
Request to Retract Consensus 151-C19
and Action Item 151-A134
Henri Sivonen, Mozilla (hsivonen@mozilla.com)
2017-06-12

Please retract consensus 151-C19 and action item 151-A134 for reasons given in the
write-up copied below—primarily because the guidance in section “Best Practices for
Using U+FFFD” of the Unicode Standard in its form prior to 151-C19 has been adopted
in multiple prominent implementations and the prominent non-ICU implementations
tested that do not implement the pre-151-C19 guidance exactly are still closer to the
pre-151-C19 guidance than the guidance proposed in L2/17-168.

e write-up copied below, hps://hsivonen.fi/broken-utf-8/, was shared in its
original form on the Unicode Mailing List on 2017-05-31. Deletions since then have
been marked with strike-through and additions with underline. e test input file is
available at hps://hsivonen.fi/broken-utf-8/test.html



How Many REPLACEMENT
CHARACTERs?
The Unicode Technical Commiee recently decided to change their long-standing
guidance for the preferred number of REPLACEMENT CHARACTERs generated for
bogus byte sequences when decoding UTF-8. I think this change is inappropriate be-
cause it was based on mere aesthetic considerations and ICU’s behavior and goes
against the behavior of multiple prominent existing implementations that imple-
mented the long-standing previous guidance.

Background
Not all byte sequences are valid UTF-8. When decoding potentially invalid UTF-8 in-
put into a valid Unicode representation, something has to be done about invalid input.
One approa is to stop altogether and to signal an error upon finding invalid input.
While this is a valid response for some applications, it is not our topic today. e topic
at hand is what to do in the non-Draconian case where the decoder continues even a-

er discovering invalid input.
e naïve answer is to ignore invalid input until finding valid input again (i.e. find-

ing the next byte that has a lead-byte value), but this is dangerous and should never be
done. e danger is that silently dropping bogus bytes might make a string that didn’t
look dangerous with the bogus bytes present become valid active content. Most sim-
ply, <scr�ipt> (� standing in for a bogus byte) could become <script> if the error is

Request to Retract Consensus 151-C19 and Action Item 151-A134

1 of 41

rick@unicode.org
Text Box
L2/17-197

ignored. So it’s non-controversial that every sequence of bogus bytes should result in
at least one REPLACEMENT CHARACTER and that the next lead-valued byte is the
first byte that’s no longer part of the invalid sequence.

But how many REPLACEMENT CHARACTERs should be generated for a sequence
of multiple bogus bytes?

Unicode 9.0.0 (page 127) says: “An ill-formed subsequence consisting of more than
one code unit could be treated as a single error or as multiple errors. For example, in
processing the UTF-8 code unit sequence <F0 80 80 41>, the only formal requirement
mandated by Unicode conformance for a converter is that the <41> be processed and
correctly interpreted as <U+0041>. e converter could return <U+FFFD, U+0041>,
handling <F0 80 80> as a single error, or <U+FFFD, U+FFFD, U+FFFD, U+0041>, han-
dling ea byte of <F0 80 80> as a separate error, or could take other approaes to sig-
nalling <F0 80 80> as an ill-formed code unit subsequence.” So as far as Unicode is con-
cerned, any number from one to the number of bytes in the number of bogus bytes (in-
clusive) is OK. In other words, the precise number is implementation-defined as far as
Unicode is concerned.

Yet, immediately aer saying that there isn’t conformance requirement for the pre-
cise number, the Unicode Standard proceeds to express a preference motivating it by
saying: “To promote interoperability in the implementation of conversion processes,
the Unicode Standard recommends a particular best practice.” e “best practice” (until
the recent ange) was that a maximal invalid sequence of bytes that forms a prefix of
a valid sequence is collapsed into one REPLACEMENT CHARACTER and otherwise
there is one REPLACEMENT CHARACTER per ea bogus byte.

Explaining the Old Preference in the Terms of
Implementation
e old preference makes sense when the UTF-8 to decoder is viewed as a state ma-
ine that recognizes UTF-8 as a regular grammar based on the information presented
in table 3-7 “Well-Formed UTF-8 Byte Sequences” in the Unicode Standard (page 125 in
version 9.0.0; quoted below) and exhibits the following behavior when encountering a
byte that doesn’t fit the grammar at the current state:

If the state maine is in the start state, consume the bogus byte (whi is never a
lead byte since lead bytes are allowed in the start state) and emit a REPLACEMENT
CHARACTER.
If the state maine is not in the start state, unconsume the bogus byte (whi may
be a lead byte), ange state to the start state (i.e. the byte will be reprocessed in
the start state shortly) and emit a REPLACEMENT CHARACTER.

e conclusion here is that when viewing the UTF-8 decoder as a state maine that
encodes knowledge of what byte sequences are valid, the old preference makes perfect
sense. In particular, the rule to collapse prefixes of valid sequences is not added com-
plexity but the simple thing arising from not requiring the state maine to uncon-
sume more than the one byte under examination.

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0000..U+007F 00..7F

Request to Retract Consensus 151-C19 and Action Item 151-A134

2 of 41

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

The New Preference
On May 12 2017, the Unicode Tenical Commiee accepted a proposal (for Unicode
11) to collapse sequences of bogus bytes to a single REPLACEMENT CHARACTER not
only when they form a prefix of a valid sequence but also when the bogus bytes fit as a
prefix of the general UTF-8 bit paern. e bit paern for one, two, three and four-
byte sequences is given in table 3-6 “UTF-8 Bit Distribution” in the Unicode Standard
(page 125 in version 9.0.0; quoted below). e proposal is ambiguous about whether to
do the same thing for five and six-byte sequences whose bit paern is not defined as
existing in Unicode but was defined in now-obsolete RFCs for UTF-8, the last RFC
defining them being RFC 2279.

If five and six-byte sequences are treated according to the logic of the newly-
accepted proposal, the newly-accepted proposal mates the behavior of ICU. If the de-
coder is supposed to be unaware of five and six-byte paerns, whi are non-existent
as far as Unicode is concerned, I am not aware of any implementation mating the
new guidance.

e rationale against the old guidance was “I believe the best practices are wrong”
and the rationale in favor of the new guidance was “feels right”. (Really.)

Table 3-6. UTF-8 Bit Distribution

Scalar Value First Byte Second Byte Third Byte Fourth Byte

00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Explaining the New Preference in Terms of
Implementation
e new preference makes sense if the UTF-8 decoder is viewed as a bit accumulator
that first consumes bytes according to the UTF-8 bit distribution paern and masks
and shis the variable bits into an accumulator where they form a scalar value and

Request to Retract Consensus 151-C19 and Action Item 151-A134

3 of 41

then upon completing a sequence according to the bit distribution paern es if the
scalar value is valid given the length of sequence consumed. Scalar value for the surro-
gate range or above the Unicode range is always invalid and otherwise scalar values
are invalid if the scalar value could be represented as a shorter sequence of bytes than
a sequence that was actually consumed.

It is worth noting that the concept of accumulating a scalar value during UTF-8 de-
coding is biased towards using UTF-16 or UTF 32 as the in-memory Unicode represen-
tation, since decoding to those forms necessarily involves the use of su an accumula-
tor. When decoding UTF-8 to UTF-8 as the in-memory Unicode representation, while
it is possible to first accumulate the scalar value and then re-encode it as UTF-8, it is
unnecessary and inefficient and the sort of validation state maine described above
makes more sense. Sure, su a state maine could be extended to exhibit the outward
behavior of the formulation that involves a scalar accumulator, but it would be extra
complexity in service of replicating the behaviors arising from a different model.

What’s Wrong with Changing a Mere Preference?
So who cares? It’s just a non-normative expression of preference.

ere are multiple reasons to care.
ere are multiple prominent implementations that follow the old guidance and
it’s wrong to make them explain themselves (why they do not follow the new
preference) or, worse, ange behavior risking the introduction of bugs.
It sets a bad precedent to ange the Unicode Standard instead of anging the
Unicode Consortium-hosted implementation (ICU) when the two disagree but
multiple prominent implementations follow the Standard and ICU is the outlier.
e old guidance isn’t a mere preference but a conformance requirement in the
Web context.
e ange was dodgy in terms of commiee process, whi sets a bad precedent.
Chrome has had a bug arising from different error handling behavior between two
UTF-8 decoder implementations in the codebase.

If anything “It’s not a requirement.” should be taken as an argument why the spec
doesn’t need anging and not as an argument why anges on flimsy grounds are OK.
e realization that the Unicode Consortium seems to la a strong objective reasoning
to prefer a particular number of REPLACEMENT CHARACTERs could be taken to
support a conclusion that maybe it would be the best for the Unicode Standard not to
express a preference (called “best practice” implying the preference is in some sense
the “best” option) on this topic, but it does not support the conclusion that anging
the expressed behavior whiever way is OK.

But most importantly, even if the issue of the exact number of REPLACEMENT
CHARACTERs in itself was not really that important to care about and it might seem
silly to write this mu about it, I see anging a widely-implemented spec on flimsy
grounds as poor standard stewardship and I wish the Unicode Consortium did beer
than that so that this kind of failure to investigate what multiple implementations do
does not repeat with something more important.

What Do Implementations Do, Then?

Request to Retract Consensus 151-C19 and Action Item 151-A134

4 of 41

I tested the following implementations (Web browsers by visual inspection and others
by performing the conversion and using diff on the output):

Firefox 53.0.3 (uconv conversion library)
Chrome 58.0.3029.110 (uses Web Template Framework forked from WebKit but
since then modified for UTF-8 despite using ICU for many legacy encodings)
Safari 10.1.1 on macOS 10.11.6 and the lastest release version of Safari on macOS
10.12.5 (uses Web Template Framework for UTF-8 despite using ICU for many
legacy encodings)
Edge (EdgeHTML 14.14393 on Windows 10 1607)
IE11 (on Windows 10 1607)
ICU (55.1 as distributed on Ubuntu 16.04)
Win32 (MultiByteToWideChar on Windows 10 1607)
e Java standard library as implemented in OpenJDK 8 (1.8.0_131 as distributed
on Ubuntu 16.04)
e Ruby standard library (2.3.1p112 as distributed on Ubuntu 16.04)
e Python 3 standard library (3.5.2 as distributed on Ubuntu 16.04)
e Python 2 standard library (2.7.12 wide build as distributed on Ubuntu 16.04)
e Python 2 standard library (2.7.10 narrow build as distributed on macOS 10.11.6)
e Perl 5 standard library (5.22.1 as distributed on Ubuntu 16.04)
e Rust standard library (1.17.0)
rust-encoding (0.2.33)
encoding_rs (0.6.10) (of interest to me, because I wrote it; not claiming prominence,
yet, since it has not yet been shipped in Firefox 😉)
Go built-in iteration (1.6.2 as distributed on Ubuntu 16.04)

Why these? Browsers should obviously be considered. I already had copypaste-ready
code for ICU, Win32, rust-encoding and the Rust standard library. Java, Ruby, Python
3, Python 2 and Perl 5 were trivial to test due to paaging on Ubuntu and either prior
knowledge of how to test or the documentation being approaable. I tested Go aer
nigeltao on HN pointed out to me what to test. On the other hand, I timed out trying
to find the right API entry point in Go documentation, and I timed out trying to get
GLib to behave (the glibc layer does not handle REPLACEMENT CHARACTER emis-
sion). I figured that testing e.g. CoreFoundation (whi I believe only wraps ICU but,
who knows, could do something else for UTF-8 like WebKit does), Qt or .Net would
have taken too mu time for me. In any case, the above list should be broad enough to
make statements about “multiple prominent implementations”.

I used a specially-craed HTML document as test input. Since the file is mal-
formed, if you follow the link in your browser, the number of REPLACEMENT CHAR-
ACTERs depends on the UTF-8 decoder in your browser.

Most implementations produced bit-identical results mating the old Unicode
preference. erefore, I’m providing only one copy of the output. is file is valid
UTF-8, so the number of REPLACEMENT CHARACTERs is encoded in the file and
does not depend on your browser. is is the result obtained with (by visual inspection
only for browsers):

Firefox
Chrome
Ruby
Python 3
e Rust standard library
rust-encoding

Request to Retract Consensus 151-C19 and Action Item 151-A134

5 of 41

encoding_rs
An interesting browser behavior (link to manual synthesis of valid UTF-8 that looks
the way the test input shows up in these browsers) is to emit as many REPLACEMENT
CHARACTERs as there are bogus bytes without collapsing sequences that are prefixes
of a valid sequence. is is the behavior of:

An interesting other multi-implementation behavior is to emit as many REPLACE-
MENT CHARACTERs as there are bogus bytes without collapsing sequences that are
prefixes of a valid sequence (i.e. for a truncated sequence the decoder emits a RE-
PLACEMENT CHARACTER for the lead, resets to the start state and continues imme-
diately aer the lead). For Go, this behavior is part of the language spec. is is the re-
sult obtained with (by visual inspection only for browsers):

Edge
IE
Safari
Go

e rest all had mutually different results (links point to valid output created with
these implementations):

Win32 seems to approximate the old guidance with the quirk that for three or four-
byte invalid sequences that follow the UTF-8 bit paern the number of
REPLACEMENT CHARACTERs is one fewer than the number of bytes.
OpenJDK 8 follows the old guidance except it follows the new guidance for
CESU-8-encoded surrogates.
Python 2 (both narrow and wide) exhibits non-conforming behavior by accepting
CESU-8-encoded astral code points and round-tripping CESU-8-encoded lone
surrogates. Non-shortest two, three or four-byte sequences follow neither the old
nor the new guidance.
Perl 5 follows the old guidance for non-shortest forms but follows the new
guidance for CESU-8-encoded surrogates and values above the Unicode range
(with knowledge of five and six-byte sequences). Follows the Go behavior of one
REPLACEMENT CHARACTER per byte for truncated sequences.
ICU follows the new guidance, including for five and six-byte sequences for whi
the proposal and decision were ambiguous.

As you can see, ICU is the most different from the others. In particular, even though
Edge, IE11, Safari, Go, OpenJDK 8 and Perl 5 do not follow the old guidance for every-
thing, they mat the old guidance for non-shortest forms.

When there are multiple prominent implementations following the old guidance
and only ICU following the new guidance if it is taken to include five and six-byte se-
quences and no implementation (that I know of) following the new guidance if it is
taken to exclude five and six-byte sequences, I think anging the spec shows poor
standard stewardship.

It is wasteful if the implementors who followed the previous advice need to explain
why they don’t follow the new “best practice”. It should be to the developers of the
other implementations shouldering the burden of explaining their deviations from the
“best practice”. It is even more wasteful if the ange of Unicode Standard-expressed
preference results in code anges in any of the implementations that implemented the
old preference, since this would result in implementation and quality assurance work
(potentially partially in the form of fixing bugs introduced as part of making anges).

A well-managed standard should not induce, for flimsy reasons, su waste on im-

Request to Retract Consensus 151-C19 and Action Item 151-A134

6 of 41

plementors who trusted the standard previously. Changes to widely-implemented
long-standing standards should have a very important and strong rationale. e
ange at hand las su a strong rationale.

Favoring the Unicode-Hosted Implementation
Now that ICU is a Unicode Consortium project, I think the Unicode Consortium should
be particularly sensitive to biases arising from being both the source of the spec and
the source of a popular implementation. It looks really bad both in terms of equal foot-
ing of ICU vs. other implementations for the purpose of how the standard is developed
as well as the reliability of the standard text vs. ICU source code as the source of truth
that other implementors need to pay aention to if the way the Unicode Consortium
resolves a discrepancy between ICU behavior and a well-known spec provision (even if
mere expression of preference that isn’t a conformance requirement) is by anging
the spec instead of anging ICU.

The Mere Preference Has Been Elevated into a
Requirement Elsewhere
Even though the Unicode Standard expresses the number of REPLACEMENT CHAR-
ACTERs as a mere non-normative preference, Web standards these days tend to avoid
implementation-defined behavior due to the painful experience of Web sites develop-
ing dependencies on the quirks of particular browsers in areas that old specs consid-
ered error situations not worth spelling out precise processing requirements for. ere-
fore, there has been a long push towards well-defined behavior even in error situations
on the Web without debating ea particular error case individually to assess if the
case at hand is prone to sites developing dependencies on a particular behavior. (To be
clear, I am not claiming that the number of REPLACEMENT CHARACTERs would be
particularly prone to browser-specific site dependences.)

As a result, the WHATWG Encoding Standard, whi seeks to be normative over
Web browsers, has precise requirements for REPLACEMENT CHARACTER emission.
For UTF-8, these used to differ from the preference expressed by the Unicode Standard,
but that was reported as a bug in 2012 and the WHATWG Encoding Standard aligned
with the preference expressed by the Unicode Standard making it a requirement. Fire-
fox was anged accordingly at the same time.

Chrome anged in 2016 to bring the Web Template Framework part of Chrome
into consistency with V8, since a discrepancy between the two caused a bug! e
ange cited Unicode directly instead of citing the WHATWG Encoding Standard. is
Chrome bug is the strongest evidence that I have seen that the precise behavior can ac-
tually maer.

Regreably, the distance to make all browsers do the same thing would have been
the shortest before the Chrome ange. Before then, the shortest path to making all
browsers do the same thing would have been to make V8 and Firefox emit one RE-
PLACEMENT CHARACTER per bogus byte. However, I am not advocating su a
ange now. e V8 consistency issue shows that UTF-8 decoding comes to browsers
from more places in the code than one would expect, some of those are implemented

Request to Retract Consensus 151-C19 and Action Item 151-A134

7 of 41

directly downstream of the Unicode Standard instead of downstream of the WHATWG
Encoding Standard and consistency between those can turn out to maer. In the case
of Firefox, there is the Rust standard library in addition to the main encoding library
(currently uconv, encoding_rs hopefully in the near future), and I don’t want to ask the
Rust standard library to ange. (Also, from a purely selfish perspective, replicating the
Edge/Safari behavior in encoding_rs, while possible, would lead to added complexity,
because it would involve emiing multiple REPLACEMENT CHARACTERs retroac-
tively for bytes that the decoder has already consumed as a valid-looking prefix.)

When two out of four of the major browsers mat what the WHATWG Encoding
Standard says about UTF-8 decoding and the two others are very close, the WHATWG
spec is likely to stay as-is. It’s a shame if the Unicode ange makes a conformance re-
quirement for the Web differ from the non-requirement preference expressed by the
Unicode Standard. ere are already enough competing specs and stale spec versions
around that making sure that browser developers read the right spec requires constant
vigilance. It would be sad to have to add this particular part of the Unicode Standard to
the “wrong specs to read” list. Even worse if the Unicode ange leads to more bugs
like the discrepancy between V8 and WTF within Chrome.

Process Issues
is is mostly of curiosity value but may be of relevance for the purpose of geing the
decision overturned. It appears that the agenda for a Unicode Tenical Commiee
meeting is supposed to be set at least a week in advance of the meeting, but the pro-
posal at issue here seems to have been submied on a shorter notice (proposal dated
May 11 and accepted on May 12). Also, the old preference was formulated as the out-
come of a more heavy-weight Public Review Issue process, so it seems inappropriate to
ange the outcome of a heavy-weight process by using a lighter-weight decision
process.

Where to Go from Here?
First, I hope that the decision to ange the preference that the Unicode Standard ex-
presses for the number of REPLACEMENT CHARACTERs is overturned on appeal for
the above reasons and for the bad precedent that the ange is suggestive of when
viewed as a slippery slope towards anging more important things on flimsy grounds.
(Or, alternatively, I hope the Unicode Standard stops expressing a preference for the
number of REPLACEMENT CHARACTERs altogether beyond “at least one and no
more than the number of bogus bytes”.)

Second, I hope that the Unicode Consortium takes steps to mitigate the risk of
making decisions on flimsy grounds in the future by requiring proposals to ange text
concerning implementation behavior (regardless of whether an actual requirement or a
mere expression of preference) to come with a survey of the behavior of a large num-
ber of prominent existing implementations. e more established a given behavior is
in implementations, the stronger the rationale should be to ange the required or pre-
ferred behavior. e Unicode Consortium-hosted implementation should have no spe-
cial weight when considering the existing implementation landscape.

at is, I think the proposal to ange the preferred behavior in this case should

Request to Retract Consensus 151-C19 and Action Item 151-A134

8 of 41

have come with the kind of investigation that I performed here, preferably considering
even more implementations, instead of baiting someone other than the person making
the proposal to do the investigation aer the decision has already been taken.


Henri Sivonen

Text wrien: 2017-05-31. Updated 2017-06-09 with results for Go and with a typo fix to
a legend in the test file (regenerated the result files accordingly). Updated 2017-06-12
with observation about Python 2 generating ill-formed output for lone surrogates.

Main page


A copy of hps://hsivonen.fi/broken-utf-8/spec.html, the preferred behavior ac-

cording to the guidance prior to UTC decision 151-C19 follows. is is the behavior of:
Firefox
Chrome
Ruby
Python 3
e Rust standard library
rust-encoding
encoding_rs



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part
of the UTF-8 definition.

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

��

Three-byte sequence (E0 80 80)
���

Four-byte sequence (F0 80 80 80)
����

Five-byte sequence (F8 80 80 80 80)
�����

Request to Retract Consensus 151-C19 and Action Item 151-A134

9 of 41

Six-byte sequence (FC 80 80 80 80 80)
������

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

��

Three-byte sequence (E0 81 BF)
���

Four-byte sequence (F0 80 81 BF)
����

Five-byte sequence (F8 80 80 81 BF)
�����

Six-byte sequence (FC 80 80 80 81 BF)
������

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

���

Four-byte sequence (F0 80 82 80)
����

Five-byte sequence (F8 80 80 82 80)
�����

Six-byte sequence (FC 80 80 80 82 80)
������

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

���

Four-byte sequence (F0 80 9F BF)
����

Five-byte sequence (F8 80 80 9F BF)
�����

Six-byte sequence (FC 80 80 80 9F BF)
������

Request to Retract Consensus 151-C19 and Action Item 151-A134

10 of 41

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

����

Five-byte sequence (F8 80 80 A0 80)
�����

Six-byte sequence (FC 80 80 80 A0 80)
������

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

����

Five-byte sequence (F8 80 8F BF BF)
�����

Six-byte sequence (FC 80 80 8F BF BF)
������

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�����

Six-byte sequence (FC 80 80 90 80 80)
������

Non-shortest forms for last Unicode (U+10FFFF)
Five-byte sequence (F8 84 8F BF BF)

�����

Six-byte sequence (FC 80 84 8F BF BF)
������

Out of range
One past Unicode (F4 90 80 80)

����

Longest five-byte sequence (FB BF BF BF BF)
�����

Longest six-byte sequence (FD BF BF BF BF BF)
������

Request to Retract Consensus 151-C19 and Action Item 151-A134

11 of 41

First surrogate (ED A0 80)
���

Last surrogate (ED BF BF)
���

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
������

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�����

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
������

First surrogate as four-byte sequence (F0 8D A0 80)
����

Last surrogate as four-byte sequence (F0 8D BF BF)
����

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
��������

Lone trails
One (80)

�

Two (80 80)
��

Three (80 80 80)
���

Four (80 80 80 80)
����

Five (80 80 80 80 80)
�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

12 of 41

¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
������

Aer six-byte (FD BF BF BF BF BF 80)
�������

Truncated sequences
Two-byte lead (C2)

�

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
�

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
�

Four-byte lead and two trails (F0 9F 92)
�

Leovers
FE (FE)

�

FE and trail (FE 80)
��

FF (FF)
�

FF and trail (FF 80)
��


A copy of hps://hsivonen.fi/broken-utf-8/one-per-byte.html follows. is is the

Request to Retract Consensus 151-C19 and Action Item 151-A134

13 of 41

behavior of:
Edge
IE
Safari
Go



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part
of the UTF-8 definition.

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

��

Three-byte sequence (E0 80 80)
���

Four-byte sequence (F0 80 80 80)
����

Five-byte sequence (F8 80 80 80 80)
�����

Six-byte sequence (FC 80 80 80 80 80)
������

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

��

Three-byte sequence (E0 81 BF)
���

Four-byte sequence (F0 80 81 BF)
����

Five-byte sequence (F8 80 80 81 BF)
�����

Six-byte sequence (FC 80 80 80 81 BF)

Request to Retract Consensus 151-C19 and Action Item 151-A134

14 of 41

������

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

���

Four-byte sequence (F0 80 82 80)
����

Five-byte sequence (F8 80 80 82 80)
�����

Six-byte sequence (FC 80 80 80 82 80)
������

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

���

Four-byte sequence (F0 80 9F BF)
����

Five-byte sequence (F8 80 80 9F BF)
�����

Six-byte sequence (FC 80 80 80 9F BF)
������

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

����

Five-byte sequence (F8 80 80 A0 80)
�����

Six-byte sequence (FC 80 80 80 A0 80)
������

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

����

Five-byte sequence (F8 80 8F BF BF)
�����

Request to Retract Consensus 151-C19 and Action Item 151-A134

15 of 41

Six-byte sequence (FC 80 80 8F BF BF)
������

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�����

Six-byte sequence (FC 80 80 90 80 80)
������

Non-shortest forms for last Unicode (U+10FFFF)
Five-byte sequence (F8 84 8F BF BF)

�����

Six-byte sequence (FC 80 84 8F BF BF)
������

Out of range
One past Unicode (F4 90 80 80)

����

Longest five-byte sequence (FB BF BF BF BF)
�����

Longest six-byte sequence (FD BF BF BF BF BF)
������

First surrogate (ED A0 80)
���

Last surrogate (ED BF BF)
���

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
������

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�����

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
������

First surrogate as four-byte sequence (F0 8D A0 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

16 of 41

����

Last surrogate as four-byte sequence (F0 8D BF BF)
����

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
��������

Lone trails
One (80)

�

Two (80 80)
��

Three (80 80 80)
���

Four (80 80 80 80)
����

Five (80 80 80 80 80)
�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)
¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
������

Aer six-byte (FD BF BF BF BF BF 80)
�������

Truncated sequences
Two-byte lead (C2)

�

Request to Retract Consensus 151-C19 and Action Item 151-A134

17 of 41

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
��

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
��

Four-byte lead and two trails (F0 9F 92)
���

Leovers
FE (FE)

�

FE and trail (FE 80)
��

FF (FF)
�

FF and trail (FF 80)
��


A copy of hps://hsivonen.fi/broken-utf-8/win32.html follows. is is the behavior

of Win32 (MultiByteToWideChar on Windows 10 1607).



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part
of the UTF-8 definition.

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

��

Three-byte sequence (E0 80 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

18 of 41

��

Four-byte sequence (F0 80 80 80)
���

Five-byte sequence (F8 80 80 80 80)
�����

Six-byte sequence (FC 80 80 80 80 80)
������

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

��

Three-byte sequence (E0 81 BF)
��

Four-byte sequence (F0 80 81 BF)
���

Five-byte sequence (F8 80 80 81 BF)
�����

Six-byte sequence (FC 80 80 80 81 BF)
������

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

��

Four-byte sequence (F0 80 82 80)
���

Five-byte sequence (F8 80 80 82 80)
�����

Six-byte sequence (FC 80 80 80 82 80)
������

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

��

Four-byte sequence (F0 80 9F BF)

Request to Retract Consensus 151-C19 and Action Item 151-A134

19 of 41

���

Five-byte sequence (F8 80 80 9F BF)
�����

Six-byte sequence (FC 80 80 80 9F BF)
������

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

���

Five-byte sequence (F8 80 80 A0 80)
�����

Six-byte sequence (FC 80 80 80 A0 80)
������

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

���

Five-byte sequence (F8 80 8F BF BF)
�����

Six-byte sequence (FC 80 80 8F BF BF)
������

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�����

Six-byte sequence (FC 80 80 90 80 80)
������

Non-shortest forms for last Unicode (U+10FFFF)
Five-byte sequence (F8 84 8F BF BF)

�����

Six-byte sequence (FC 80 84 8F BF BF)
������

Out of range

Request to Retract Consensus 151-C19 and Action Item 151-A134

20 of 41

One past Unicode (F4 90 80 80)
���

Longest five-byte sequence (FB BF BF BF BF)
�����

Longest six-byte sequence (FD BF BF BF BF BF)
������

First surrogate (ED A0 80)
��

Last surrogate (ED BF BF)
��

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
����

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�����

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
������

First surrogate as four-byte sequence (F0 8D A0 80)
���

Last surrogate as four-byte sequence (F0 8D BF BF)
���

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
������

Lone trails
One (80)

�

Two (80 80)
��

Three (80 80 80)
���

Four (80 80 80 80)
����

Five (80 80 80 80 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

21 of 41

�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)
¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
������

Aer six-byte (FD BF BF BF BF BF 80)
�������

Truncated sequences
Two-byte lead (C2)

�

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
�

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
�

Four-byte lead and two trails (F0 9F 92)
�

Leovers
FE (FE)

�

FE and trail (FE 80)
��

Request to Retract Consensus 151-C19 and Action Item 151-A134

22 of 41

FF (FF)
�

FF and trail (FF 80)
��


A copy of hps://hsivonen.fi/broken-utf-8/java.html follows. is is the behavior of

OpenJDK 8.



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part
of the UTF-8 definition.

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

��

Three-byte sequence (E0 80 80)
���

Four-byte sequence (F0 80 80 80)
����

Five-byte sequence (F8 80 80 80 80)
�����

Six-byte sequence (FC 80 80 80 80 80)
������

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

��

Three-byte sequence (E0 81 BF)
���

Four-byte sequence (F0 80 81 BF)
����

Request to Retract Consensus 151-C19 and Action Item 151-A134

23 of 41

Five-byte sequence (F8 80 80 81 BF)
�����

Six-byte sequence (FC 80 80 80 81 BF)
������

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

���

Four-byte sequence (F0 80 82 80)
����

Five-byte sequence (F8 80 80 82 80)
�����

Six-byte sequence (FC 80 80 80 82 80)
������

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

���

Four-byte sequence (F0 80 9F BF)
����

Five-byte sequence (F8 80 80 9F BF)
�����

Six-byte sequence (FC 80 80 80 9F BF)
������

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

����

Five-byte sequence (F8 80 80 A0 80)
�����

Six-byte sequence (FC 80 80 80 A0 80)
������

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

Request to Retract Consensus 151-C19 and Action Item 151-A134

24 of 41

����

Five-byte sequence (F8 80 8F BF BF)
�����

Six-byte sequence (FC 80 80 8F BF BF)
������

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�����

Six-byte sequence (FC 80 80 90 80 80)
������

Non-shortest forms for last Unicode (U+10FFFF)
Five-byte sequence (F8 84 8F BF BF)

�����

Six-byte sequence (FC 80 84 8F BF BF)
������

Out of range
One past Unicode (F4 90 80 80)

����

Longest five-byte sequence (FB BF BF BF BF)
�����

Longest six-byte sequence (FD BF BF BF BF BF)
������

First surrogate (ED A0 80)
�

Last surrogate (ED BF BF)
�

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
��

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�����

Request to Retract Consensus 151-C19 and Action Item 151-A134

25 of 41

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
������

First surrogate as four-byte sequence (F0 8D A0 80)
����

Last surrogate as four-byte sequence (F0 8D BF BF)
����

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
��������

Lone trails
One (80)

�

Two (80 80)
��

Three (80 80 80)
���

Four (80 80 80 80)
����

Five (80 80 80 80 80)
�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)
¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
������

Aer six-byte (FD BF BF BF BF BF 80)
�������

Request to Retract Consensus 151-C19 and Action Item 151-A134

26 of 41

Truncated sequences
Two-byte lead (C2)

�

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
�

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
�

Four-byte lead and two trails (F0 9F 92)
�

Leovers
FE (FE)

�

FE and trail (FE 80)
��

FF (FF)
�

FF and trail (FF 80)
��


A copy of hps://hsivonen.fi/broken-utf-8/python2.html follows with ill-formed

output replaced with annotation in italic. is is the behavior of Python 2.7.x (both
narrow and wide builds).



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part
of the UTF-8 definition.

Request to Retract Consensus 151-C19 and Action Item 151-A134

27 of 41

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

��

Three-byte sequence (E0 80 80)
��

Four-byte sequence (F0 80 80 80)
��

Five-byte sequence (F8 80 80 80 80)
�����

Six-byte sequence (FC 80 80 80 80 80)
������

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

��

Three-byte sequence (E0 81 BF)
��

Four-byte sequence (F0 80 81 BF)
��

Five-byte sequence (F8 80 80 81 BF)
�����

Six-byte sequence (FC 80 80 80 81 BF)
������

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

��

Four-byte sequence (F0 80 82 80)
��

Five-byte sequence (F8 80 80 82 80)
�����

Six-byte sequence (FC 80 80 80 82 80)
������

Request to Retract Consensus 151-C19 and Action Item 151-A134

28 of 41

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

��

Four-byte sequence (F0 80 9F BF)
��

Five-byte sequence (F8 80 80 9F BF)
�����

Six-byte sequence (FC 80 80 80 9F BF)
������

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

��

Five-byte sequence (F8 80 80 A0 80)
�����

Six-byte sequence (FC 80 80 80 A0 80)
������

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

��

Five-byte sequence (F8 80 8F BF BF)
�����

Six-byte sequence (FC 80 80 8F BF BF)
������

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�����

Six-byte sequence (FC 80 80 90 80 80)
������

Non-shortest forms for last Unicode (U+10FFFF)
Five-byte sequence (F8 84 8F BF BF)

�����

Request to Retract Consensus 151-C19 and Action Item 151-A134

29 of 41

Six-byte sequence (FC 80 84 8F BF BF)
������

Out of range
One past Unicode (F4 90 80 80)

��

Longest five-byte sequence (FB BF BF BF BF)
�����

Longest six-byte sequence (FD BF BF BF BF BF)
������

First surrogate (ED A0 80)
e bytes ED A0 80

Last surrogate (ED BF BF)
e bytes ED BF BF

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
�����

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�����

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
������

First surrogate as four-byte sequence (F0 8D A0 80)
��

Last surrogate as four-byte sequence (F0 8D BF BF)
��

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
����

Lone trails
One (80)

�

Two (80 80)
��

Three (80 80 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

30 of 41

���

Four (80 80 80 80)
����

Five (80 80 80 80 80)
�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)
¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
������

Aer six-byte (FD BF BF BF BF BF 80)
�������

Truncated sequences
Two-byte lead (C2)

�

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
�

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
�

Four-byte lead and two trails (F0 9F 92)
�

Leovers

Request to Retract Consensus 151-C19 and Action Item 151-A134

31 of 41

FE (FE)
�

FE and trail (FE 80)
��

FF (FF)
�

FF and trail (FF 80)
��


A copy of hps://hsivonen.fi/broken-utf-8/perl5.html follows. is is the behavior

of Perl 5.



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part
of the UTF-8 definition.

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

��

Three-byte sequence (E0 80 80)
���

Four-byte sequence (F0 80 80 80)
����

Five-byte sequence (F8 80 80 80 80)
�����

Six-byte sequence (FC 80 80 80 80 80)
������

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

��

Request to Retract Consensus 151-C19 and Action Item 151-A134

32 of 41

Three-byte sequence (E0 81 BF)
���

Four-byte sequence (F0 80 81 BF)
����

Five-byte sequence (F8 80 80 81 BF)
�����

Six-byte sequence (FC 80 80 80 81 BF)
������

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

���

Four-byte sequence (F0 80 82 80)
����

Five-byte sequence (F8 80 80 82 80)
�����

Six-byte sequence (FC 80 80 80 82 80)
������

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

���

Four-byte sequence (F0 80 9F BF)
����

Five-byte sequence (F8 80 80 9F BF)
�����

Six-byte sequence (FC 80 80 80 9F BF)
������

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

����

Five-byte sequence (F8 80 80 A0 80)
�����

Six-byte sequence (FC 80 80 80 A0 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

33 of 41

������

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

����

Five-byte sequence (F8 80 8F BF BF)
�����

Six-byte sequence (FC 80 80 8F BF BF)
������

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�����

Six-byte sequence (FC 80 80 90 80 80)
������

Non-shortest forms for last Unicode (U+10FFFF)
Five-byte sequence (F8 84 8F BF BF)

�����

Six-byte sequence (FC 80 84 8F BF BF)
������

Out of range
One past Unicode (F4 90 80 80)

�

Longest five-byte sequence (FB BF BF BF BF)
�

Longest six-byte sequence (FD BF BF BF BF BF)
�

First surrogate (ED A0 80)
�

Last surrogate (ED BF BF)
�

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
��

Request to Retract Consensus 151-C19 and Action Item 151-A134

34 of 41

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�����

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
������

First surrogate as four-byte sequence (F0 8D A0 80)
����

Last surrogate as four-byte sequence (F0 8D BF BF)
����

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
��������

Lone trails
One (80)

�

Two (80 80)
��

Three (80 80 80)
���

Four (80 80 80 80)
����

Five (80 80 80 80 80)
�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)
¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
��

Request to Retract Consensus 151-C19 and Action Item 151-A134

35 of 41

Aer six-byte (FD BF BF BF BF BF 80)
��

Truncated sequences
Two-byte lead (C2)

�

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
��

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
��

Four-byte lead and two trails (F0 9F 92)
���

Leovers
FE (FE)

�

FE and trail (FE 80)
��

FF (FF)
�

FF and trail (FF 80)
��


A copy of hps://hsivonen.fi/broken-utf-8/icu.html follows. is is the behavior of

ICU.



Broken UTF-8
Any copyright to this file is dedicated to the Public Domain. hps://creativecom-
mons.org/publicdomain/zero/1.0/

Five-byte and six-byte sequences were defined in RFC 2297 but are no longer part

Request to Retract Consensus 151-C19 and Action Item 151-A134

36 of 41

of the UTF-8 definition.

Non-shortest forms for lowest single-byte (U+0000)
Two-byte sequence (C0 80)

�

Three-byte sequence (E0 80 80)
�

Four-byte sequence (F0 80 80 80)
�

Five-byte sequence (F8 80 80 80 80)
�

Six-byte sequence (FC 80 80 80 80 80)
�

Non-shortest forms for highest single-byte
(U+007F)
Two-byte sequence (C1 BF)

�

Three-byte sequence (E0 81 BF)
�

Four-byte sequence (F0 80 81 BF)
�

Five-byte sequence (F8 80 80 81 BF)
�

Six-byte sequence (FC 80 80 80 81 BF)
�

Non-shortest forms for lowest two-byte (U+0080)
Three-byte sequence (E0 82 80)

�

Four-byte sequence (F0 80 82 80)
�

Five-byte sequence (F8 80 80 82 80)
�

Six-byte sequence (FC 80 80 80 82 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

37 of 41

�

Non-shortest forms for highest two-byte (U+07FF)
Three-byte sequence (E0 9F BF)

�

Four-byte sequence (F0 80 9F BF)
�

Five-byte sequence (F8 80 80 9F BF)
�

Six-byte sequence (FC 80 80 80 9F BF)
�

Non-shortest forms for lowest three-byte (U+0800)
Four-byte sequence (F0 80 A0 80)

�

Five-byte sequence (F8 80 80 A0 80)
�

Six-byte sequence (FC 80 80 80 A0 80)
�

Non-shortest forms for highest three-byte (U+FFFF)
Four-byte sequence (F0 8F BF BF)

�

Five-byte sequence (F8 80 8F BF BF)
�

Six-byte sequence (FC 80 80 8F BF BF)
�

Non-shortest forms for lowest four-byte (U+10000)
Five-byte sequence (F8 80 90 80 80)

�

Six-byte sequence (FC 80 80 90 80 80)
�

Non-shortest forms for last Unicode (U+10FFFF)

Request to Retract Consensus 151-C19 and Action Item 151-A134

38 of 41

Five-byte sequence (F8 84 8F BF BF)
�

Six-byte sequence (FC 80 84 8F BF BF)
�

Out of range
One past Unicode (F4 90 80 80)

�

Longest five-byte sequence (FB BF BF BF BF)
�

Longest six-byte sequence (FD BF BF BF BF BF)
�

First surrogate (ED A0 80)
�

Last surrogate (ED BF BF)
�

CESU-8 surrogate pair (ED A0 BD ED B2 A9)
��

Out of range and non-shortest
One past Unicode as five-byte sequence (F8 84 90 80 80)

�

One past Unicode as six-byte sequence (FC 80 84 90 80 80)
�

First surrogate as four-byte sequence (F0 8D A0 80)
�

Last surrogate as four-byte sequence (F0 8D BF BF)
�

CESU-8 surrogate pair as two four-byte overlongs (F0 8D A0 BD F0 8D B2 A9)
��

Lone trails
One (80)

�

Two (80 80)

Request to Retract Consensus 151-C19 and Action Item 151-A134

39 of 41

��

Three (80 80 80)
���

Four (80 80 80 80)
����

Five (80 80 80 80 80)
�����

Six (80 80 80 80 80 80)
������

Seven (80 80 80 80 80 80 80)
�������

Aer valid two-byte (C2 B6 80)
¶�

Aer valid three-byte (E2 98 83 80)
☃�

Aer valid four-byte (F0 9F 92 A9 80)
������

Aer five-byte (FB BF BF BF BF 80)
��

Aer six-byte (FD BF BF BF BF BF 80)
��

Truncated sequences
Two-byte lead (C2)

�

Three-byte lead (E2)
�

Three-byte lead and one trail (E2 98)
�

Four-byte lead (F0)
�

Four-byte lead and one trail (F0 9F)
�

Four-byte lead and two trails (F0 9F 92)
�

Request to Retract Consensus 151-C19 and Action Item 151-A134

40 of 41

Leovers
FE (FE)

�

FE and trail (FE 80)
��

FF (FF)
�

FF and trail (FF 80)
��


(End of submission)

Request to Retract Consensus 151-C19 and Action Item 151-A134

41 of 41

