
L2/19-364R

Feedback on Proposed Update UTS #18
2019-09-12

Markus Scherer 2019-oct-08

Properties of strings: Matching behavior
When strings are involved, there are different possible & reasonable behaviors for repeated matching as in
\{PropOfStrings}+. In a regex, the most consistent would be to match any path, with backtracking or equivalent;
that is, behaving as if it was a repeated OR expression – however that expression is matched in that regex
engine. So a property that matches strings “ab”, “abc”, “cd”, together with the plus operator, would match the
complete text “abcd”, exactly like a regex of “(abc|ab|cd)+” would. Note that, in order to account for strings with
common prefixes, it should behave as if longer strings were provided first in the alternation.

Thus, the document should specify that semantically the property acts as an alternation sorted with longer
strings first.

Problematic properties
Regarding 2.7 Full Properties and its review note “ The properties in SpecialCasing.txt such as
Lowercase_Mapping are actually conditional, and should probably be removed since they require another
argument (the condition). ”:

Some of the Full Properties are not well-defined for regex matching. For example, the definition of [full]
Lowercase_Mapping involves mappings conditional on language and/or context as specified in UCD
SpecialCasing.txt. It is thus not a pure code point → string property. Language and context would form part of
either the input or the output, and expected behavior in a regular expression is not obvious.

Please remove following properties:

Lowercase_Mapping, Titlecase_Mapping, Uppercase_Mapping, Case_Folding

Please also remove related examples from 2.8 Optional Properties, such as

[:toLowercase=a:] The set of all strings X such that toLowercase(X) = "a"

https://www.unicode.org/reports/tr18/tr18-20.html#Full_Properties
https://unicode.org/Public/UNIDATA/SpecialCasing.txt
http://unicode.org/reports/tr44/#Lowercase_Mapping
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B:toLowercase=a:%5D

Unclear suggested properties
Regarding 2.8 Optional Properties “ Implementations may also add other regular expression properties
based on Unicode data that are not listed above . Some possible candidates include the following. ”:

● Exemplar characters from [UTS35]
● IDNA status and mapping from [UTS46]

→ Syntax for these “possible candidate properties” is only vaguely suggested. Implementers may come up
with a wide range of how to express them. I propose to add more examples/suggestions, such as:

● Exemplar characters for particular locales from [UTS35], such as \p{Exemplar=fr:main}
○ Note: Two dimensions of parameters: locale & main|aux|punctuation|index|...

● IDNA status and mapping from [UTS46], such as \p{UTS46_Status=deviation}

Identifier_Status and Identifier_Type from [UTS39]

→ See the next section of this document about naming issues.

Properties defined outside the UCD
Regarding 1.2 Properties : For use in regular expressions, properties can also be considered to be defined by
Unicode definitions and algorithms, ... Other Unicode Technical Standards, such as UTS #51 Unicode Emoji ,
provide names for definitions and algorithms that can be used for the names of regular expression properties.

In my opinion, this is useful but underspecified. For UCD properties, we have UCD data files that provide the
names and aliases of both the properties and their values (if enumerated/catalog).

An implementation of UTS #18 or similar (including ICU UnicodeSet) uses a unified namespace of properties.
For non-UCD properties, this means that there must not be collisions of property names and aliases with UCD
property names and aliases (or values, where the property name is often omitted, such as for Script and
General_Category).

The problem is that non-UCD properties tend not to have formally documented names and aliases of
properties and values. Even the property types may not be obvious (e.g., set of binary properties vs. one
property with enumerated values).

I suggest that we add one or more data files that document the names and aliases (and probably types) of
non-UCD properties. The location could be among the UCD files, or separately, e.g., associated with UTS #18.

There are two options:

https://www.unicode.org/reports/tr18/tr18-20.html#optional_properties
https://www.unicode.org/reports/tr18/tr18-20.html#UTS35
https://www.unicode.org/reports/tr18/tr18-20.html#UTS46
https://www.unicode.org/reports/tr18/tr18-20.html#UTS35
https://www.unicode.org/reports/tr18/tr18-20.html#UTS46
https://www.unicode.org/reports/tr18/tr18-20.html#UTS39
https://www.unicode.org/reports/tr18/tr18-20.html#Categories

Combined property names file
We could add a single file with simple syntax like in ICU ppucd.txt that provides names and aliases of both
properties and their values, together with and explicit field for the property type, as follows:

OtherProperties.txt
UTS #39 properties

property;Enumerated;IdentifierStatus;IdentifierStatus # short & long names are the same

property;Enumerated;IdentifierType;IdentifierType

value;IdentifierStatus;Inclusion;Inclusion

value;IdentifierStatus;Recommended;Recommended

value;IdentifierType;Not_Character;Not_Character

value;IdentifierType;Deprecated;Deprecated

value;IdentifierType;Default_Ignorable;Default_Ignorable

value;IdentifierType;Not_NFKC;Not_NFKC

value;IdentifierType;Not_XID;Not_XID

value;IdentifierType;Exclusion;Exclusion

value;IdentifierType;Obsolete;Obsolete

value;IdentifierType;Technical;Technical

value;IdentifierType;Uncommon_Use;Uncommon_Use

value;IdentifierType;Limited_Use;Limited_Use

Separate properties vs. values names files
Alternatively, we could add a new pair of files with the syntax of UCD Property*Aliases.txt. On the positive side,
existing parsers could be easily adapted to just read multiple sets of files. On the negative side, separate files
are clunkier, and the property type is only in a comment (a defect shared by the current PropertyAliases.txt
file).

OtherPropertyAliases.txt
==

Enumerated Properties

==

IdentifierStatus ; IdentifierStatus

IdentifierType ; IdentifierType

OtherPropertyValueAliases.txt
IdentifierStatus

IdentifierStatus ; Inclusion ; Inclusion

IdentifierStatus ; Recommended ; Recommended

IdentifierType

https://raw.githubusercontent.com/unicode-org/icu/master/icu4c/source/data/unidata/ppucd.txt

IdentifierType ; Not_Character ; Not_Character

IdentifierType ; Deprecated ; Deprecated

IdentifierType ; Default_Ignorable ; Default_Ignorable

IdentifierType ; Not_NFKC ; Not_NFKC

IdentifierType ; Not_XID ; Not_XID

IdentifierType ; Exclusion ; Exclusion

IdentifierType ; Obsolete ; Obsolete

IdentifierType ; Technical ; Technical

IdentifierType ; Uncommon_Use ; Uncommon_Use

IdentifierType ; Limited_Use ; Limited_Use

Editorial issues
Examples of such syntax are \p{Script=Greek} and [:Script=Greek:], which stands for the set of characters that
have the Script value of Greek.

→ Make “stands” plural. Maybe even “which both stand for”.

A property value can also be a set of values. For example, the Script_Extensions property maps from code
points to a set of enumerated Script values, ...

→ In the following text, there are several instances of singular Script_Extension rather than plural
Script_Extensions.

Other Unicode Technical Standards, such as UTS #51 Unicode Emoji , provide names for definitions and
algorithms that can be used for the names of regular expression properties.

→ (Most of the?) emoji properties are now in the UCD.

Surrogate pairs (or their equivalents in other encoding forms) are be handled internally as single code point
values.

→ Fix grammar around “are be handled”.

Add underscore to UTS #39 Identifier properties
The example above uses the property name spelling in UTS #39, without underscore where UCD properties
customarily include an underscore (which would look like “Identifier_Status”).

Even though the underscore is ignored in property name matching, it is cleaner to include it in the formal name,
for consistency. Therefore, I propose changing the spelling of the UTS #39 properties to Identifier_Status and
Identifier_Type.

