L2/19-376
Chapter 2: Remove Comparison of the

Advantages of UTFs

Markus Scherer 2019-oct-30

Chapter 2 of the Unicode Standard, at the end of section 2.5 Encoding Forms, includes a subsection
“Comparison of the Advantages of UTF-32, UTF-16, and UTF-8".

| propose that we remove this subsection.

Rationale

This text mostly and unnecessarily repeats advantages of UTF-16 and UTF-32 that are already included in the
preceding subsections about each of the UTFs.

This text seems also intended to inform implementation choices, particularly in favor of UTF-16. While |
sympathize with that, and while this was useful some years ago, this is no longer useful. Which UTF to use is
decided by operating systems, programming languages, libraries, and protocols. Also, some implementations
use yet other strategies, such as logically operating in UTF-32 but internally storing Latin-1 bytes if there are no
other code points.

Detalls

| propose that we make the following edits, moving a small amount of text into the UTF-8 subsection and then
deleting the Comparison subsection.

The following text is the current Unicode 13 draft, which is slightly modified from
https://www.unicode.org/versions/Unicode12.0.0/ch02.pdf pp.36..39.

Note that | recreated enough of the PDF formatting for context (e.g., headings & bullets) but not all styles (e.qg.,
line breaks & some italics).

Proposed additions are underlined and highlighted in green.

Proposed deletions are struekthrough-and-highlightedHin+ed.

[Editorial comments in brackets.]

UTF-8

To meet the requirements of byte-oriented, ASCll-based systems, a third encoding form is
specified by the Unicode Standard: UTF-8. This variable-width encoding form preserves
ASCII transparency by making use of 8-bit code units.

Byte-Oriented. Much existing software and practice in information technology have long


https://www.unicode.org/versions/Unicode12.0.0/ch02.pdf

depended on character data being represented as a sequence of bytes. Furthermore, many
of the protocols depend not only on ASCII values being invariant, but must make use of or
avoid special byte values that may have associated control functions. The easiest way to
adapt Unicode implementations to such a situation is to make use of an encoding form that
is already defined in terms of 8-bit code units and that represents all Unicode characters
while not disturbing or reusing any ASCII or CO control code value. That is the function of
UTF-8.

Variable Width. UTF-8 is a variable-width encoding form, using 8-bit code units, in which

the high bits of each code unit indicate the part of the code unit sequence to which each

byte belongs. A range of 8-bit code unit values is reserved for the first, or leading, element of

a UTF-8 code unit sequences, and a completely disjunct range of 8-bit code unit values is

reserved for the subsequent, or trailing, elements of such sequences; this convention preserves non-overlap
for UTF-8. Table 3-6 on page 126 shows how the bits in a Unicode code

point are distributed among the bytes in the UTF-8 encoding form. See Section 3.9, Unicode

Encoding Forms, for the full, formal definition of UTF-8.

ASCII Transparency. The UTF-8 encoding form maintains transparency for all of the

ASCII code points (0x00..0x7F). That means Unicode code points U+0000..U+007F are

converted to single bytes 0x00..0x7F in UTF-8 and are thus indistinguishable from ASCII

itself. Furthermore, the values 0x00..0x7F do not appear in any byte for the representation

of any other Unicode code point, so that there can be no ambiguity. Beyond the ASCII

range of Unicode, many of the non-ideographic scripts are represented by two bytes per

code point in UTF-8; all non-surrogate code points between U+0800 and U+FFFF are represented by three
bytes; and supplementary code points above U+FFFF require four bytes.

[moved up from Comparison/UTF-8 with changes (& feedback from editors); unsure about best label]
Memory. UTF-8 is reasonably compact in terms of the number of bytes used. Compared with UTF-186. it is
much smaller for ASCII syntax and Western languages., but significantly larger for Asian writing systems such
as for Hindi, Thai. Chinese, Japanese, and Korean.

Preferred Usage. UTF-8 is typically the preferred encoding form for HTML and similar
protocols, particularly for the Internet. The ASCII transparency helps migration. UTF-8

also has the advantage that it is already inherently byte-serialized, as for most existing 8-bit
character sets; strings of UTF-8 work easily with the C standard library, and many existing
APIs that work for typical East Asian multibyte character sets adapt to UTF-8 as well with
little or no change required.

Self-synchronizing. In environments where 8-bit character processing is required for one
reason or another, UTF-8 has the following attractive features as compared to other multibyte encodings:

e The first byte of a UTF-8 code unit sequence indicates the number of bytes to follow in a multibyte
sequence. This allows for very efficient forward parsing.

e |tis efficient to find the start of a character when beginning from an arbitrary location in a byte stream of
UTF-8. Programs need to search at most four bytes backward, and usually much less. It is a simple
task to recognize an initial byte, because initial bytes are constrained to a fixed range of values.

e As with the other encoding forms, there is no overlap of byte values.

[moved up from Comparison/Binary Sorting without change]



Binary Sorting. A binary sort of UTF-8 strings gives the same ordering as a binary sort of
Unicode code points. This is obviously the same order as for a binary sort of UTE-32
strings.

[otherwise delete the whole final subsection]







