
A method for encoding Egyptian quadrats in Unicode
Andrew Glass, Ingelore Hafemann, Mark-Jan Nederhof, Stéphane Polis, Bob Richmond, Serge

Rosmorduc, Simon Schweitzer

April 26th, 2017

Background documents:
N1944 Encoding Egyptian Hieroglyphs in Plane 1 of the UCS. Michael Everson. 1999-01-09.

L2/15-123 Proposal to encode three control characters for Egyptian Hieroglyphs (revised). Bob

Richmond. 2015-05-04.

L2/16-018 Proposal to encode three control characters for Egyptian Hieroglyphs (revised). Bob

Richmond, Andrew Glass. 2016-01-27.

L2/16-090 Comments on three control characters for Egyptian Hieroglyphs. Mark-Jan Nederhof,

Vinodh Rajan. 2016-04-25.

L2/16-104 Observations: L2/16-090 [Egyptian]. Bob Richmond. 2016-05-02.

L2/16-177 A comprehensive system of control characters for Ancient Egyptian hieroglyphic text

(preliminary version). Mark-Jan Nederhof, et al. 2016-06-30.

L2/16-210R A system of control characters for Ancient Egyptian hieroglyphic text. Mark-Jan Nederhof, et

al. 2016-07-25, revised 2017-01-25.

L2/16-214 An Extension to the three control characters for Egyptian Hieroglyphs and some additional

remarks. Bob Richmond. 2016-08-01.

L2/16-231 Proposal for Ancient Egyptian encoding in Unicode. Serge Rosmorduc, et al. 2016-08-04.

L2/16-232 Preliminary analysis of Egyptian Hieroglyph quadrat types. Andrew Glass. 2016-08-05.

L2/16-233 Addendum to: A system of control characters for Ancient Egyptian hieroglyphic text. Mark-

Jan Nederhof, et al. 2016-08-05.

L2/16-257 Source analysis of an extended Egyptian Hieroglyphs repertoire (Hieroglyphica based).

Michel Suignard. 2016-09-19.

L2/17-073 New draft for the encoding of an extended Egyptian Hieroglyphs repertoire (Hieroglyphica

based) (17MB, and associated database PDF snapshot). Michel Suignard. 2017-03-23.

Summary
The proposal to encode three control characters for Egyptian Hieroglyphs was accepted at the February

2016 UTC meeting. Following that acceptance some members of the Egyptological community raised

concerns that the accepted controls were insufficient for their requirements. This led to a series of

discussions and document submissions between specialists and implementers that explored the issues

relating to encoding the quadrat structures that are an inherent feature of Egyptian Hieroglyphic

writing. The present document combines expert input on Egyptian Hieroglyphs and a detailed

exploration of possible solutions. It does not attempt to summarize or repeat arguments and details

from earlier documents. Cross-references to earlier submissions are provided where appropriate. The

result is a draft proposal for a system of controls that will enable plain text encoding of Egyptian

Hieroglyphs in quadrats.

http://std.dkuug.dk/JTC1/SC2/WG2/docs/n1944.pdf
http://www.unicode.org/L2/L2015/15123r-egyptian.pdf
http://www.unicode.org/L2/L2016/16018r-three-for-egyptian.pdf
http://www.unicode.org/L2/L2016/16090-comment-ctl-char-egyptian.pdf
http://www.unicode.org/L2/L2016/16104-observ-egyptian-ctrl.pdf
http://www.unicode.org/L2/L2016/16177-egyptian.pdf
http://www.unicode.org/L2/L2016/16210r-egyptian-control.pdf
http://www.unicode.org/L2/L2016/16214-egyptian-ctrl-chars.pdf
http://www.unicode.org/L2/L2016/16231-egyptian-encoding.pdf
http://www.unicode.org/L2/L2016/16232-quadrat-types.pdf
http://www.unicode.org/L2/L2016/16233-egyptian-addendum.pdf
http://www.unicode.org/L2/L2016/16257-n4751-hieroglyphs-new.pdf
http://www.unicode.org/L2/L2017/17073-n4788-hieroglyphs.pdf
http://www.unicode.org/L2/L2017/17073-n4788-database-add.pdf
rick@unicode.org
Text Box
L2/17-112

2

Principles and requirements

Principles
The two principles that guided this effort to encode Egyptian quadrats are:

• Structural completeness ― Unicode encoded text in Egyptian Hieroglyphs must be able to

faithfully render the structures inherent to the writing system

• Feasibility ― Rendering text must be possible using existing font technologies

Structural completeness
Structural completeness means that users of the Egyptian Hieroglyphic encoding can expect that

quadrat structures they encounter in their work can be encoded correctly, i.e., the necessary controls

are available to encode the structure. To begin with, all 45 of the attested quadrat structures

documented in L2/16-232 can be encoded using this system of controls. Furthermore, the system

supports many other quadrat structures. Therefore, if someone typing an Egyptian text encounters a

quadrat structure that had not been anticipated by the developer of their Egyptian Hieroglyphic font, it

is highly likely that they would be able to correctly render the intended form with a font update rather

than being required to make a proposal to add additional quadrat controls to Unicode.

Note that this applies to structural forms only and does not apply to hieroglyphs themselves. If a user of

Egyptian Hieroglyphs encounters signs that are not graphical variants of signs already in Unicode, there

is no choice but to request support for a new character. This is no different than for any other writing

system in Unicode. For example, new Chinese characters are routinely added to Unicode.

The middle ground and grey area between these two paths (font update vs. Unicode update) is when

there is ambiguity between encoding a sign as an atomic character or as a combination of existing

characters with some kind of control to join them. Participants in the field need to investigate guidelines

for determining whether a given sign or quadrat should be encoded as an atomic character or enabled

as a sequence of other characters.

Digital encoding of Egyptian hieroglyphic texts is currently dominated by the Manuel de Codage (MdC)

encoding system (1985 and later revisions). Clarifications and extensions to MdC have been made in

popular software solutions such as JSesh which is used by the TLA and Ramses corpus projects.

PLOTTEXT (1983), introduced an earlier encoding scheme which has been widely used in the German-

speaking Egyptological community.1 It has elements in common with a more recent encoding called RES

(Revised Encoding Scheme) which is used in the St Andrews corpus. The authors of this proposal have

considered the established use of comparable controls in these systems in constructing the proposed

control set. Comparisons between the controls of Unicode and those of existing encoding schemes are

clarified through the various examples in L2/16-210R.

It is not claimed that the control primitives can capture all details of the appearance of the original

manuscripts, but that enough of the appearance is captured so that Egyptologists have been satisfied

that the resulting encodings offer an acceptable representation of original texts. This abstraction to an

acceptable representation is consistent with Unicode’s goal for character encoding in plain text which

1 PLOTTEXT was used to render the Hieroglyphs in E. Graefe. Mittelägyptische Grammatik für Anfänger.
Harrassowitz Verlag, Wiesbaden, 1994.

http://www.unicode.org/L2/L2016/16232-quadrat-types.pdf
http://www.unicode.org/L2/L2016/16210r-egyptian-control.pdf

3

contrasts with paleographic or facsimile representation which are out-of-scope. For further discussion

on what constitutes plain text encoding for Egyptian, see Nederhof et al. “Case studies” (L2/16-210R

§13) and Richmond’s Irregular Hieroglyph clusters (accessed 4/2/2017). The former illustrates a few

lines from two separate 12th Dynasty hieroglyphic texts. The latter presents examples from the 18th

Dynasty Tomb of Rekhmire (TT100). Both discussions detail quadrats in the original texts that can be

represented in the proposed encoding, and both point out several examples that contain details of

presentation that are finer than the proposed system of control signs can capture. However, the

consensus of specialists who have put their names to the current proposal is that the proposed controls

provide a desirable and acceptable level of fidelity in rendering Egyptian Hieroglyphs in plain text.

Since the work on the Egyptian Hieroglyphic corpus is ongoing, it is expected that new hieroglyphic signs

will be discovered. And these may be proposed as additions to Unicode. It is possible that new

discoveries and investigations will improve the understanding of the script and may in turn reveal

inherent features that warrant the attention of encoding specialists.

Feasibility
The feasibility of rendering quadrats for Egyptian Hieroglyphs using the proposed controls and

OpenType has been demonstrated with three prototype OpenType fonts.

The first font, by Bob Richmond, uses a ligature substitution method that maps each encoded text

sequence to a precomposed glyph for the intended quadrat. This approach targets a repertoire of

quadrats based on corpus analysis. The practical limit for the method is the OpenType glyph limit of 64K,

meaning that a maximum of 64K unique signs and quadrats could be supported by a font. This is easily

sufficient to create a font that targets over 99% of the corpus of middle Egyptian texts (based on

Richmond’s data analysis) using no more than about ten thousand precompositions. A prototype

variation of this method uses high frequency quadrat structures and hieroglyph shape classification with

marker glyphs to reduce the number of precomposed quadrat glyph layers required by layered

polychromatic fonts. This method can also be used to optimize monochrome fonts or avoid the 64K limit

(if this became an issue).

The second and third fonts are by Mark-Jan Nederhof and Andrew Glass. These fonts both use a

dynamic OpenType approach to analyze encoded sequences and compute the intended quadrat

structure and sign sizes. These fonts show that the goal of being able to generate quadrats for arbitrary

structures and sign combinations is achievable within the size limits of OpenType lookup tables. The

OpenType glyph limit isn’t a concern for this type of font.

A hybrid approach that combines features of the ligature and dynamic methods is also possible, as a

straightforward extension of the dynamic approach. In this case, the ligature method would be used for

the target repertoire of quadrats (which has performance and fidelity advantages), while the dynamic

method would be reserved for quadrats that fell outside the target repertoire.

In addition to solutions using OpenType fonts, specialized software could leverage the proposed control

characters as part of a dedicated system for rendering Egyptian hieroglyphic texts. Such a system may

use higher-level protocols to render additional display features used by specialists, such as quadrat

component shading. The JSesh and RES systems are examples of such solutions.

Further details of font solutions are given in the section on OpenType strategies below.

http://www.unicode.org/L2/L2016/16210r-egyptian-control.pdf
http://hieroglyphseverywhere.blogspot.co.uk/2017/02/irregular-hieroglyph-clusters.html

4

Documentation
The authors of this proposal appreciate that additional documentation is needed for implementers and

end users of Egyptian Hieroglyphs in order to be able to use these control characters effectively. Two

forms of documentation have been discussed and are planned as a follow-up to this proposal.

• The chapter on Egyptian Hieroglyphs in TUS will need to be revised to describe the effective

usage of the quadrat forming control signs

• Font developers will need guidance on the quadrat repertoire, exceptional cases, and other

guides to implementation. This may be published as a Unicode Technical Note

Beyond these, it is understood that tools and associated documentation will be valuable for users of the

Egyptian encoding with quadrat control characters. For example, keyboard input methods and functions

that can convert transliterations in popular transcription formats into valid Unicode sequences.

Encoding options
Based on an analysis of the corpus, the current requirement for embedding levels is three. It is possible

that examples requiring more levels could be identified. A key challenge for the encoding therefore, is

how to indicate the embedding levels in the encoding. Six basic options have been considered as

follows:

Paired controls
In one of the options that has been pursued, horizontal joiners are represented by one pair of

parentheses, and vertical joiners by another such pair. The advantage is the conceptual simplicity of the

syntax, which is unambiguous without needing further provisions. The disadvantage is that no less than

two control characters are needed for a horizontal or vertical arrangement of only two signs.

Polish notation
A syntax using a form of Polish notation has also been considered. Here one operator precedes two

subexpressions, each of which may be a single sign, or may again be an operator preceding two

subexpressions. As before, the notation is unambiguous and allows any number of levels of embedding.

The downside is that this notation is less human readable and challenging to implement in fonts.

Explicit controls

Two controls, one for horizontal arrangement and one for vertical arrangement are encoded for each

level. Within a level the horizontal control has precedence over the vertical one. Where deeper

embedding is needed, for example, if two vertically arranged groups of signs are to be combined

horizontally, then similar controls are used on the next level. Deeper levels have higher precedence than

the controls on the lower levels. Hence the primitives for horizontal and vertical arrangements need to

be represented by several groups of controls, one for each level.

The advantage of this solution is that the linear encoding for a quadrat is simpler. The principle

disadvantage of this approach is that each level needs to be explicitly encoded in Unicode and

implemented via updates to rendering software and fonts.

Combined controls
A variant of the preceding approach. It uses a pair of controls, one for the join and one for the level of

the join. This approach requires the number of target levels to be established at the encoded level and

5

runs the risk of either some redundancy (if a level control is encoded but not required) or

incompleteness (if a level beyond the encoded set is discovered).

Repeated controls
A second variant of the explicit controls approach. It indicates embedding level by repetition of the basic

controls. This approach achieves arbitrary extension with some loss of readability. This approach is also

prone to authoring difficulties as controls may be accidentally doubled, dropped, or split.

Binary controls with parentheses
A third variant of the explicit controls, but in this case pairs of parentheses are used to enclose

encodings of embedded arrangements of signs. This notation allows any depth of embedding, requires

only a small set of controls, and will be familiar and intuitive to users of the Manuel de Codage and

similar forms of encoding. A negative aspect of the parentheses solution is that many quadrat sequences

are necessarily longer than is the case with explicit controls. The implementation of parentheses in

OpenType is possible but requires a few more rules as opposed to having explicit controls, however, the

added overhead is small relative to the overall scale of an arbitrary OpenType solution.

The encoding using binary controls with parentheses is the one used by this proposal.

Simple quadrat showing alternative encoding schemes

Source

Symbolic A15 : N23 * Z1

Characters 𓀒 𓈇 𓏤

Code points U+13012 U+13207 U+133E4

Encoding Example
Paired controls [: 1 [* 2 3 *] :]

Polish notation : 1 * 2 3

Explicit controls 1 : 2 * 3

Combined controls 1 : 1 2 * 1 3

Repeated controls 1 : 2 * 3

Parentheses 1 : 2 * 3

Two-level quadrat showing alternative encoding schemes

Source

Symbolic (M8 : G1) * M40

Characters 𓆷 𓄿 𓇩

Code points U+131B7 U+1313F U+131E9

Encoding Example
Paired controls [* [: 1 2 :] 3 *]

Polish notation * : 1 2 3

Explicit controls 1 : 2 > 3

Combined controls 1 : 2 2 * 1 3

Repeated controls 1 : : 2 * 3

Parentheses (1 : 2) * 3

6

Complex quadrat showing alternative encoding schemes

Source Abydos temple of Ramesses II, p. 531‒2

Symbolic J15 : Z11 * (D2 * (D21 : X1) : N25)

Characters 𓐝 𓏶 𓁷 𓂋 𓏏 𓈉

Code points U+1341D U+133F6 U+13077 U+1308B U+133CF U+13209

Encoding Example
Paired controls [: 1 [* 2 [: [* 3 [: 4 5 :] *] 6 :] *] :]

Polish notation : 1 * 2 : * 3 : 4 5 6

Explicit controls 1 = 2 > 3 * 4 . 5 : 6

Combined controls 1 : 1 2 * 1 3 * 2 4 : 3 5 : 2 6

Repeated controls 1 : 2 * 3 * * 4 : : : 5 : : 6

Parentheses 1 : 2 * (3 * (4 : 5) : 6)

Text encoding sequence
In all the encoding systems described above, the sequence for encoding the text units of the quadrat

(hieroglyphs and controls) follows a logical progression starting from the outermost embedding group.

Within a single embedding group, encoding proceeds from left to right and top to bottom starting at the

top left hieroglyph. When an embedding group is encountered, the same progression logic applies inside

that group.

Here is an artificial left-to-right example to illustrate an extreme case:

This would be encoded in the proposed parentheses encoding as:

1 ◰ 2 ◲ (3 * (4 : 5) : 6) : 7

The encoding begins with top-left sign of the outer layer (layer A), i.e., sign “1”. That sign has an

insertion in the top left “◰”. This inserted sign is sign “2” in the sequence because inserted groups are

processed in the order, top-left, bottom-left, top-right, bottom-right. Sign 2 is in layer B but the linear

encoding doesn’t require parentheses because 2 is the only sign governed by that insertion control.

There is a group inserted in the bottom right of sign 1. So, the next control is “◲”. This group consists of

multiple signs so a parenthesis is needed to mark the start of the layer B group “(“. In this group, the top

left sign is “3”. The encoding progresses left-right then top to bottom. To the left of 3 is an embedded

group, so the control asterisk “*” is used to mark the horizontal connection. This is followed by an

opening parenthesis “(” to mark the start of the layer C group. In this group, the top left sign is “4”.

There is no sign to the right, so the encoding progresses downward inside this group. The vertical join is

7

marked with colon “:” and the next sign is “5”. Now the layer C group is complete so it is closed with a

closing parenthesis “)”. The encoding sequence reverts to the layer B group and progresses downward.

The vertical join is again marked with colon “:”. The next sign is “6”. Now the layer B group is complete

so it is closed with a closing parenthesis “)”. The encoding sequence reverts to the layer A group and

progresses downward. The vertical join is again marked with colon “:”. The final sign is “7”.

Any cases in which the logical reading order differs from the visual order must be encoded based on the

visual appearance with mapping to the reading order handled as a higher-level protocol. A comparable

division exists for Japanese text which must separate the encoded form from the collation form.

Proposed controls
Based on a detailed study of implementability (for details, see later sections), the following controls are

proposed:

Default glyph Code point Character name

: 13430 EGYPTIAN HIEROGLYPH VERTICAL JOINER

* 13431 EGYPTIAN HIEROGLYPH HORIZONTAL JOINER

◰ 13432 EGYPTIAN HIEROGLYPH INSERT TOP START

◱ 13433 EGYPTIAN HIEROGLYPH INSERT BOTTOM START

◳ 13434 EGYPTIAN HIEROGLYPH INSERT TOP END

◲ 13435 EGYPTIAN HIEROGLYPH INSERT BOTTOM END

+ 13436 EGYPTIAN HIEROGLYPH STACK MIDDLE

(13437 EGYPTIAN HIEROGLYPH SEGMENT START

) 13438 EGYPTIAN HIEROGLYPH SEGMENT END

Details of the proposed controls

Joiners
There is agreement that the rectilinear characteristic of Egyptian quadrats requires paired controls for

horizontal and vertical joins.

Vertical joiner (U+13430)
The seated man (A1) is vertically above the house (O1):

Symbolic A1 : O1

Unicode U+13000 U+13430 U+13250

In vertical text, the form of the quadrat does not change.

Horizontal joiner (U+13431)
In left-to-right text, (which is the default encoding order for Egyptian Hieroglyphs), the item to the left of

the horizontal control is drawn on the left. In this case, the bowl (W24), is logically before the

abbreviated quail chick (Z7):

Symbolic W24 * Z7
LTR Unicode U+133CC U+13431 U+133F2

8

When the text direction is forced to be right-to-left the order of the symbols is reversed but the

encoding is unchanged:

Symbolic W24 * Z7
RTL Unicode U+133CC U+13431 U+133F2

Insertions
Insertion of a hieroglyph within the rectangle of another hieroglyph is a common productive feature of

Egyptian Hieroglyphic writing. Insertion may be in one of the four corners. When inserted in one of the

corners, the inserted glyph may be offset to some extent depending on the form of the outer glyph. As

with the horizontal joiner, the side (left/right) of the insertion is determined by the directionality of the

writing line. Therefore, the corner insertions are named with start and end to identify their logical rather

than visual position.

Insert top start (U+13432)
The bread sign (X1) is inserted in the top start quarter of the lion (F4):

Symbolic F4 ◰ X1
LTR

Unicode U+13102 U+13432 U+133CF

Symbolic F4 ◰ X1
RTL

Unicode U+13102 U+13432 U+133CF

Insert bottom start (U+13433)
The seated man (A1) is inserted in the bottom start corner of the cobra (I10):

Symbolic I10 ◱ A1
LTR Unicode U+13193 U+13433 U+13000

Symbolic I10 ◱ A1
RTL

Unicode U+13193 U+13433 U+13000

In the case of an enclosing cobra, the inserted hieroglyph(s) are centered in the space created by the

cobra shape. When inset with some bird signs, the bottom-left insertion may be raised slightly to avoid

occluding the feet of the bird. Similar approximations may apply with other base signs.

Insert top end (U+13434)
The bread sign (X1) is inserted in the top end corner of the wḏꜣt-eye (D17):

Symbolic D17 ◳ X1
LTR

Unicode U+13087 U+13434 U+133CF

Symbolic D17 ◳ X1
RTL

Unicode U+13087 U+13434 U+133CF

9

Insert bottom end (U+13435)
The bread sign (X1) is inserted in the bottom end corner of the Ibis (G25):

Symbolic G25 ◲ X1
LTR Unicode U+1315C U+13435 U+133CF

Symbolic G25 ◲ X1
RTL Unicode U+1315C U+13435 U+133CF

Compound insertions
When multiple insertions occur within the same outer glyph, they must be encoded in the standard
order, top left, bottom left, top right, bottom right. Only one insertion control of each type can be used
with the same outer glyph at the same embedding level. These restrictions are required to ensure
consistency for searching and collation purposes. Enforcing this order is not expected to be supported at
the rending engine level, but should be enforced by fonts. Orthography/spelling checkers may also be
developed to validate quadrat structures.

Insertion sequence:

The loaf (X1) is inserted in three corners of the pintail duck (G39):

Symbolic G39 ◱ X1 ◳ X1 ◲ X1

LTR Unicode U+1316D U+13433 U+133CF U+13434 U+133CF U+13435
U+133CF

Symbolic G39 ◱ X1 ◳ X1 ◲ X1

RTL Unicode U+1316D U+13433 U+133CF U+13434 U+133CF U+13435
U+133CF

Inserted group:

Inserted items may themselves be compounded forms involving horizontal and vertical joins. Such cases

require the inserted group to be bound using the segment begin and end controls. For example, two

hieroglyphs of the sun rising over a mountain (N27) are stacked vertically and inserted in the top end

corner of the falcon of Horus bearing the sun (G9):

Symbolic G9 ◳ (N27 : N27)

LTR Unicode U+1314A U+13434 U+13437 U+1320C U+13430 U+1320C
U+13438

Symbolic G9 ◳ (N27 : N27)

RTL Unicode U+1314A U+13434 U+13437 U+1320C U+13430 U+1320C
U+13438

10

Insertion within insertion:

Examples of insertions within insertions are known to exist, but are extremely rare.

Symbolic I10 ◱ (I10 ◱ I10)

LTR Unicode U+13193 U+13433 U+13437 U+13193 U+13433 U+13193
U+13438

Symbolic I10 ◱ (I10 ◱ I10)

RTL Unicode U+13193 U+13433 U+13437 U+13193 U+13433 U+13193
U+13438

Note that the sequence “I10 ◱ I10 ◱ I10” would be invalid since there can be only one insertion of

the same type at the same level. Parentheses are required to indicate a deeper level embedding.

Other insertions
Other types of insertions have been discussed in L2/16-210R Nederhof et al., section 6. How to handle

these cases remains an open question. The options are to encode them atomically or as a sequence

using control signs.

Symbolic D60 ◱ X1 ?

LTR Unicode TBD

Symbolic D173

LTR Unicode TBD

Stacking

Stack middle (U+13436)
Stack middle is included since centered stacking is a common productive feature of the script. Including

a stack middle control is expected to significantly reduce the need to bring additional requests for

atomic stack characters to Unicode for encoding, and will speed up adoption of Egyptian Unicode.

The stack middle control allows signs to be placed one on top of the other in the z-axis. The scope of this

control is to allow a group of one or more hieroglyphs to stack on top of a second group of one or more

other hieroglyphs. The arrangement of such stacks should be strictly limited to matching the mid-point

of the lower group to the mid-point of the upper. When stacking two signs or groups of signs with

unequal dimensions the resulting hieroglyph has a bounding box equal to the maximum height and

width of the stacked groups. For example, a tall narrow glyph with dimensions 2 : 6, is stacked on top of

a low wide glyph with dimensions 6 : 2. The resulting stacked form is a square with dimensions 6 : 6:

http://www.unicode.org/L2/L2016/16210r-egyptian-control.pdf

11

The stacker control has a higher precedence than the other signs. Groups are to be indicated with

parentheses. Groups are stacked starting at the back and moving forward based on the encoded

sequence.

Simple stack
The wick of twisted flax (V28) is stacked on top of the forearm (D36):

Symbolic D36 + V28
LTR Unicode U+1309D U+13436 U+1339B

Compound stacks
Two forearms (D36) arranged vertically (y-axis) are stacked (z-axis) above two foot-hieroglyphs (D58)

arranged horizontally (x-axis):

Symbolic (D58 * D58) + (D36 : D36)

LTR
Unicode U+13437 U+130C0 U+13431 U+130C0 U+13438 U+13436

U+13437 U+1309D U+13430 U+1309D U+13438

Stack with insertion
It is possible to stack and insert. In these cases, the stack should be composed before inserting. For

example: A mouth (D21) is stacked on top of the head and neck of a canine (F12) and a bread sign (X1) is

inserted in the bottom start corner. This enables the insertions to be positioned relative to the

maximum height and width of the stack rather than relative to the height and width of one of the

stacked groups.

Symbolic F12 + D21 ◱ X1

LTR Unicode U+1310A U+13436 U+1308B U+13433 U+133CF

Offset stacks
Offset stacks are considerably rarer than centered stacks. Due to the complexity of specifying the details

of an offset, the preferred option for offset stacks is to assign any offset to the font level or, if that is not

appropriate or possible, encode them atomically.

For example, the viper (I9) stacked over the trunk of a tree (M1) may be rendered based on mid-point to

mid-point alignment, or a ligature-based font might fix the offset of the viper on aesthetic grounds:

Symbolic M1 + I9 (not M48)
LTR Unicode U+131AD U+13436 U+13191

12

On the other hand, a jug pouring liquid (W54) stacked at the top start of a white fronted goose (G38)

might rather be encoded atomically.

Symbolic G70
LTR Unicode *U+13F7A (proposed code point, not final)

Segment boundaries
The notation system requires bounding controls to indicate nested groups. In practice support for three

levels of embedding is sufficient to encode the vast majority of quadrats. In principle, the mechanism

supports deeper nesting which may be of greatest interest to specialized software. Controls that co-

occur within a single embedding segment are interpreted in the precedence order: vertical joiner <

horizontal joiner < insertion controls < stacker.

Segment start (U+13437) and Segment end (U+13438)

The earlier example from the Abydos temple of Ramesses shows three levels of embedding (e.g.,).

Symbolic J15 : Z11 * (D2 * (D21 : X1) : N25)

Unicode U+1341D U+13430 U+133F6 U+13431 U+13437 U+13077 U+13431 U+13437
U+1308B U+13430 U+133CF U+13438 U+13430 U+13209 U+13438

Character properties

General properties
13430;EGYPTIAN HIEROGLYPH VERTICAL JOINER;Mn;0;NSM;;;;;N;;;;;
13431;EGYPTIAN HIEROGLYPH HORIZONTAL JOINER;Mn;0;NSM;;;;;N;;;;;
13432;EGYPTIAN HIEROGLYPH INSERT TOP START;Mn;0;NSM;;;;;N;;;;;
13433;EGYPTIAN HIEROGLYPH INSERT BOTTOM START;Mn;0;NSM;;;;;N;;;;;
13434;EGYPTIAN HIEROGLYPH INSERT TOP END;Mn;0;NSM;;;;;N;;;;;
13435;EGYPTIAN HIEROGLYPH INSERT BOTTOM END;Mn;0;NSM;;;;;N;;;;;
13436;EGYPTIAN HIEROGLYPH STACK MIDDLE;Mn;0;NSM;;;;;N;;;;;
13437;EGYPTIAN HIEROGLYPH SEGMENT START;Mn;0;NSM;;;;;N;;;;;
13438;EGYPTIAN HIEROGLYPH SEGMENT END;Mn;0;NSM;;;;;N;;;;;

Line breaking
Line breaks should occur at quadrat boundaries and not within a quadrat. Therefore, the JOINER

characters should act as glue to connect EGYPTIAN HIEROGYPHS, thus in the format of LineBreak.txt:

13430..13438; GL # [9] EGYPTIAN HIEROGLYPH VERTICAL JOINER..EGYPTIAN HIEROGLYPH SEGMENT END

Text segmentation
Grapheme cluster boundaries, equate to quadrat boundaries. Word and sentence boundaries could

occur within a quadrat. In such cases, word selection and other word boundary effects would not be

able to automatically break inside a quadrat. Comparable behavior occurs in implementations of Indic

writing systems where word boundaries can occur within a ligature or conjunct consonant sign. The

proposed joiner characters should be given the value in PropList.txt:

13430..13438; Extender # Mn [9] EGYPTIAN HIEROGLYPH VERTICAL JOINER..EGYPTIAN HIEROGLYPH
SEGMENT END

13

Syllabic category
Joiner characters should be given properties in IndicSyllabicCategory.txt so that shaping and caret

advancement can be handled correctly:

13430..13438; Structure_Control # Mn [9] EGYPTIAN HIEROGLYPH VERTICAL JOINER..EGYPTIAN
HIEROGLYPH SEGMENT END

The property value Structure_Control is a proposed value that may also be used for Mayan and other

languages with two-dimensional joining behaviors. It should be used to fuse adjacent characters on both

sides of the control into a single orthographic unit for the purposes of shaping with per-cluster features.

Caret placement would be prohibited between characters joined with a Structure_Control in standard

software implementations.

Collation
The proposed structure controls should sort in the order of their Unicode values.

Due to variation in the quadrat structures used for different instances of the same word, it will be

desirable to be able to find quadrats that include the same basic signs but use different structure

controls. It is also desirable to be able to do exact matching for a quadrat with the same structure. As

such, the structure controls may be given a diacritic weight that can be optionally included or ignored by

the search mechanism.

Incomplete quadrats
The control characters proposed in this document should render invisibly if they are in a valid well-

formed sequence that the font supports. If a quadrat sequence is not supported by the selected font, or

if a control occurs in isolation, the controls should render visibly so that someone reading the text can

interpret the intent of the sequence or identify an error in the sequence encoding. This also applies to

controls entered during the build-up of a quadrat sequence. For example:

Sequence 1 2 3 4 5 6 7

Character U+13191 U+13430 U+13216 U+13430 U+13113 U+13433 U+13000
Code point 𓆑 : 𓈖 : 𓄓 ◱ 𓀀

Display

Because only an opening parenthesis is required to signal a deeper embedding level, quadrat buildup

can proceed in the same way with parenthetical notation.

Sequence 1 2 3 4 5 6 7

Character U+13437 U+131B7 U+13430 U+1313F U+13438 U+13431 U+131E9

Code point (𓆷 : 𓄿) * 𓇩

Display

Note that a limitation of this model is that there is no visible difference between steps 4 and 5 in the

above example. That is to say, there is no visible enforcement of paired parentheses if the quadrat ends

14

with the closure of one or more parentheses. It is conceivable that this could be managed at the font

layer by inserting a glyph to indicate the need for a closing parenthesis.

Structure validation
Beyond simply failing to render with the expected form, validation of quadrat sequences is not the

responsibility of fonts. Some cluster validation has been an important responsibility of shaping engines

for some writing systems. This is usually indicated by the insertion of a dotted circle glyph (U+25CC ◌) in

cases where the shaping engine’s cluster validation process found an error in the text run. More

generalized validation of sequences is the domain of orthographic consistency checkers such as spelling

and grammar checkers. Given the requirement that the encoding solution work with existing software,

the responsibility for structure validation must be optional at the rendering engine level.

Horizontal and vertical layout

A fundamental flexibility of Egyptian Hieroglyphic writing is that text can be laid out horizontally or

vertically. The impact of this on quadrat structures is considered in this section. Nederhof et al. contains

additional details and background (see L2/16-210R §§ 10.2 and 11.1). Existing encoding schemes have all

assumed that horizontal and vertical text directions are symmetric in the primitives they require. The

present proposal is no different in this respect. However, there are considerations to be taken into

account.

• Quadrat structures themselves do not rotate

• Quadrats may restructure in some cases

• Writing line constrains quadrat boundaries

• Kerning effects apply across quadrats

In the sections that follow, the points being made are illustrated using abstracted structures based on an

archetypal writing line in gray with colored boxes for individual hieroglyphic signs or quadrats.

Vertical mode Horizontal mode

Vertical and horizontal writing on the Stela of Ity, 12th Dynasty, c. 1951 BCE. (BM EA 586)

http://www.unicode.org/L2/L2016/16210r-egyptian-control.pdf

15

Non-rotation
The phenomenon of writing both horizontally and vertically is shared with East Asian writing systems,

notably Chinese, Japanese, and Korean. Like these systems, the orthographic units themselves do not

rotate when switching between horizontal and vertical layouts.2 Like the East Asian systems, Egyptian

quadrats remain upright regardless of text direction (vertical or horizontal). A quadrat, being and an

orthographic unit, retains its internal layout whether in vertical or horizontal mode.

For example, the cluster is consistent in both modes:

Vertical mode (RTL) Horizontal mode (RTL)

Extracts from the Stela of Bouto (Dessoudeix, Michel. 2012. Lettres Égyptiennes II. Arles: Actes Sud. p.
308)

2 This is not the same as saying that one simply transposes a text unit for unit between horizontal and vertical
writing. For example, see W3C Working Group, April 2012, Requirements for Japanese Text Layout.
(http://www.w3.org/TR/jlreq/#vertical_writing_mode_and_horizontal_writing_mode), accessed 4/14/2017.

Vertical mode (LTR) Horizontal mode (LTR)

Signs 1, 2, and 3 occur in sequence in a
vertical line.

Signs 1, 2, and 3 occur in the same sequence in a line
that progresses left-to-right.

Vertical mode (LTR) Horizontal mode (LTR)

A quadrat with three signs 1, 2, and 3 retains its internal structure in vertical and horizontal layout.

http://www.w3.org/TR/jlreq/#vertical_writing_mode_and_horizontal_writing_mode

16

Restructuring
Since the quadrat structure controls do not themselves vary between horizontal and vertical rendering

of a text (see previous section), any restructuring required by a context must be done explicitly in the

document encoding rather than being expected by the rendering layer. Examples of the need for

restructuring occur in both ancient and modern contexts.

Ancient
The structure of a hieroglyph may be reconfigured between horizontal and vertical sections in the same

text. In the following example, the fact that the quadrat needs to be explicitly restructured is made

more apparent by the inclusion of an additional sign in the horizontal instance:

Vertical mode (LTR) Horizontal mode (RTL)

Extracts from the Stela of Bouto (Dessoudeix 2012: 308)

(1 : 2) * (3 : 4) 1 * 2 * 3 * (4 : 5)

Ancient restructuring is analogous to cases in which a word appears in different spelling in the same

text:

First occurrence (LTR) Second occurrence (RTL)

 wꜣḏy.t wꜣḏy.t

Extracts from the Stela of Bouto (Dessoudeix 2012: 308)

Such cases require that the two instances of the word are encoded differently.

17

Modern
Modern editions of Egyptian Hieroglyphic texts frequently use horizontal layout. Editions may also

provide a version of the text in vertical layout. This is the case with Dessoudeix’s edition of the Stela of

Bouto (2012: 308 ff.). The following example shows an extract in the vertical edition and Dessoudeix’s

horizontal presentation of the very same sign group. The point of note here is that the relationship

between the first two signs changes from a horizontal connection to vertical connection while the

relationship between the second pair of the same signs remains horizontal.

Vertical mode (RTL) Horizontal mode (RTL)

Extracts from the Stela of Bouto (Dessoudeix 2012: 308, 309)

1 * 2 3 : 4 * 5 1 : 2 3 : 4 * 5

Because the normal case is that quadrat structures are maintained between vertical and horizontal

presentations, restructuring cannot be done automatically as a property of the same control set.

Therefore, any required restructuring must be done in the document encoding. It is, therefore, out-of-

scope for the current proposal.

Layout mode indication
The fact that an author of a document may encode a text differently to reflect an original vertical

structure or an original horizontal structure raises the need to capture that information somehow. If

plain text supported vertical mode in a manner equivalent to the way plain text does support

bidirectional text (LTR and RTL), one would expect common directional controls to specify vertical

encoding in ways comparable to RIGHT-TO-LEFT OVERRIDE (U+202E), RIGHT-TO-LEFT EMBEDDING (U+202B) etc.,

our author would be able to use such controls to indicate the original directionality. However, this is not

current practice in Unicode and vertical layout is consigned to higher-level protocols. Therefore,

indicating the original direction of a text must be done as a higher-level protocol, or as an explicit

statement to the reader of a plain text document.

Size constraints
When writing vertically, signs and quadrats are constrained by their width. When writing horizontally,

they are constrained by their height. This has an impact on how quadrats are constructed in these

modes. When there is a separation between signs that is perpendicular to the line of writing it is a

matter of interpretation whether there is a quadrat boundary or a join between adjacent quadrat

18

members. In the following examples the distinct text encodings for the quadrats are identified with the

signs 🅐, 🅑, and 🅒.

Vertical mode (LTR) Horizontal mode (LTR)

The quadrat 1-2-3-4 is compressed to fit within
the width of the writing line.

Sufficient width is available so that the quadrat 1-
2-3-4 can use its natural proportions.

Structure: 🅐 1 * (2 : 3 * 4) Structure: 🅐 1 * (2 : 3 * 4) OR 🅑 1 2 : 3 * 4

Sufficient height is available so that the quadrat
1-2-3-4 can use its natural proportions.

The quadrat 1-2-3-4 is compressed to fit within
the height of the writing line.

Structure: 🅒 1 : 2 : 3 * 4 OR 🅑 1 2 : 3 * 4 Structure: 🅒 1 : 2 : 3 * 4

Due to width constraints, sign 1 is separated from
the quadrat 2-3-4.

Due to height constraints, sign 1 is separated
from the quadrat 2-3-4.

Structure: 🅑 1 2 : 3 * 4 Structure: 🅑 1 2 : 3 * 4

The three possible structures for the above arrangements are:

19

🅐 1 * (2 : 3 * 4)

One quadrat: the connection between sign 1 and the rest of the quadrat is horizontal. Fonts that

support this structure would display in this form in either vertical or horizontal layout.

🅑 1 2 : 3 * 4

Two quadrats: sign 1 and signs 2-3-4 are in separate quadrats from the perspective of the text

encoding. The layout adapts between horizontal and vertical layout. The size of sign 1 is

determined by the font.

🅒 1 : 2 : 3 * 4

One quadrat: the connection between sign 1 and the rest of the quadrat is vertical. Fonts that

support this structure would display in this form in either vertical or horizontal layout.

If an edit control treated vertical Egyptian text as narrow columns of horizontal text then it would be

possible for the edit control to determine whether two or more quadrats would fit into the available

column width. Such a control would be able to achieve the appearance of the structure A example using

the structure B text encoding. In this respect, it is similar to layout of horizontal writing systems in

narrow columns where text progresses in short horizontal rows:

Left aligned Distributed

In some cases, there is sufficient width to accommodate two words in a single line (dolor sit), in most

cases there is not. It may also be necessary to do emergency line-breaking when a single unit cannot fit

within the available width (consectetur). For aesthetic purposes, it may be preferable to normalize the

width of orthographic units (i.e. words in the above example). To do this, one can either compress or

expand the units. In Latin script, such processing is handled at the layout level and not at the font level.

However, there is room for the layout to impact the font rendering through justification effects, such as

kashida3. Such effects are out-of-scope for rendering quadrat structures themselves and are not covered

by the current proposal.

Kerning
Egyptian scribes were very conscious of the whitespace in their texts. They employed kerning to achieve

aesthetic balance. Because adjacency differs between vertical and horizontal layout, kerning effects

cannot be the same when the same text is transposed between horizontal and vertical forms.

3 For details, see https://w3c.github.io/alreq/#h_justification_kashida.

https://w3c.github.io/alreq/#h_justification_kashida

20

Vertical mode Horizontal mode

Quadrat A protrudes into an available space at
the bottom left of sign 2.

Quadrat A aligns next to sign 2 and has space at
the top left and top right.

Quadrats A, B, and C layout out in vertical
sequence without any kerning effect.

Quadrats A and C have space at the top right and
top left of their signs respectively. This enables
quadrat B to be positioned between them.

Kerning is a layout effect determined by the shapes of adjacent orthographic units in an encoded text. It
is out-of-scope for rendering quadrat structures and is not covered by the current proposal.

Examples of kerning

Vertical mode (RTL) Horizontal mode (RTL)

18th Dynasty Tomb of Rekhmire (TT100) Stela if Ity (BM EA 586)

21

OpenType strategies
Three strategies for implementing Quadrat structures have been explored as part of this proposal. These

are described in this section.

Ligatures solution
For a font that targets a specific repertoire of signs, the easiest approach to the OpenType tables is using

ligatures that target each quadrat in the repertoire. The ligature would match the full expression for

each quadrat and replace it with a single glyph designed for that quadrat. The ligatures must be ordered

so that shorter sequences do not apply before longer sequences. This approach is likely to produce the

best quality renderings of each quadrat as they can be designed individually.

For example:

To form the quadrat , illustrated above, one could use the following <rlig> lookup (in VOLT syntax):

G25 TopEnd Aa1 BottomEnd X1 -> G25_TopEnd_Aa1_BottomEnd_X1

Dynamic solution
A font that aims to provide maximum coverage of possible quadrats without targeting a specific

repertoire must be able to analyze the linear format and produce an acceptable rendering within the

font’s OpenType layout. Two such prototype fonts have been attempted, one by Mark-Jan Nederhof,

the other by Andrew Glass. The description that follows here describes the approach used by Glass,

though there are significant overlap in the two solutions. The Glass prototype has been carried far

enough to determine that this approach is feasible and can produce acceptable results within the

different table size limits of OpenType for the horizontal and vertical joiners as well as the corner

insertions. Arbitrary stacking has not yet been implemented in this prototype, but it would be possible

to extend it to do so. The Glass prototype has four main phases as follow. For a description of the

Nederhof solution see L2/16-210R, appendix C (p. 24 ff.).

Structure processing
The purpose of this phase is to convert the encoded sequences into quadrat groups with all embedding

levels marked using control glyphs that are internal to the font.

Parentheses conversion

These rules identify controls bounded by segment begin and end glyphs and mark them with the

appropriate embedding level.

Hieroglyph type marking

This rule is one of two substitution rules that touch the entire set of Unicode encoded hieroglyphs. It

inserts a marker glyph that identifies the ideal size and aspect ratio of each hieroglyph. Glyph sizes are

identified with a two-digit integer that identifies the number of horizontal and vertical units that the

glyph measures. Each digit ranges from 1 to 6. The first digit indicates the number of horizontal units.

The second denotes the number of vertical units. The Glass prototype uses a unit of 1/6 of a standard

glyph width and height. The horizontal unit is slightly larger than the vertical unit.

http://www.unicode.org/L2/L2016/16210r-egyptian-control.pdf

22

In the hybrid solution, this lookup can be extended to include the output of ligature rules so that they

may be included in subsequent processing.

Quadrat bounding

A small number of rules are needed to mark the beginning and end of each quadrat. These include rules

to remove false-positive quadrat beginning and ending glyphs.

Level definition

These rules insert row and column control glyphs to identify the level structures in each quadrat.

Level processing
The purpose of this phase is to establish the target size of all glyphs one embedding level at a time.

Each level in the quadrat is processed in much the same way. The innermost layer, level 2 in the

prototype, has reduced number of rules because the size of the target glyphs has limited flexibility. The

process for levels 1 and 0 is as follows:

• Count the number of columns in each row of each level

• Map the ideal widths of each glyph to a target size based on the number of columns in the row.

These rules take into account the preferred width of other columns

• Count the number of rows in each level

• Map the ideal height of each glyph to a target size based on the number of rows in the quadrat.

These rules take into account the preferred height of other rows and constraints on

compressing a row if it has inserted signs

• Size row beginning markers to the height of the glyphs in the row

• Size column beginning markers to the width of the glyph in the column

• Sum the widths of all columns in each row

• Determine the maximum width of each row

• Round up columns to the width of the widest row

• Determine the maximum height of the columns of each row

• Sum the heights of each row

• Round up the heights of each target cell to the max height for the row

• Map the size of each target cell to a target glyph size

Final processing
The purpose of this phase is to finalize the glyph sequence based on the entire quadrat as well as to do

clean-up of extraneous control glyphs.

Anchor insertion

An anchor glyph is inserted so it will occur before every sized hieroglyph. Having just one anchor glyph

reduces the number of rules required to position all of the sized hieroglyphs.

Substitution to sized glyphs

This rule converts all size variants of every Unicode encoded hieroglyph into the target size based on an

abstracted target size marker glyph calculated in the level processing steps.

23

Quadrat width

A marker glyph, calculated in earlier processing is used to substitute the glyph that marks the beginning

of a quadrat into a base glyph with the required width.

Corner insertion

These rules insert glyphs that will serve as carriers the corner insertions.

Enclosing

These rules swap empty quadrat width glyphs into cartouche or other enclosing sign extenders if the

current quadrat continues a cartouche/enclosure sequence.

Positioning
The purpose of this phase is to assemble all of the quadrat components into the display form.

Row and column scaffolding

Row and column markers are pinned to each other (row to row-end, column to row top, column to

column end) to form a structure on which invisible rectangles that will host the sized hieroglyphs are

pinned.

Corner insertion

The rectangles that will host the inserted glyphs and glyph groups are pinned to the corners of their

hosting rectangles.

Anchor positioning

The anchor glyph is pinned to the center of every hosting rectangle.

Glyph anchoring

This is the final rule, and the only GPOS rule to touch all sized glyphs. It positions the sized-glyphs center

to center on the preceding anchor glyph.

Hybrid solution
It is also possible to combine the two preceding solutions to achieve a best of both solution. In this

approach, a defined repertoire of quadrats is supported via precomposed target glyphs. These are

formed using ligatures processed before any features of the arbitrary solution are triggered, i.e., using

the <ccmp> feature. Then all of the lookups of the arbitrary solution are applied, such that any

unprocessed sequences may form quadrats using those steps. As a further benefit, the glyphs that result

from precomposed glyphs may themselves participate in the lookups used later in the steps of the

arbitrary solution.

24

Rendering examples using prototype fonts

Ligature style font

(Source http://hieroglyphseverywhere.blogspot.co.uk/2016/12/web-browser-test-for-hieroglyphic.html)

http://hieroglyphseverywhere.blogspot.co.uk/2016/12/web-browser-test-for-hieroglyphic.html

25

Dynamic style font
In the following image, Glass’s prototype dynamic font has been used to render the set of sample

quadrats illustrated in L2/16-232. The font mimics the proposed encoding using Microsoft WordPad on

Windows 10 Anniversary Update. The quadrat components shown in red indicate minor font bugs that

Glass has not had time to resolve in the font.

Open issues
Future character encoding proposals for Egyptian Hieroglyphs need to consider the option of encoding

signs via a sequence of other signs using the structure controls vs. atomic encoding. Participants in the

field should engage in a dialog to determine guidelines for when to use a structure and when atomic

encoding is preferable.

http://www.unicode.org/L2/L2016/16232-quadrat-types.pdf

