of the last entry on the
directional status stack.

Compute the least odd embedding level greater than the embedding level of the
last entry on the directional status stack.

If this new level would be valid and the overflow isolate count and the overflow
embedding count are both zero, then this RLI is valid. Increment the valid isolate
count by one, and push an entry consisting of the new embedding level, neutral
directional override status, and true directional isolate status onto the directional
status stack.

Otherwise, this is an overflow RLI. Increment the overflow isolate count by one,
and leave all other variables unchanged.

X5b. With each LRI, perform the following steps:

Set the LRI’s embedding level to the embedding level of the last entry on the
directional status stack.

Compute the least even embedding level greater than the embedding level of the

http://www.unicode.org/reports/tr9/tr9-30.html 23 of 51

last entry on the directional status stack.

If this new level would be valid and the overflow isolate count and the overflow
embedding count are both zero, then this LRI is valid. Increment the valid isolate
count by one, and push an entry consisting of the new embedding level, neutral
directional override status, and true directional isolate status onto the directional
status stack.

Otherwise, this is an overflow LRI. Increment the overflow isolate count by one,
and leave all other variables unchanged.

X5c. With each FSI, apply rules P2 and P3 to the sequence of characters between the
FSI and its matching PDI, or if there is no matching PDI, the end of the paragraph, as if
this sequence of characters were a paragraph. If these rules decide on paragraph
embedding level 1, treat the FSI as an RLI in rule X5a. Otherwise, treat it as an LRI in
rule X5b.

Note that the new embedding level is not set to the paragraph embedding level
determined by P2 and P3. It goes up by one or two levels, as it would for an LRI or RLI.

Non-formatting characters

X6. For all types besides B, BN, RLE, LRE, RLO, LRO, PDF, RLI, LRI, FSI, and PDI:

Set the current character’s embedding level to the embedding level of the last
entry on the directional status stack.

Whenever the directional override status of the last entry on the directional status
stack is not neutral, reset the current character type according to the directional
override status of the last entry on the directional status stack.

In other words, if the directional override status of the last entry on the directional status
stack is neutral, then characters retain their normal types: Arabic characters stay AL,
Latin characters stay L, spaces stay WS, and so on. If the directional override status is
right-to-left, then characters become R. If the directional override status is left-to-right,
then characters become L.

Note that the current embedding level is not changed by this rule.

Terminating Isolates

A PDI terminates the scope of the isolate initiator it matches. It also terminates the
scopes of all embedding initiators within the scope of the matched isolate initiator for
which a matching PDF has not been encountered. If it does not match any isolate
initiator, it is ignored.

X6a. With each PDI, perform the following steps:

If the overflow isolate count is greater than zero, this PDI matches an overflow
isolate initiator. Decrement the overflow isolate count by one.

Otherwise, if the valid isolate count is zero, this PDI does not match any isolate
initiator, valid or overflow. Do nothing.

http://www.unicode.org/reports/tr9/tr9-30.html 24 of 51

Otherwise, this PDI matches a valid isolate initiator. Perform the following steps:

Reset the overflow embedding count to zero. (This terminates the scope of
those overflow embedding initiators within the scope of the matched isolate
initiator whose scopes have not been terminated by a matching PDF, and
which thus lack a matching PDF.)

While the directional isolate status of the last entry on the stack is false, pop
the last entry from the directional status stack. (This terminates the scope of
those valid embedding initiators within the scope of the matched isolate
initiator whose scopes have not been terminated by a matching PDF, and
which thus lack a matching PDF. Given that the valid isolate count is
non-zero, the directional status stack must contain an entry with directional
isolate status true before this step, and thus after this step the last entry on
the stack will indeed have a true directional isolate status, i.e. represent the
scope of the matched isolate initiator. This cannot be the stack's first entry,
which always belongs to the paragraph level and has a false directional
status, so there is at least one more entry before it on the stack.)

Pop the last entry from the directional status stack and decrement the valid
isolate count by one. (This terminates the scope of the matched isolate
initiator. Since the preceding step left the stack with at least two entries, this
pop does not leave the stack empty.)

In all cases, set the PDI’s level to the embedding level of the last entry on the
directional status stack left after the steps above.

Note that the level assigned to an isolate initiator is always the same as that assigned to
the matching PDI.

Terminating Embeddings and Overrides

A PDF terminates the scope of the embedding initiator it matches. If it does not match
any embedding initiator, it is ignored.

X7. With each PDF, perform the following steps:

If the overflow isolate count is greater than zero, do nothing. (This PDF is within
the scope of an overflow isolate initiator. It either matches and terminates the
scope of an overflow embedding initiator within that overflow isolate, or does not
match any embedding initiator.)

Otherwise, if the overflow embedding count is greater than zero, decrement it by
one. (This PDF matches and terminates the scope of an overflow embedding
initiator that is not within the scope of an overflow isolate initiator.)

Otherwise, if the directional isolate status of the last entry on the directional status
stack is false, and the directional status stack contains at least two entries, pop
the last entry from the directional status stack. (This PDF matches and terminates
the scope of a valid embedding initiator. Since the stack has at least two entries,
this pop does not leave the stack empty.)

Otherwise, do nothing. (This PDF does not match any embedding initiator.)

End of Paragraph

http://www.unicode.org/reports/tr9/tr9-30.html 25 of 51

X8. All explicit directional embeddings, overrides and isolates are completely terminated
at the end of each paragraph. Paragraph separators are not included in any
embedding, override or isolate, and are thus assigned the paragraph embedding level.

3.3.3 Preparations for Implicit Processing

The explicit embedding levels that have been assigned to the characters by the
preceding rules will soon be further adjusted on the basis of the characters' implicit
bidirectional types. The adjustment made for a given character will then depend on the
characters around it. However, this dependency is limited by logically dividing the
paragraph into sub-units, and doing the subsequent implicit processing on each unit
independently.

X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN characters.

Note that an implementation does not have to actually remove the characters; it
just has to behave as though the characters were not present for the remainder of
the algorithm. Conformance does not require any particular placement of these
characters as long as all other characters are ordered correctly.

See Section 5, Implementation Notes, for information on implementing the
algorithm without removing the formatting characters.

The zero width joiner and non-joiner affect the shaping of the adjacent characters
—those that are adjacent in the original backing-store order, even though those
characters may end up being rearranged to be non-adjacent by the Bidirectional
Algorithm. For more information, see Section 6.1, Joiners.

Note that FSI, LRI, RLI, and PDI characters are not removed. As indicated by the
rules below, they are used, in part, to determine the paragraph’s isolating run
sequences, within which they are then treated as neutral characters.
Nevertheless, they are of course zero-width characters and, like LRM and RLM,
should not be visible in the final output.

X10. Perform the following steps:

Compute the set of isolating run sequences as specified by BD13, based on the
bidirectional types of the characters and the embedding levels assigned by the
rules above (X1–X9).

Determine the start-of-sequence (sos) and end-of-sequence (eos) types, either L
or R, for each isolating run sequence. These depend on the higher of the two
levels on either side of the sequence boundary:

For sos, compare the level of the first character in the sequence with the
level of the character preceding it in the paragraph (not counting characters
removed by X9), and if there is none, with the paragraph embedding level.

For eos, compare the level of the last character in the sequence with the
level of the character following it in the paragraph (not counting characters
removed by X9), and if there is none or the last character of the sequence is
an isolate initiator (lacking a matching PDI), with the paragraph embedding
level.

If the higher level is odd, the sos or eos is R; otherwise, it is L.

http://www.unicode.org/reports/tr9/tr9-30.html 26 of 51

Note that these computations must use the embedding levels assigned by
the rules above, before any changes are made to them in the steps below.

Apply rules W1–W7, N0–N2, and I1–I2, in the order in which they appear below, to
each of the isolating run sequences, applying one rule to all the characters in the
sequence in the order in which they occur in the sequence before applying
another rule to any part of the sequence. The order that one isolating run
sequence is treated relative to another does not matter. When applying a rule to
an isolating run sequence, the last character of each level run in the isolating run
sequence is treated as if it were immediately followed by the first character in the
next level run in the sequence, if any.

Here are some examples, each of which is assumed to be a paragraph with base level
0 where no character sequence text

i
 contains explicit directional formatting characters

or paragraph separators. The dots in the examples are intended to separate elements
for visual clarity; they are not part of the text.

Example 1: text
1
·RLE ·text

2
·LRE ·text

3
·PDF ·text

4
·PDF ·RLE ·text

5
·PDF ·text

6

Isolating Run Sequence Embedding Level sos eos

1 0 L R

2 1 R L

3 2 L L

4· 5 1 L R

6 0 R L

Example 2: text
1
·RLI ·text

2
·LRI ·text

3
·PDI ·text

4
·PDI ·RLI ·text

5
·PDI ·text

6

Isolating Run Sequence Embedding Level sos eos

1·RLI·PDI·RLI·PDI· 6 0 L L

2·LRI·PDI· 4 1 R R

3 2 L L

5 1 R R

Example 3: text
1
·RLE ·text

2
·LRI ·text

3
·RLE ·text

4
·PDI ·text

5
·PDF ·text

6

Isolating Run Sequence Embedding Level sos eos

1 0 L R

http://www.unicode.org/reports/tr9/tr9-30.html 27 of 51

2·LRI·PDI· 5 1 R R

3 2 L R

4 3 R R

6 0 R L

3.3.4 Resolving Weak Types

Weak types are now resolved one isolating run sequence at a time. At isolating run
sequence boundaries where the type of the character on the other side of the boundary
is required, the type assigned to sos or eos is used.

First, each nonspacing mark is resolved based on the character it follows.

W1. Examine each nonspacing mark (NSM) in the isolating run sequence, and change
the type of the NSM to Other Neutral if the previous character is an isolate initiator or
PDI, and to the type of the previous character otherwise. If the NSM is at the start of the
isolating run sequence, it will get the type of sos. (Note that in an isolating run
sequence, an isolate initiator followed by an NSM or any type other than PDI must be
an overflow isolate initiator.)

Assume in this example that sos is R:

AL NSM NSM → AL AL AL

sos NSM → sos R

LRI NSM → LRI ON

PDI NSM → PDI ON

The text is next parsed for numbers. This pass will change the directional types
European Number Separator, European Number Terminator, and Common Number
Separator to be European Number text, Arabic Number text, or Other Neutral text. The
text to be scanned may have already had its type altered by directional overrides. If so,
then it will not parse as numeric.

W2. Search backward from each instance of a European number until the first strong
type (R, L, AL, or sos) is found. If an AL is found, change the type of the European
number to Arabic number.

AL EN → AL AN

AL NI EN → AL NI AN

sos NI EN → sos NI EN

L NI EN → L NI EN

R NI EN → R NI EN

http://www.unicode.org/reports/tr9/tr9-30.html 28 of 51

W3. Change all ALs to R.

W4. A single European separator between two European numbers changes to a
European number. A single common separator between two numbers of the same type
changes to that type.

EN ES EN → EN EN EN

EN CS EN → EN EN EN

AN CS AN → AN AN AN

W5. A sequence of European terminators adjacent to European numbers changes to all
European numbers.

ET ET EN → EN EN EN

EN ET ET → EN EN EN

AN ET EN → AN EN EN

W6. Otherwise, separators and terminators change to Other Neutral.

AN ET → AN ON

L ES EN → L ON EN

EN CS AN → EN ON AN

ET AN → ON AN

W7. Search backward from each instance of a European number until the first strong
type (R, L, or sos) is found. If an L is found, then change the type of the European
number to L.

L NI EN → L NI L

R NI EN → R NI EN

3.3.5 Resolving Neutral and Isolate Formatting Types

In the next phase, neutral and isolate formatting (i.e. NI) characters are resolved one
isolating run sequence at a time. Its results are that all NIs become either R or L.
Generally, NIs take on the direction of the surrounding text. In case of a conflict, they
take on the embedding direction. At isolating run sequence boundaries where the type
of the character on the other side of the boundary is required, the type assigned to sos
or eos is used.

Bracket pairs within an isolating run sequence are processed as units so that both the
opening and the closing paired bracket in a pair resolve to the same direction.

N0. Process bracket pairs in an isolating run sequence sequentially in the logical order
of the text positions of the opening paired brackets using the logic given below. Within
this scope, bidirectional types EN and AN are treated as R.

http://www.unicode.org/reports/tr9/tr9-30.html 29 of 51

Identify the bracket pairs in the current isolating run sequence according to BD16.

For each bracket-pair element in the list of pairs of text positions

Inspect the bidirectional types of the characters enclosed within the bracket
pair.

a.

If any strong type (either L or R) matching the embedding direction is found,
set the type for both brackets in the pair to match the embedding direction.

o [e] o → o e e e o

o [o e] → o e o e e

o [NI e] → o e NI e e

b.

Otherwise, if there is a strong type it must be opposite the embedding
direction. Therefore, test for an established context with a preceding strong
type by checking backwards before the opening paired bracket until the first
strong type (L, R, or sos) is found.

If the preceding strong type is also opposite the embedding direction,
context is established, so set the type for both brackets in the pair to
that direction.

o [o] e → o o o o e

o [o NI] o → o o o NI o o

1.

Otherwise set the type for both brackets in the pair to the embedding
direction.

e [o] o → e e o e o

e [o] e → e e o e e

2.

c.

Otherwise, there are no strong types within the bracket pair. Therefore, do
not set the type for that bracket pair.

e (NI) o → e (NI) o

Note that if the enclosed text contains no strong types the bracket pairs will
both resolve to the same level when resolved individually using rules N1 and
N2.

d.

Example 1: Bracket pairs are resolved sequentially in logical order of the opening paired
brackets.

(RTL paragraph direction)

Storage AB (CD [& ef] !) gh

Bidi_Class R ON R ON ON L ON ON ON L

http://www.unicode.org/reports/tr9/tr9-30.html 30 of 51

N0 applied (first pair) N0b:
ON→R

N0b:
ON→R

N0 applied (second
pair)

N0c2:
ON→R

N0c2:
ON→R

Display gh(![ef&]DC)BA

Example 2: Bracket pairs enclosing mixed strong types take the paragraph direction.

(RTL paragraph direction)

Storage smith (fabrikam ARABIC) HEBREW

Bidi_Class L WS ON L WS R ON WS R

N0 applied N0b: ON→R N0b: ON→R

Display WERBEH (CIBARA fabrikam) smith

Note that in the above example, the resolution of the bracket pairs is stable if the order
of smith and HEBREW, or fabrikam and ARABIC, is reversed.

Example 3: Bracket pairs enclosing strong types opposite the embedding direction with
additional strong-type context take the direction opposite the embedding direction.

(RTL paragraph direction)

Storage ARABIC book (s)

Bidi_Class R WS L ON L ON

N0 applied N0c1: ON→L N0c1: ON→L

Display book(s) CIBARA

N1. A sequence of NIs takes the direction of the surrounding strong text if the text on
both sides has the same direction. European and Arabic numbers act as if they were R
in terms of their influence on NIs. The start-of-sequence (sos) and end-of-sequence
(eos) types are used at isolating run sequence boundaries.

 L NI L → L L L

 R NI R → R R R

 R NI AN → R R AN

 R NI EN → R R EN

AN NI R → AN R R

AN NI AN → AN R AN

AN NI EN → AN R EN

http://www.unicode.org/reports/tr9/tr9-30.html 31 of 51

EN NI R → EN R R

EN NI AN → EN R AN

EN NI EN → EN R EN

N2. Any remaining NIs take the embedding direction.

NI → e

The embedding direction for the given NI character is derived from its embedding level:
L if the character is set to an even level, and R if the level is odd. (See BD3.)

Assume in the following example that eos is L and sos is R. Then an application of N1
and N2 yields the following:

L NI eos → L L eos

R NI eos → R e eos

sos NI L → sos e L

sos NI R → sos R R

Examples. A list of numbers separated by neutrals and embedded in a directional run
will come out in the run’s order.

Storage: he said "THE VALUES ARE 123, 456, 789, OK".

Display: he said "KO ,789 ,456 ,123 ERA SEULAV EHT".

In this case, both the comma and the space between the numbers take on the direction
of the surrounding text (uppercase = right-to-left), ignoring the numbers. The commas
are not considered part of the number because they are not surrounded on both sides
by digits (see Section 3.3.4, Resolving Weak Types). However, if there is a preceding
left-to-right sequence, then European numbers will adopt that direction:

Storage: IT IS A bmw 500, OK.

Display: .KO ,bmw 500 A SI TI

3.3.6 Resolving Implicit Levels

In the final phase, the embedding level of text may be increased, based on the resolved
character type. Right-to-left text will always end up with an odd level, and left-to-right
and numeric text will always end up with an even level. In addition, numeric text will
always end up with a higher level than the paragraph level. (Note that it is possible for
text to end up at level max_depth+1 as a result of this process.) This results in the
following rules:

I1. For all characters with an even (left-to-right) embedding level, those of type R go up
one level and those of type AN or EN go up two levels.

I2. For all characters with an odd (right-to-left) embedding level, those of type L, EN or

http://www.unicode.org/reports/tr9/tr9-30.html 32 of 51

AN go up one level.

Table 5 summarizes the results of the implicit algorithm.

Table 5. Resolving Implicit Levels

Type Embedding Level
Even Odd

L EL EL+1
R EL+1 EL
AN EL+2 EL+1
EN EL+2 EL+1

3.4 Reordering Resolved Levels

The following rules describe the logical process of finding the correct display order. As
opposed to resolution phases, these rules act on a per-line basis and are applied after
any line wrapping is applied to the paragraph.

Logically there are the following steps:

The levels of the text are determined according to the previous rules.

The characters are shaped into glyphs according to their context (taking the
embedding levels into account for mirroring).

The accumulated widths of those glyphs (in logical order) are used to determine
line breaks.

For each line, rules L1–L4 are used to reorder the characters on that line.

The glyphs corresponding to the characters on the line are displayed in that order.

L1. On each line, reset the embedding level of the following characters to the paragraph
embedding level:

Segment separators,1.

Paragraph separators,2.

Any sequence of whitespace characters and/or isolate formatting characters (FSI,
LRI, RLI, and PDI) preceding a segment separator or paragraph separator, and

3.

Any sequence of whitespace characters and/or isolate formatting characters (FSI,
LRI, RLI, and PDI) at the end of the line.

4.

The types of characters used here are the original types, not those modified by the
previous phase.

Because a PARAGRAPH SEPARATOR breaks lines, there will be at most one per line, at the
end of that line.

In combination with the following rule, this means that trailing whitespace will appear at
the visual end of the line (in the paragraph direction). Tabulation will always have a

http://www.unicode.org/reports/tr9/tr9-30.html 33 of 51

consistent direction within a paragraph.

L2. From the highest level found in the text to the lowest odd level on each line,
including intermediate levels not actually present in the text, reverse any contiguous
sequence of characters that are at that level or higher.

This rule reverses a progressively larger series of substrings.

The following examples illustrate the reordering, showing the successive steps in
application of Rule L2. The original text is shown in the "Storage" row in the example
tables. The invisible, zero-width formatting characters LRI, RLI, and PDI are
represented with the symbols > , < , and = , respectively. The application of the rules
from Section 3.3, Resolving Embedding Levels and of the Rule L1 results in the
resolved levels listed in the "Resolved Levels" row. (Since these examples only make
use of the isolate formatting characters, Rule X9 does not remove any characters. Note
that Example 3 would not work if it used embeddings instead because the two right-
to-left phrases would have merged into a single right-to-left run, together with the
neutral punctuation in between.) Each successive row thereafter shows one pass of
reversal from Rule L2, such as "Reverse levels 1-2". At each iteration, the underlining
shows the text that has been reversed.

The paragraph embedding level for the first, second, and third examples is 0 (left-
to-right direction), and for the fourth example is 1 (right-to-left direction).

Example 1 (embedding level = 0)

Storage: car means CAR.

Resolved levels: 00000000001110

Reverse level 1: car means RAC.

Display: car means RAC.

Example 2 (embedding level = 0)

Storage: <car MEANS CAR.=

Resolved levels: 0222111111111110

Reverse level 2: <rac MEANS CAR.=

Reverse levels 1-2: <.RAC SNAEM car=

Display: .RAC SNAEM car

Example 3 (embedding level = 0)

Storage: he said “<car MEANS CAR=.” “<IT DOES=,” she agreed.

http://www.unicode.org/reports/tr9/tr9-30.html 34 of 51

Resolved levels: 000000000022211111111110000001111111000000000000000

Reverse level 2: he said “<rac MEANS CAR=.” “<IT DOES=,” she agreed.

Reverse levels 1-2: he said “<RAC SNAEM car=.” “<SEOD TI=,” she agreed.

Display: he said “RAC SNAEM car.” “SEOD TI,” she agreed.

Example 4 (embedding level = 1)

Storage: DID YOU SAY ’>he said “<car MEANS CAR=”=‘?

Resolved levels: 111111111111112222222222444333333333322111

Reverse level 4: DID YOU SAY ’>he said “<rac MEANS CAR=”=‘?

Reverse levels 3-4: DID YOU SAY ’>he said “<RAC SNAEM car=”=‘?

Reverse levels 2-4: DID YOU SAY ’>”=rac MEANS CAR<“ dias eh=‘?

Reverse levels 1-4: ?‘=he said “<RAC SNAEM car=”>’ YAS UOY DID

Display: ?‘he said “RAC SNAEM car”’ YAS UOY DID

L3. Combining marks applied to a right-to-left base character will at this point precede
their base character. If the rendering engine expects them to follow the base characters
in the final display process, then the ordering of the marks and the base character must
be reversed.

Many font designers provide default metrics for combining marks that support rendering
by simple overhang. Because of the reordering for right-to-left characters, it is common
practice to make the glyphs for most combining characters overhang to the left (thus
assuming the characters will be applied to left-to-right base characters) and make the
glyphs for combining characters in right-to-left scripts overhang to the right (thus
assuming that the characters will be applied to right-to-left base characters). With such
fonts, the display ordering of the marks and base glyphs may need to be adjusted when
combining marks are applied to “unmatching” base characters. See Section 5.13,
Rendering Nonspacing Marks of [Unicode], for more information.

L4. A character is depicted by a mirrored glyph if and only if (a) the resolved
directionality of that character is R, and (b) the Bidi_Mirrored property value of that
character is Yes.

The Bidi_Mirrored property is defined by Section 4.7, Bidi Mirrored of [Unicode];
the property values are specified in [UCD].

This rule can be overridden in certain cases; see HL6.

For example, U+0028 LEFT PARENTHESIS—which is interpreted in the Unicode Standard as an
opening parenthesis—appears as “(” when its resolved level is even, and as the

http://www.unicode.org/reports/tr9/tr9-30.html 35 of 51

mirrored glyph “)” when its resolved level is odd. Note that for backward compatibility
the characters U+FD3E (﴾) ORNATE LEFT PARENTHESIS and U+FD3F (﴿) ORNATE RIGHT PARENTHESIS are
not mirrored.

3.5 Shaping

Cursively connected scripts, such as Arabic or Syriac, require the selection of positional
character shapes that depend on adjacent characters (see Section 8.2, Arabic of
[Unicode]). Shaping is logically applied after the Bidirectional Algorithm is used and is
limited to characters within the same level run. (Note that there is no practical difference
between limiting shaping to a level run and an isolating run sequence because the
isolate initiator and PDI characters are defined to have joining type U, i.e. non-joining.
Thus, the characters before and after a directional isolate will not join across the isolate,
even if the isolate is empty or overflows the depth limit.) Consider the following example
string of Arabic characters, which is represented in memory as characters 1, 2, 3, and 4,
and where the first two characters are overridden to be LTR. To show both paragraph
directions, the next two are embedded, but with the normal RTL direction.

1 2

062C
JEEM

0639
AIN

0644
LAM

0645
MEEM

L L R R

One can use explicit directional formatting characters to achieve this effect in plain text
or use markup in HTML, as in the examples below. (The bold text would be for the
right-to-left paragraph direction.)

LRM/RLM LRO JEEM AIN PDF RLO LAM MEEM PDF

<p dir="ltr"/"rtl">LRO JEEM AIN PDF RLO LAM MEEM PDF</p>

<p dir="ltr"/"rtl"><bdo dir="ltr">JEEM AIN</bdo>
 <bdo dir="rtl">LAM MEEM</bdo></p>

The resulting shapes will be the following, according to the paragraph direction:

Left-Right Paragraph Right-Left Paragraph

1 2 1 2

http://www.unicode.org/reports/tr9/tr9-30.html 36 of 51

JEEM-F AIN-I MEEM-F LAM-I MEEM-F LAM-I JEEM-F AIN-I

3.5.1 Shaping and Line Breaking

The process of breaking a paragraph into one or more lines that fit within particular
bounds is outside the scope of the Bidirectional Algorithm. Where character shaping is
involved, the width calculations must be based on the shaped glyphs.

Note that the soft-hyphen (SHY) works in cursively connected scripts as it does in other
scripts. That is, it indicates a point where the line could be broken in the middle of a
word. If the rendering system breaks at that point, the display—including shaping
—should be what is appropriate for the given language. For more information on this
and other line breaking issues, see Unicode Standard Annex #14, “Line Breaking
Properties” [UAX14].

4 Bidirectional Conformance

A process that claims conformance to this specification shall satisfy the following
clauses:

As is the case for all other Unicode algorithms, this is a logical description
—particular implementations can have more efficient mechanisms as long as they
produce the same results. See C18 in Chapter 3, Conformance of [Unicode], and
the notes following.

The Bidirectional Algorithm specifies part of the intrinsic semantics of right-to-left
characters and is thus required for conformance to the Unicode Standard where
any such characters are displayed.

Use of higher-level protocols is discouraged, because it introduces interchange
problems and can lead to security problems. For more information, see Unicode
Technical Report #36, “Unicode Security Considerations” [UTR36].

http://www.unicode.org/reports/tr9/tr9-30.html 37 of 51

4.1 Boundary Neutrals

The goal in marking a formatting or control character as BN is that it have no effect on
the rest of the algorithm. (ZWJ and ZWNJ are exceptions; see X9). Because
conformance does not require the precise ordering of formatting characters with respect
to others, implementations can handle them in different ways as long as they preserve
the ordering of the other characters.

4.2 Explicit Formatting Characters

As with any Unicode characters, systems do not have to support any particular explicit
directional formatting character (although it is not generally useful to include a
terminating character without including the initiator). Generally, conforming systems will
fall into four classes:

No bidirectional formatting. This implies that the system does not visually interpret
characters from right-to-left scripts.

Implicit bidirectionality. The implicit Bidirectional Algorithm and the directional
marks ALM, RLM and LRM are supported.

Non-isolate bidirectionality. The implicit Bidirectional Algorithm, the implicit
directional marks, and the explicit non-isolate directional formatting characters are
supported: ALM, RLM, LRM, LRE, RLE, LRO, RLO, PDF.

Full bidirectionality. The implicit Bidirectional Algorithm, the implicit directional
marks, and all the explicit directional formatting characters are supported: ALM,
RLM, LRM, LRE, RLE, LRO, RLO, PDF, FSI, LRI, RLI, PDI.

4.3 Higher-Level Protocols

The following clauses are the only permissible ways for systems to apply higher-level
protocols to the ordering of bidirectional text. Some of the clauses apply to segments of
structured text. This refers to the situation where text is interpreted as being structured,
whether with explicit markup such as XML or HTML, or internally structured such as in a
word processor or spreadsheet. In such a case, a segment is span of text that is
distinguished in some way by the structure.

A higher-level protocol may set any paragraph level. This can be
done on the basis of the context, such as on a table cell, paragraph,
document, or system level. (P2 may be skipped if P3 is overridden).
Note that this does not allow a higher-level protocol to override the
limit specified in BD2.
A higher-level protocol may apply rules equivalent to P2 and P3 but
default to level 1 (RTL) rather than 0 (LTR) to match overall RTL
context.

http://www.unicode.org/reports/tr9/tr9-30.html 38 of 51

A higher-level protocol may use an entirely different algorithm that
heuristically auto-detects the paragraph embedding level based on
the paragraph text and its context. For example, it could base it on
whether there are more RTL characters in the text than LTR. As
another example, when the paragraph contains no strong
characters, its direction could be determined by the levels of the
paragraphs before and after.

A higher-level protocol may reset characters of type EN to AN, or
vice versa, and ignore W2. For example, style sheet or markup
information can be used within a span of text to override the setting
of EN text to be always be AN, or vice versa.

A higher-level protocol can impose a directional embedding, isolate
or override on a segment of structured text. The behavior must
always be defined by reference to what would happen if the
equivalent explicit directional formatting characters as defined in
the algorithm were inserted into the text. For example, a style sheet
or markup can modify the embedding level on a span of text.

.

The Bidirectional Algorithm can be applied independently to one or
more segments of structured text. For example, when displaying a
document consisting of textual data and visible markup in an
editor, a higher-level process can handle syntactic elements in the
markup separately from the textual data.

Text can be processed by the Bidirectional Algorithm as if it were
preceded by a character of a given type and/or followed by a
character of a given type. This allows a piece of text that is
extracted from a longer sequence of text to behave as it did in the
larger context.

http://www.unicode.org/reports/tr9/tr9-30.html 39 of 51

Clauses HL1 and HL3 are specialized applications of the more general clauses HL4 and
HL5. They are provided here explicitly because they directly correspond to common
operations.

As an example of the application of HL4, suppose an XML document contains the
following fragment. (Note: This is a simplified example for illustration: element names,
attribute names, and attribute values could all be involved.)

ARABICenglishARABIC<e1 type='ab'>ARABICenglish<e2 type='cd'>english

This can be analyzed as being five different segments:

ARABICenglishARABICa.

<e1 type='ab'>b.

ARABICenglishc.

<e2 type='cd'>d.

englishe.

To make the XML file readable as source text, the display in an editor could order these
elements all in a uniform direction (for example, all left-to-right) and apply the
Bidirectional Algorithm to each field separately. It could also choose to order the
element names, attribute names, and attribute values uniformly in the same direction
(for example, all left-to-right). For final display, the markup could be ignored, allowing all
of the text (segments a, c, and e) to be reordered together.

4.4 Bidirectional Conformance Testing

The Unicode Character Database [UCD] includes two files that provide conformance
tests for implementations of the Bidirectional Algorithm [Tests9]. One of the test files,
BidiTest.txt, comprises exhaustive test sequences of bidirectional types up to a given
length, currently 4. The other test file, BidiCharacterTest.txt, contains test sequences
of explicit code points, including, for example, bracket pairs. The format of each test file
is described in the header of that file.

5 Implementation Notes

5.1 Reference Code

A reference implementation of the Bidirectional Algorithm written in Java is available.
The source code can be downloaded from [Code9]. Implementers are encouraged to
use this resource to test their implementations. An online demo is also available at
[Demo9], which shows the results of the Bidirectional Algorithm, as well as the
embedding levels and the rules invoked for each character.

The reference code is designed to follow the steps of the algorithm without applying any
optimizations. An example of an effective optimization is to first test for right-to-left
characters and invoke the Bidirectional Algorithm only if they are present. Another
example of optimization is in matching bracket pairs. The bidirectional bracket pairs (the
characters with Bidi_Paired_Bracket_Type property values Open and Close) constitute
a subset of the characters with bidirectional type ON. Conversely, the characters with a

http://www.unicode.org/reports/tr9/tr9-30.html 40 of 51

bidirectional type distinct from ON have the Bidi_Paired_Bracket_Type property value
None. Therefore, lookup of Bidi_Paired_Bracket_Type property values for the
identification of bracket pairs can be optimized by restricting the processing to
characters whose bidirectional type is ON.

5.2 Retaining Explicit Formatting Characters

Some implementations may wish to retain the explicit directional embedding and
override formatting characters when running the algorithm. The following provides a
summary of how this may be done. Note that this summary is an informative
implementation guideline; it should provide the same results as the explicit algorithm
above, but in case of any deviation the explicit algorithm is the normative statement for
conformance.

In rule X9, instead of removing the embedding and override formatting characters,
assign the embedding level to each formatting character, and turn it into BN.

In rule X10, when determining the sos and eos for an isolating run sequence, skip
over any BNs when looking for the character preceding the isolating run
sequence's first character and following its last character.

In rule W1, search backward from each NSM to the first character in the isolating
run sequence whose bidirectional type is not BN, and set the NSM to ON if it is an
isolate initiator or PDI, and to its type otherwise. If the NSM is the first non-BN
character, change the NSM to the type of sos.

In rule W4, scan past BN types that are adjacent to ES or CS.

In rule W5, change all appropriate sequences of ET and BN, not just ET.

In rule W6, change all BN types adjacent to ET, ES, or CS to ON as well.

In rule W7, scan past BN.

In rules N0–N2, treat BNs that adjoin neutrals the same as those neutrals.

In rules I1 and I2, ignore BN.

In rule L1, include the embedding and override formatting characters and BN
together with whitespace characters and isolate formatting characters in the
sequences whose level gets reset before a separator or line break. Resolve any
LRE, RLE, LRO, RLO, PDF, or BN to the level of the preceding character if there
is one, and otherwise to the base level.

Implementations that display visible representations of formatting characters will want to
adjust this process to position the formatting characters optimally for editing.

6 Usage

6.1 Joiners

As described under X9, the zero width joiner and non-joiner affect the shaping of the
adjacent characters—those that are adjacent in the original backing-store order—even
though those characters may end up being rearranged to be non-adjacent by the
Bidirectional Algorithm. To determine the joining behavior of a particular character after
applying the Bidirectional Algorithm, there are two main strategies:

When shaping, an implementation can refer back to the original backing store to

http://www.unicode.org/reports/tr9/tr9-30.html 41 of 51

see if there were adjacent ZWNJ or ZWJ characters.

Alternatively, the implementation can replace ZWJ and ZWNJ by an out-of-band
character property associated with those adjacent characters, so that the
information does not interfere with the Bidirectional Algorithm and the information
is preserved across rearrangement of those characters. Once the Bidirectional
Algorithm has been applied, that out-of-band information can then be used for
proper shaping.

6.2 Vertical Text

In the case of vertical line orientation, the Bidirectional Algorithm is still used to
determine the levels of the text. However, these levels are not used to reorder the text,
because the characters are usually ordered uniformly from top to bottom. Instead, the
levels are used to determine the rotation of the text. Sometimes vertical lines follow a
vertical baseline in which each character is oriented as normal (with no rotation), with
characters ordered from top to bottom whether they are Hebrew, numbers, or Latin.
When setting text using the Arabic script in vertical lines, it is more common to employ a
horizontal baseline that is rotated by 90° counterclockwise so that the characters are
ordered from top to bottom. Latin text and numbers may be rotated 90° clockwise so
that the characters are also ordered from top to bottom.

The Bidirectional Algorithm is used when some characters are ordered from bottom to
top. For example, this happens with a mixture of Arabic and Latin glyphs when all the
glyphs are rotated uniformly 90° clockwise. The Unicode Standard does not specify
whether text is presented horizontally or vertically, or whether text is rotated. That is left
up to higher-level protocols.

6.3 Formatting

Because of the implicit character types and the heuristics for resolving neutral and
numeric directional behavior, the implicit bidirectional ordering will generally produce the
correct display without any further work. However, problematic cases may occur when a
right-to-left paragraph begins with left-to-right characters, or there are nested segments
of different-direction text, or there are weak characters on directional boundaries. In
these cases, embeddings or directional marks may be required to get the right display.
Part numbers may also require directional overrides.

The most common problematic case is that of neutrals on the boundary of an
embedded language. This can be addressed by setting the level of the embedded text
correctly. For example, with all the text at level 0 the following occurs:

Memory: he said "I NEED WATER!", and expired.

Display: he said "RETAW DEEN I!", and expired.

If the exclamation mark is to be part of the Arabic quotation, then the user can select the
text I NEED WATER! and explicitly mark it as embedded Arabic, which produces the
following result:

Memory: he said "RLII NEED WATER!PDI", and expired.

Display: he said "!RETAW DEEN I", and expired.

http://www.unicode.org/reports/tr9/tr9-30.html 42 of 51

However, an often simpler and better method of doing this is to place a right directional
mark (RLM) after the exclamation mark. Because the exclamation mark is now not on a
directional boundary, this produces the correct result. This is the best approach when
manually editing text or programmatically generating text meant to be edited, or dealing
with an application that simply does not support explicit formatting characters.

Memory: he said "I NEED WATER!RLM", and expired.

Display: he said "!RETAW DEEN I", and expired.

This latter approach is preferred because it does not make use of the explicit formatting
characters, which can easily get out of sync if not fully supported by editors and other
string manipulation. Nevertheless, the explicit formatting characters are absolutely
necessary in cases where text of one direction contains text of the opposite direction
which itself contains text of the original direction. Such cases are not as rare as one
might think, because Latin-script brand names, technical terms, and abbreviations are
often written in their original Latin characters when used in non-Latin-script text,
including right-to-left text, as in the following:

Memory: it is called "RLIAN INTRODUCTION TO javaPDI" - $19.95 in hardcover.

Display: it is called "java OT NOITCUDORTNI NA" - $19.95 in hardcover.

Thus, when text is programmatically generated by inserting data into a template, and is
not intended for later manual editing, and a particular insert happens to be of the
opposite direction to the template's text, it is easiest to wrap the insert in explicit
formatting characters (or their markup equivalent) declaring its direction, without
analyzing whether it is really necessary to do so, or if the job could be done just with
stateless directional marks.

Furthermore, in this common scenario, it is highly recommended to use directional
isolate formatting characters as opposed to directional embedding formatting characters
(once targeted display platforms are known to support isolates). This is because
embeddings affect the surrounding text similarly to a strong character, whereas
directional isolates have the effect of a neutral. The embeddings' stronger effect is often
difficult to anticipate and is rarely useful. To demonstrate, here is the example above
with embeddings instead of isolates:

Memory: it is called "RLEAN INTRODUCTION TO javaPDF" - $19.95 in hardcover.

Display: it is called "$19.95 - "java OT NOITCUDORTNI NA in hardcover.

This, of course, is not the intended display, and is due to the number “sticking” to the
preceding RTL embedding (along with all the neutral characters in between), just as it
would “stick” to a preceding RTL character.

Directional isolates also offer a solution to the very common case where the direction of
the text to be programmatically inserted is not known. Instead of analyzing the
characters of the text to be inserted in order to decide whether to use an LRE or RLE
(or LRI or RLI - or nothing at all), the software can take the easy way out and always
wrap each unknown-direction insert in an FSI and PDI. Thus, an FSI instead of an RLI
in the example above would produce the same display. FSI's first-strong heuristic is not

http://www.unicode.org/reports/tr9/tr9-30.html 43 of 51

infallible, but it will work most of the time even on mixed-script text.

Although wrapping inserts in isolates is a useful technique, it is best not to wrap text that
is known to contain no opposite-direction characters that are not already wrapped in an
isolate. Unnecessary layers of wrapping not only add bulk and complexity; they can also
wind up exceeding the depth limit and rendering ineffective the innermost isolates,
which can make the text display incorrectly. One very common case of an insert that
does not need wrapping is one known to be localized to the context locale, e.g. a
translated message with all its inserted values either themselves localized, or wrapped
in an isolate.

6.4 Separating Punctuation Marks

A common problem case is where the text really represents a sequence of items with
separating punctuation marks, often programmatically concatenated. These separators
are often strings of neutral characters. For example, a web page might have the
following at the bottom:

advertising programs - business solutions - privacy policy - help - about

This might be built up on the server by concatenating a variable number of strings with "
- " as a separator, for example. If all of the text is translated into Arabic or Hebrew and
the overall page direction is set to be RTL, then the right result occurs, such as the
following:

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS SSENISUB - SMARGORP
GNISITREVDA

However, suppose that in the translation, there remain some LTR characters. This is not
uncommon for company names, product names, technical terms, and so on. If one of
the separators is bounded on both sides by LTR characters, then the result will be badly
jumbled. For example, suppose that "programs" in the first term and "business" in the
second were left in English. Then the result would be

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS programs - business
GNISITREVDA

The result is a jumble, with the apparent first term being "advertising business" and the
second being "programs solutions". The simplest solution for this problem is to include
an RLM character in each separator string. That will cause each separator to adopt a
right-to-left direction, and produce the correct output:

TUOBA - PLEH - YCILOP YCAVIRP - SNOITULOS business - programs
GNISITREVDA

The explicit formatting characters (LRE, RLE, and PDF or LRI, RLI, FSI, and PDI) can
be used to achieve the same effect; web pages would use spans with the attributes
dir="ltr" or dir="rtl". Each separate field would be embedded, excluding the separators.
In general, LRM and RLM are preferred to the explicit formatting characters because
their effects are more local in scope, and are more robust than the dir attributes when
text is copied. (Ideally programs would convert dir attributes to the corresponding

http://www.unicode.org/reports/tr9/tr9-30.html 44 of 51

explicit formatting characters when converting to plain text, but that is not generally
supported.)

6.5 Conversion to Plain Text

For consistent appearance, when bidirectional text subject to a higher-level protocol is
to be converted to Unicode plain text, formatting characters should be inserted to
ensure that the display order resulting from the application of the Unicode Bidirectional
Algorithm matches that specified by the higher-level protocol. The same principle should
be followed whenever text using a higher-level protocol is converted to marked-up text
that is unaware of the higher-level protocol. For example, if a higher-level protocol sets
the paragraph direction to 1 (R) based on the number of L versus R/AL characters,
when converted to plain text the paragraph would be embedded in a bracketing pair of
RLE..PDF formatting characters. If the same text were converted to HTML4.0 the
attribute dir = "rtl" would be added to the paragraph element.

7 Mirroring

The mirrored property is important to ensure that the correct characters are used for the
desired semantic. This is of particular importance where the name of a character does
not indicate the intended semantic, such as with U+0028 “(” LEFT PARENTHESIS. While the
name indicates that it is a left parenthesis, the character really expresses an open
parenthesis—the leading character in a parenthetical phrase, not the trailing one.

Some of the characters that do not have the Bidi_Mirrored property may be rendered
with mirrored glyphs, according to a higher level protocol that adds mirroring: see
Section 4.3, Higher-Level Protocols, especially HL6. Except in such cases, mirroring
must be done according to rule L4, to ensure that the correct character is used to
express the intended semantic, and to avoid interoperability and security problems.

Implementing rule L4 calls for mirrored glyphs. These glyphs may not be exact graphical
mirror images. For example, clearly an italic parenthesis is not an exact mirror image of
another— “(” is not the mirror image of “)”. Instead, mirror glyphs are those acceptable
as mirrors within the normal parameters of the font in which they are represented.

In implementation, sometimes pairs of characters are acceptable mirrors for one
another—for example, U+0028 “(” LEFT PARENTHESIS and U+0029 “)” RIGHT PARENTHESIS or
U+22E0 “⋠” DOES NOT PRECEDE OR EQUAL and U+22E1 “⋡” DOES NOT SUCCEED OR EQUAL. Other

characters such as U+2231 “∱” CLOCKWISE INTEGRAL do not have corresponding characters
that can be used for acceptable mirrors. The informative BidiMirroring.txt data file
[Data9], lists the paired characters with acceptable mirror glyphs. The formal property
name for this data in the Unicode Character Database [UCD] is Bidi_Mirroring_Glyph. A
comment in the file indicates where the pairs are “best fit”: they should be acceptable in
rendering, although ideally the mirrored glyphs may have somewhat different shapes.

Migration Issues

There are two major enhancements in the Unicode 6.3 version of the UBA:

Directional isolates

http://www.unicode.org/reports/tr9/tr9-30.html 45 of 51

Bracket Pairs

Implementations of the new directional isolates should see very few compatibility
issues; the UBA has been carefully modified to minimize differences for older text
written without them. There are a few edge cases near the limit of the number of levels
where there are some differences, but those are not likely to be encountered in practice.

With bracket pairs, there may be more changes. The problem is that without knowing
(or having good UI access to) the directional marks or embeddings, people have
constructed text with the correct visual appearance but incorrect underlying structure
(eg …[…[…, appearing as …[…]…). The new algorithm catches cases like these,
because such malformed sequences of brackets are not matched.

However, there are some cases where older implementations without rule N0 produced
the desired appearance, and newer implementations will not. The user feedback on
implementations was sufficiently positive that the decision was made to add N0.

There are also incompatibilities from some implementation's failing to updating correctly
to previous versions of Unicode, notably in the mishandling solidus such that "T 1/2" (T
is an Arabic character) appears incorrectly as "2/1 T".

To mitigate compatibility problems, it is strongly recommended that implementations
take the following steps:

Add appropriate directional formatting characters on both any parentheses that
are resolved with rule N0 so that they appear properly on older systems. This can
be done with directional marks (RLM or LRM) on both sides of each parenthesis.
For forward compatibility, text authored on older systems should use semantically
correct brackets (with directional formatting characters as necessary) to ensure
correct display on systems with implementations after Unicode 6.3.

Add the appropriate explicit embedding around any sequence of numbers +
solidus + numbers.

Section Reorganization

In Unicode 6.3, there was significant reorganization of the text. The following table
shows the new and old section numbers.

Unicode 6.3 Unicode 6.2

2.4 Explicit Directional Isolates n/a

2.5 Terminating Explicit Directional Isolates n/a

2.6 Implicit Directional Marks 2.4

3.3.3 Preparations for Implicit Processing n/a

3.3.4 Resolving Weak Types
…3.3.6 Resolving Implicit Levels

3.3.3
…3.3.5

http://www.unicode.org/reports/tr9/tr9-30.html 46 of 51

6.1 Joiners 5.3

6.2 Vertical Text 5.4

6.3 Formatting 5.5

6.4 Separating Punctuation Marks 5.6

6.5 Conversion to Plain Text n/a

Migration Issues 5.7

Acknowledgments

Mark Davis created the initial version of this annex and maintains the text. Aharon Lanin
and Andrew Glass made substantial additions to Revision 29 (Unicode 6.3.0).

Thanks to the following people for their contributions to the Bidirectional Algorithm or for
their feedback on earlier versions of this annex: Ahmed Talaat (أحمد طلعت), Alaa Ghoneim
Behdad Esfahbod ,(أيمن الدحلة) Asmus Freytag, Avery Bishop, Ayman Aldahleh ,(علاء غنيم)
Doug Felt, Dwayne Robinson, Eric Mader, Ernest Cline, Gidi Shalom-Bendor ,(بھداد اسفھبد)
ישראל) Isai Scheinberg, Israel Gidali ,(גלעד אלמוסנינו) Gilead Almosnino ,(גידי שלום-בן דור)
Kamal ,(יונתן רוזן) Joe Becker, John McConnell, Jonathan Kew, Jonathan Rosenne ,(גידלי
Mansour (كمال منصور), Kenneth Whistler, Khaled Sherif (خالد شريف), Laurențiu Iancu, Maha
Hassan (مھا حسن), Markus Scherer, Martin Dürst, Mati Allouche (מתתיהו אלוש), Michel
Suignard, Mike Ksar (ميشيل قصار), Murray Sargent, Paul Nelson, Peter Constable, Rick
McGowan, Robert Steen, Roozbeh Pournader (روزبه پورنادر), Steve Atkin, and Thomas
Milo (ُتُومَاسْ مِيلو).

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 30

Proposed update for Unicode 7.0.0.

Revision 29

Reissued for Unicode 6.3.0.

Changes related to the introduction of directional isolates:

Major extension of the algorithm to allow for the implementation of directional
isolates and the introduction of new isolate-related values to the Bidi_Class
property.

Increased the maximum explicit depth, max_depth, from 61 to 125 in BD2.

http://www.unicode.org/reports/tr9/tr9-30.html 47 of 51

Added BD8, BD9, BD10, BD11, BD12, and BD13, Sections 2.4, 2.5, and 2.7, and
Rules X5a, X5b, X5c and X6a.

Extensively revised Section 3.3.2, Explicit Levels and Directions and its existing X
rules to formalize the algorithm for matching a PDF with the embedding or
override initiator whose scope it terminates.

Moved Rules X9 and X10 into a separate new Section 3.3.3, Preparations for
Implicit Processing.

Modified Rule X10 to make the isolating run sequence the unit to which
subsequent rules are applied.

Invalidated an RLE or RLO nested inside the scope of an LRE or LRO nested
inside embedding level max_depth-1 (where that LRE or LRO was already
invalid). This was required to allow nesting embeddings and overrides in isolates
and vice versa.

Modified Rule W1 to change an NSM preceded by an isolate initiator or PDI into
ON.

Added the new ARABIC LETTER MARK (U+061C) character to Section 2.6,
Implicit Directional Marks and Table 4, Bidirectional Character Types.

Changed the examples after L2 to use isolates instead of embeddings.

Renamed old Section 5.5, Usage to 6.3, Formatting and added to it suggestions
for and examples of directional isolate usage.

Changes related to paired brackets:

Added Rule N0 and made other changes to Section 3.3.5, Resolving Neutral and
Isolate Formatting Types to resolve bracket pairs to the same level.

Added BD14, BD15, and BD16.

Added support for canonical equivalents in BD16.

Other changes to the specification:

Consolidated migration issues into a new Migration Issues section, removing text
specific to Unicode 3.0, and adding a table of old and new section numbers.

Moved usage-related sub-sections of Section 5, Implementation Notes to a new
Section 6, Usage, and renumbered Mirroring to 7.

Revision 28 being a proposed update, only changes between versions 27 and 29 are
noted here.

Revision 27

Reissued for Unicode 6.2.0.

Revision 26 being a proposed update, only changes between versions 25 and 27 are
noted here.

Revision 25

Reissued for Unicode 6.1.0.

Revision 24 being a proposed update, only changes between versions 23 and 25 are
noted here.

http://www.unicode.org/reports/tr9/tr9-30.html 48 of 51

Revision 23

Reissued for Unicode 6.0.0.

Added anchors on tables.

Added text to clarify HL1, and clarified statement in P3.

Added links on rules.

Added section heading for 5.3 Migrating from 2.0 to 3.0

Moved text from the end of 4.3 Higher-Level Protocols to a new section 5.8
Conversion to Plain Text

Rephrased the relationship between clauses HL1 and HL3 and HL4 and HL5

Revision 22 being a proposed update, only changes between versions 21 and 23 are
noted here.

Revision 21

Reissued for Unicode 5.2.0.

Added Section 4.4 Bidirectional Conformance Testing.

Added BN to Rule X6 (removing certain characters).

Clarified examples in Rule N1 (affecting characters next to EN or AN characters).

Added to HL6 the clause: Those with a resolved directionality of L and whose
bidirectional type is R or AL.

Clarified the text at the start of 3 Basic Display Algorithm.

Added Bidi_Class and Bidi_Mirroring_Glyph property names.

Added clarifications to 3.3.2 Explicit Levels and Directions, to X6, and to N2.

Fixed typos in 3.4 Reordering Resolved Levels.

Added links on items in Table 4, and clarified BN there.

Removed a note in N1.

Revision 20 being a proposed update, only changes between versions 19 and 21 are
noted here.

Revision 19

Updated for Version 5.1.0.

Clarified BD6.

Made some examples more explicit.

Added the common problem case of separators in Section 6.3 Formatting.

Added notes on security concerns with RLO and LRO, and the use of dir="ltr" or
"rtl" with web pages.

Fixed example under N2.

Fixed example in Section 3.3.4 Resolving Neutral Types

Made last part of Section 6.3 Formatting into a new Section 6.4 Separating
Punctuation Marks, changed the term "Separators" and added a note on stateful
formatting characters.

http://www.unicode.org/reports/tr9/tr9-30.html 49 of 51

Revision 18 being a proposed update, only changes between versions 19 and 17 are
noted here.

Revision 17

This revision incorporates successive changes. The latest changes were on
2006-02-24.

Modified L4 and HL6, in conjunction with proposed property change to
Bidi_Mirrored (PRI #80)

Added note on U+ FD3E (﴾) ORNATE LEFT PARENTHESIS and U+ FD3F (﴿)
ORNATE RIGHT PARENTHESIS.

Used new format for conformance clause numbering.

Added caution on use of higher-level protocols, after UAX9-C2.

Some wording changes in 7 Mirroring, for consistency with new L4 and HL6.

Moved text to Shaping and Line Breaking, and added note on SHY there

Removed two notes indicating that the conformance clauses override clause C13
of Unicode 4.0.

Changed some references to Unicode4.0

Revision 16 being a proposed update, only changes between versions 17 and 15 are
noted here.

Revision 15

Minor editing

Fixed section Number for Mirroring

Changed “Tracking Number” to Revision

Added note on U+0CBF KANNADA VOWEL SIGN I

Added note after N1, and clarified example after N2.

Fixed references to sections of the Unicode Standard

Revision 14

Aliased directional run and level run

Pointed to DerivedBidiClass.txt for unassigned character assignments.

Revision 13

4. Bidirectional Conformance: added explicit clauses.

4.3. Higher-Level Protocols:

Added clarifying text, and renumbered options.

Removed option regarding number shaping (because it was irrelevant to
bidirectional ordering).

Broadened the ability to override on the basis of context, and clarified
number handling.

Made clear that UBA could be applied to segments

1. Introduction: added note that the changes in 4. Bidirectional Conformance

http://www.unicode.org/reports/tr9/tr9-30.html 50 of 51

override clause C13 of Unicode 4.0 [Unicode], and tighten the conformance
requirements from what they had been previously.

Minor editing for clarification.

Revision 11

Updated for Unicode 4.0.

Added note on canonical equivalence

Added Joiners section on ZWJ and ZWNJ

Clarified L2 and examples following.

Added a section on the interaction of shaping and bidirectional reordering.

Moved lists for unassigned characters into UCD.html (also now explicit in
DerivedBidiClass.txt)

Updated references for Newline Guidelines (because the UAX is incorporated into
the 4.0 book)

The first two sections were rearranged, with Reference Code going into
Implementation Notes, and Mirroring in its own section at the end.

This is not highlighted in the proposed text.

Sections were renumbered and the table of contents is more detailed.

This is not highlighted in the proposed text.

Misc. editing.

Revision 10

Updated for Unicode 3.2.

Updated UAX boilerplate in the status section.

Revision 9

Clarified the language of P2

Corrected the implementation note on “Retaining Explicit Formatting Characters”
in Implementation Notes

Minor editing

Copyright © 2000-2014 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

http://www.unicode.org/reports/tr9/tr9-30.html 51 of 51

