
L2/170-434 

Re: Emoji Regex & UTS #51 Definitions 

From: Mark Davis 

Date: 2017-12-22 

 

 

The Definitions that we have in UTS #51 are fairly complex. Yet in the end we still depend on the RGI 

test to filter the set of emoji sequences. Because of that dependency on RGI, we could simplify the 

definitions to make a simpler EBNF and Regex for detecting possible emoji characters and sequences. 

This has advantages for parsing and scanning text for emoji. We may also want to simplify the UTS 

#51 definitions. 

Proposal 

1. Add a section to the UTS #51 that describes the usage of the following EBNF and Regex 

expressions in scanning text to identify possible emoji. 

2. Discuss in the UTC whether we would want to pursue simplifying our UTS #51 definitions to 

correspond more to the EBNF. 

Issue 

The following EBNF can be used to scan for possible emoji, which can then be verified by looking at 

the RGI sequences in the emoji data files. For brevity here, it uses some proposed property aliases, 
such as EMD for Emoji_Modifier. It is much simpler than the expressions currently in Definitions: 
you can think of it as the convex hull of what is matched by those definitions. Of course, it also 

includes some degenerate cases as a by-product of that simplicity, but those are weeded out by the 

RGI verification in any event. 

 

EBNF Notes 

possible_emoji := possible_zwj_element (\x{200D} possible_zwj_element)+ 200D = joiner 

possible_zwj_element :=  
  \p{RI} \p{RI} 
| \p{Emoji} emoji_modification? 

RI = Regional_Indicator 

emoji_modification := 
  \p{EMD}  
| \x{FE0F}? \p{Mn}* 
| [\x{E0020}-\x{E007E}]+ \x{E007F} 

Mn= Nonspacing_Mark 

FE0F = emoji VS 

E00xx are tags 

E007F is the TERM tag. 

 

From this a regex can be generated, as below. While it may seem complex, it is far simpler than what 

would result from the Definitions, which result in regex expressions which are many times more 

complicated, and yet still require verification using the list of RGI sequences. 

 

Regex 

(\p{RI} \p{RI}  
| \p{Emoji} (\p{EMD} | \x{FE0F}? \p{Mn}* | [\x{E0020}-\x{E007E}]+ \x{E007F})?) 

( \x{200D}  
(\p{RI} \p{RI}  
| \p{Emoji} (\p{EMD} | \x{FE0F}? \p{Mn}* | [\x{E0020}-\x{E007E}]+ \x{E007F})?))+ 

 

Notes 

Note that this EBNF shares a characteristic with the UTS #51 Definitions: it is finer-grained than a 

http://www.unicode.org/reports/tr51/proposed.html#Definitions
http://www.unicode.org/reports/tr51/proposed.html#Emoji_Sets
http://www.unicode.org/reports/tr51/proposed.html#Emoji_Properties_and_Data_Files
http://www.unicode.org/reports/tr51/proposed.html#Definitions
http://www.unicode.org/reports/tr51/proposed.html#Definitions
http://www.unicode.org/reports/tr51/proposed.html#Definitions


grapheme cluster. That is, if you have “A<zwj><emoji>”, the Unicode 10 grapheme cluster rule GB11 

will cause that to be one grapheme cluster, while a scanner based on the EBNF will find an emoji 

within that grapheme cluster. (Similarly, a scanner looking for ASCII letters will find an “A” within 

that same grapheme cluster.) 

 

The proposed Unicode 11.0 GB11 rule is tighter, since it requires an emoji (or emoji-like) character 

before the ZWJ. So a sequence like “A<zwj><emoji>” will not count as a grapheme cluster under that 

new rule. 

 

In any event, a subsequent more precise test for RGI sequences would also “split” a grapheme cluster 

like SUSHI+ZWJ+PLANE+ZWJ+SPONGE, by finding it to contain 3 emoji (separated by ZWJ 

characters). It is a known feature of the stock grapheme cluster rules that they are not built to handle 

degenerate cases if that makes the rules too complicated. 

http://www.unicode.org/reports/tr29/#GB11
http://www.unicode.org/reports/tr29/proposed.html#GB11

