L2/21-003

UTS #18 Editorial additions: EBNF

M. Davis, 2021-01-XX

This is a continuation of L2/21-002 UTS #18 Editorial additions, a proposal for changes to https://unicode.org/reports/tr18/. It is broken out because a landscape view makes it
much easier to see these changes. This is simply for review; the final text in UTS #18 would not be this wide: the 2nd two columns will fit in a normal page width.

Problem: There is EBNF used to describe the structure of a Character Class. It needs some cleanup, because there are some omissions, typos, and stylistic inconsistencies.
(These were obscured because the EBNF is split by section, as each feature is introduced.)

Proposal: the old text (OLD) would be replaced by a table with the second & third columns, in each respective section, applying any necessary cleanup to references to the
EBNEF terms. Nole that the precise syntax is not normative in UTS #18, since it is typically adapted to the current syntax of any particular Regex Engine. The new EBNF may
deviate from the particulars of the old EBNF.

https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/21-003
https://docs.google.com/document/d/1chhDMPQhsnjqBny-u78nvcmxdwwMNqvAXwp4PhfBTPI/edit#
https://unicode.org/reports/tr18/

OLD

NEW

Comments

https://unicode.org/reports/tr18/#character_ranges

CHARACTER_CLASS

ITEM

CODE_POINT2

NEGATION
OPERATOR

ESCAPE

"[" NEGATION? ITEM (OPERATOR? ITEM)* "]"

"[" CHARACTER_CLASS "]"

CODE_POINT2

CODE_POINT2 "-" CODE_POINT2 // range
ESCAPE CODE_POINT

CODE_POINT

N

// union (no separator): AUB
“|1" // union (...): AUB
N

CHARACTER_CLASS
SEQUENCE
ITEM

LITERAL

NEGATION

ESCAPE
SYNTAX_CHAR
SPECIAL_CHAR
NON_SYNTAX_CHAR
SP

'[' NEGATION? SEQUENCE ']
ITEM+

LITERAL ('-' LITERAL)?
CHARACTER_CLASS

ESCAPE (SYNTAX_CHAR | SPECIAL_CHAR)
NON_SYNTAX_CHAR

HEX

14

N

AAVAVAVAVANRRY
[abcefnrtul
[*"SYNTAX_CHAR]

+

+ NEGATION is also known as complement

« union of items: A UB... This is replaced with operators in

RL1.3 Subtraction and Intersection

- Constraint: parse error if in range with 1st literal > 2nd literal

(some Regex Engines may allow ==)

» Different variants of SYNTAX_CHAR, SPECIAL_CHAR,
and NON_SYNTAX_CHAR can be adjusted for particular

contexts & compatibility

+ The exact set of SPECIAL_CHAR may vary across Regex

engines.

+ [NSYNTAX_CHAR] means all valid Unicode code points

except for those in SYNTAX_CHAR

REVIEW NOTE: The new rules severely limit the set of
characters allowed to be ESCAPEd, compared with the old

rules, more consistent with general practice.

Add below the rules:

The EBNF can be modified for compatibility with existing syntax, or enhanced with other features. For
example, to allow ignored spaces for readability, add \u{20} to SYNTAX_CHAR, and add SP? around
various elements, change ITEM+ to SP? ITEM (SP? ITEM)+, etc.

In subsequent sections of this document, additional EBNF lines will be added for additional features. In one
case, marked in a comment, one of the above lines will be replaced.

https://unicode.org/reports/tr18/#character_ranges
https://unicode.org/reports/tr18/#Subtraction_and_Intersection
https://unicode.org/reports/tr18/#Subtraction_and_Intersection

https://unicode.org/reports/tr18/#Hex_notation

<codepoint> := <character> HEX
<codepoint> := "\u" HEX_CHAR HEX_CHAR HEX_CHAR HEX_CHAR

<codepoint> := "\u{" HEX_CHAR+ "}" HEX_CHAR
<codepoints> := "\u{" HEX_CHAR+ (SEP HEX_CHAR+)* "}" CODEPOINT
SEP 1= \s+

= '\u' HEX_CHAR{4}

:= "\u{' CODEPOINT (SP CODEPOINT)* '}’
:= [B-9A-Fa-f]

'10' HEX_CHAR{4} | HEX_CHAR{1,5}

REVIEW NOTE: NEW is more precise about hex formats, &
merges SEP into SP.

[a-ay-T]

Add below: Note: \u{3bl 3b3 3b5 3b9} is just semantic sugar for \u{3b1}\u{3b3}\u{3b5}\u{3b9} — useful for
readability and concision but not a requirement. Thus [a-\u{3b1 3b3}- ¢ | behaves like [a-\u{3b1}\u{3b3}- ¢ | ==

https://unicode.org/reports/tr18/#property_syntax

CHARACTER_CLASS := POSITIVE_SPEC | NEGATIVE_SPEC

ITEM := POSITIVE_SPEC | NEGATIVE_SPEC

POSITIVE_SPEC := ("\p{" PROP_SPEC "}") | ("[:" PROP_SPEC ":1")
NEGATIVE_SPEC := ("\P{" PROP_SPEC "}") | ("[:~" PROP_SPEC ":]")
PROP_SPEC := <binary_unicode_property>

PROP_SPEC := <unicode_property> (":" | "=" | "=2" | "!=")
PROP_VALUE

PROP_SPEC = <script_or_category_property_value> ("|"

<script_or_category_property_value>)*

PROP_VALUE := <unicode_property_value> ("
<unicode_property_value>)*

CHARACTER_CLASS

PROP_SPEC
PROP_NAME
ID_CHAR
RELATION
PROP_VALUE

“\" [pP] '{' PROP_SPEC '}'

‘[:' PROP_SPEC ':]'

PROP_NAME (RELATION PROP_VALUE)?
ID_CHAR+

[A-Za-z0-9\ \-_]

R I (- [T

LITERAL*

* Adds to previous CHARACTER_CLASS rules.

« Constraint: PROP_NAME = valid Unicode property
name or alias, or extended property name or alias. See
RL1.2 Properties, 2.7 Full Properties, RL2.7 Full
Properties, and 2.8 Optional Properties

« Constraint: PROP_VALUE = valid Unicode property
value for that PROP_NAME

https://unicode.org/reports/tr18/#Hex_notation
https://unicode.org/reports/tr18/#property_syntax
https://unicode.org/reports/tr18/#RL1.2
https://unicode.org/reports/tr18/#Full_Properties
https://unicode.org/reports/tr18/#RL2.7
https://unicode.org/reports/tr18/#RL2.7
https://unicode.org/reports/tr18/#optional_properties

https://unicode.org/reports/tr18/#Subtraction_and_Intersection

OPERATOR := "&&" // intersection: ANB SEQUENCE ITEM (SEQ_EXTEND)* * Replaces SEQUENCE definition above which has just ITEM+
OPERATOR CHARACTER_CLASS | ITEM

Ik - union: A UB (explicit operator where desired for clarity)

:= "--" // set difference: A\B SEQ_EXTEND

i= "~~" // symmetric difference: (AUB)\(ANB) | OPERATOR
= 'R&' « intersection: ANB
o - set difference: ANB
o et - symmetric difference: AeB = (AUB)\(ANB)

Add below the rules:

For better backwards compatibility (and clarity), this syntax requires a character class after an operator. So
[ab&&([bc]] is valid, but [ab&&bc] is not. If there might be an ITEM to the right of the operator, [ab--cd] could

be interpreted as [[ab-c]d]. So it reduces the ambiguity to require a CHARACTER_CLASS and not just an
ITEM.

However, the exact way that operator precedence is handled may differ by regex implementation.

https://unicode.org/reports/tr18/#Character_Ranges_with_Strings

* Adds to previous ITEM rules.

ITEM : - literal string of characters

SP

"\q{" (CODE_POINT (SP CODE_POINT)*)? "}" | ITEM := '\g{' LITERAL* '}
\u{20}

REVIEW NOTE: the OLD SP was a duplicate of SEP and is now merged

https://unicode.org/reports/tr18/#Individuallv_Named_Characters

<codepoint> := "\N{" <character_name> "}" LITERAL := '"\N{' ID_CHAR+ '}’ « Adds to previous LITERAL rules.

« Constraint: ID_CHAR+ = valid Unicode name or alias

https://unicode.org/reports/tr18/#Subtraction_and_Intersection
https://unicode.org/reports/tr18/#Character_Ranges_with_Strings
https://unicode.org/reports/tr18/#Individually_Named_Characters

https://unicode.org/reports/tr18/#Wildcard _Properties

PROP_VALUE := <value>

nyn
ng"

<regex expression>

<unicode_property>

nyn
"

PROP_VALUE /' <regex expression> '/’ - Constraint: FUNCTION is a PROP_NAME or an extended function like toNFC.

‘@' FUNCTION ‘@’

Add in text below: For example, \p{name=/(SMILING|GRINNING)/} is the set of all characters whose name matches the
expression, such as € U+1F929 GRINNING FACE WITH STAR EYES

https://unicode.org/reports/tr18/#Wildcard_Properties
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bname%3D%2F%28SMILING%7CGRINNING%29%2F%7D

