Unicode request for Kaktovik numerals

Eduardo Marín Silva, nobodyusesmexamexo@gmail.com Catherine Strand, catherine.strand@nsbsd.org

Kirk Miller, kirkmiller@gmail.com
2021 March 16

This document supersedes L2/20-070 by Eduardo Marín Silva.
The Kaktovik numerals are a set of base-20 digits with a sub-base of 5 -that is, a penta-vigesimal system. Graphically, the sub-base forms the upper part of the digit and the remaining units the lower part, an iconic design that lends itself to graphical manipulation for arithmetic.

Kaktovik numerals are part of the curriculum in the North Slope Borough School District of Alaska. Though designed by speakers of Iñupiaq Eskimo (ISO code [esi]), they are equally suited to the penta-vigesimal systems of other Inuit and Yupik languages of Alaska, Canada and Russia, and they have the support of the Inuit Circumpolar Council.
Thanks to Deborah Anderson of the Universal Scripts Project for her assistance.

Design

Kaktovik numerals were made intentionally distinct from decimal Hindu-Arabic digits so that there could be no confusion between them. In speech as well, Kaktovik digits have been named in Iñupiaq and Hindu-Arabic digits in English in order to keep them distinct. There are 19 counting digits, composed of straight strokes joined at sharp angles, and a graphically distinct zero \quad.

The counting digits occupy the space of an upright golden rectangle, with a unit square at bottom and a smaller golden rectangle at top. The top rectangle is occupied by up to three horizontal strokes that tally the quinary sub-base (null, ${ }^{-},>,=$). The bottom square is occupied by up to four vertical strokes that tally the remaining units (null,
, V, U, W). The strokes are joined into a single continuous line, up to a maximum of $\underset{W}{W} 19(\leqslant 3 \times 5+W 4)$. This pattern, of combining fives and ones into scores, reflects the Inuit and Yupik languages much more closely than does the base-10 Hindu-Arabic system. It also lends itself directly to an abacus. Unlike the typical decimal abacus, which has one upper bead in each column, the Iñupiaq abacus has three upper beads (and four lower beads) in each column, corresponding to the three upper strokes and four lower strokes of the Kaktovik digits and to the sub-base numerals of the Iñupiaq language. See Figure 9.

Because the system is positional, the digit
, depending on its place, indicates $1,20,400,8000$, $16000,3200000,64000000$, etc., and the digit ${ }^{-}$indicates five times those amounts. Thus, when a digit occurs in the units place, the vertical strokes indicate the number of units and the horizontal strokes the number of fives in that digit. When in the twenties place, they indicate the number of scores and of hundreds. That is, five
(units) are ${ }^{-}$(5), four ${ }^{-}$(fives) are $\backslash \gamma\left(1 \times 20^{1}=20\right)$, five $\backslash \gamma$ (score) are ${ }^{-\gamma}\left(5 \times 20^{1}=100\right)$, four ${ }^{-\gamma}$ (hundreds) are $\backslash \gamma \gamma\left(1 \times 20^{2}=400\right)$, etc., and similarly to the right of the radix mark.

Written notation is unbounded. Spoken Iñupiaq, through compounding and a series of suffixes, can accommodate numbers up to just under 20^{12}, or a bit over 4 quadrillion (MacLean 2014).

History

The invention of the numerals is recounted in Bartley (1997, 2002). Bartley reports that 'prior to the invention of the Kaktovik Iñupiaq numerals, the numbers of the Iñupiaq language were falling into disuse and, except for the lower numbers, were being forgotten.'
Bartley was a math teacher at Harold Kaveolook School in Kaktovik, the easternmost village of the North Slope of Alaska. He recounts that in September, 1994, during a math enrichment activity exploring base- 2 numbers, students noted that Iñupiaq had a base- 20 system, and tried to do the exercises in base-20. They added ten invented digits to the Hindu-Arabic system to accommodate Iñupiaq numerals, but found them difficult to remember. Eventually, using the pattern of counting in Iñupiaq as a guide, they came up with a prototype of the current system. Bartley says 'it is a system which is a direct reflection of the way one counts in Iñupiaq.'

The students soon found that arithmetical operations could be performed graphically and so were much easier in their new notation. For example, $V+V=W$ and $\bar{\pi} \div H=\Gamma$ are visually obvious in a way that $2+2=4$ and $18 \div 3=6$ are not. For subtraction, one simply finds the shape of the subtrahend in the minuend; the answer is the strokes that remain, as in $\overline{\bar{w}}-\bar{\nabla}=\nabla(19-12=7)$. For long division, the students discovered a method of chunking (partial quotients), by using colored pencils to match the strokes of the divisor in the dividend, that didn't require the sub-tables that they had learned for Hindu-Arabic numerals. Examples of graphical chunking of long-division problems using Kaktovik numerals are given in Figure 11. and Figure 12.
To switch to and from Hindu-Arabic, students needed to convert between base-20 and base-10. This was initially facilitated with counters that were assigned place values, and these in turn lead to the idea of a base-20 abacus, which the students built in the school shop. (See Figure 9.) Due to the one-to-one correspondence between the upper and lower strokes of the Kaktovik numerals and the upper and lower beads of the abacus, learning to use an abacus for arithmetic was straightforward, and the Iñupiaq abacus is now an integral part of math education.

In the spring of 1995, the North Slope Borough Board of Education invited the students from Kaveolook School to fly to Utqiagivik (then Barrow) to present and explain their invention. In the fall of that year, Kaktovik numerals were added to the curricula of the Early Childhood Education immersion program in Utqiagivik and of the Iñupiaq-language classes in the villages of Wainwright and Point Lay in the west of the district, then to other elementary and middle schools across the North Slope, as well as to the regional high school in Utqiaǵvik. The Early Childhood Education program uses Kaktovik numerals to the exclusion of Hindu-Arabic, and an Iñupiaq-language textbook was written to teach math using Kaktovik numerals in the first-grade immersion classes. Iḷisaǵvik College in Utqiaġvik started a Kaktovik mathematics course.

In 1996, the Commission on Inuit History, Language \& Culture in Barrow gave their endorsement.
In 1997, scores on the California Achievement Test in mathematics at the Kaktovik middle school increased dramatically. Where the average score had previously been in the 20th percentile, after the introduction of the new numerals scores rose to above the national average.
In 1998, the Canadian chapter of the Inuit Circumpolar Council endorsed the numerals in Resolution 9, 'Regarding Kaktovik Numerals':

WHEREAS there is no widely-accepted means of representing (with simple numeric symbols) the traditional base-twenty counting systems used in Inuit languages; and

WHEREAS variations of a base-twenty counting system are part of our common Inuit cultural heritage, but these are being lost because fewer and fewer Inuit learn and use the traditional numbers; and

WHEREAS students in the Inuit community of Kaktovik have developed a base-twenty counting system which they desire to further research as a part of their on-going math education; and

WHEREAS the ICC recognizes the right of each community to its own numbering system;
THEREFORE BE IT RESOLVED THAT the Inuit Circumpolar Conference endorse further research into the use and development of the Kaktovik Numbering System, as well as any other local Inuit numbering system; and

BE IT FURTHER RESOLVED THAT the ICC encourage all member communities to try to make broader use especially in education of their own local base-twenty counting tradition in order to preserve and to revitalize the traditional Inuit counting systems.

Harold Kaveolook School burned nearly to the ground in February 2020. Though fortunately there was no loss of life, early records and many items attesting to the use of the system there were lost. We take this opportunity to express our condolences to the students and staff, and to the whole village that used the school as a community center, and hope for its swift reconstruction.

Name of the block

The Inuit Circumpolar Council (1998) calls these the Kaktovik numerals, after their place of origin. MacLean (2014) and teachers in the North Slope Borough School District do the same. There is a natural semantic distinction between 'Kaktovik numerals' - the graphic digits presented here and 'Iñupiaq numerals' - the lexical numerals of the Iñupiaq language. Kaktovik and Iñupiaq numbers are shown side-by-side in Figure 1. If the digits were used instead in the medium of, say, Canadian Inuktitut, then the correlation would be between Kaktovik and Inuktitut numerals.
(In version L2/20-070 this proposal, it was incorrectly stated that there was no precedent of naming a Unicode block after a town, but that is exactly the case for the Elbasan script.)

Characters

The only requested characters are the twenty digits. Existing Unicode characters can be used for the radix mark, arithmetical symbols, parentheses, etc. The digits are presented below in two available fonts, LaserIñupiaq from Linguists' Software at left and InupiaqNumbers, available free at GitHub, at right. LaserIñupiaq adheres to the golden-rectangle ideal, with the upper portion reserved for the fives count and otherwise left empty, while InupiaqNumbers deviates from this to make all digits but the bare sub-bases the same size.

In the North Slope Borough School District, Kaktovik numerals are named in Iñupiaq while HinduArabic numerals are named in English, but the names can be expected to vary according to the languages of the user (e.g. Inuktitut and French, or Chaplino and Russian). For the purposes of Unicode, English names are appropriate.

г (б) 1D2C0 KAKTOVIK NUMERAL ZERO
\ (
) 1D2C1 KAKTOVIK NUMERAL ONE
\checkmark (V) 1D2C2 KAKTOVIK NUMERAL TWO
h (U) 1D2C3 KAKTOVIK NUMERAL THREE
W (W) 1D2C4 KAKTOVIK NUMERAL FOUR

- (-) 1D2C5 KAKTOVIK NUMERAL FIVE

$\zeta(\checkmark)$	1D2C6 KAKTOVIK NUMERAL SIX
$\nabla(\nabla)$	1D2C7 KAKTOVIK NUMERAL SEVEN
π（ $\mathbb{\square}$ ）	1D2C8 KAKTOVIK NUMERAL EIGHT
W（W）	1D2C9 KAKTOVIK NUMERAL NINE
$>$（ ${ }^{(1)}$	1D2CA KAKTOVIK NUMERAL TEN
\rangle（ ${ }^{\text {P }}$	1D2CB KAKTOVIK NUMERAL ELEVEN
∇（ $\bar{\nabla})$	1D2CC KAKTOVIK NUMERAL TWELVE
$\vec{\square}(\overline{\text { a }}$ ）	1D2CD KAKTOVIK NUMERAL THIRTEEN
W（ ${ }_{\text {W }}$ ）	1D2CE KAKTOVIK NUMERAL FOURTEEN
\leq（ ${ }^{\text {c }}$	1D2CF KAKTOVIK NUMERAL FIFTEEN
$\leqslant($ ）	1D2D0 KAKTOVIK NUMERAL SIXTEEN
$\bar{*}$（ $\overline{\text { c }}$	1D2D1 KAKTOVIK NUMERAL SEVENTEEN
$\boxed{\square}$（ $\bar{\square}$ ）	1D2D2 KAKTOVIK NUMERAL EIGHTEEN
W（ ${ }_{\text {W }}$ ）	1D2D3 KAKTOVIK NUMERAL NINETEEN

Chart

		．．． 1	－			${ }^{.1}$	．．．		． 6	． 7	．．8	．．．	，	．${ }^{\text {A }}$	．${ }^{\text {B }}$	．．．		D	．．．		
Kataovik mumerals																					
U＋1D2Cx	\％	1		\checkmark	h	W	－		「	V	π	W	w	＞	？	\bar{V}	\geqslant	ひ	\％		－
U＋122Dx	\}	5		反	W																

Properties

```
1D2C0;KAKTOVIK NUMERAL ZERO;No;0;L;;;;0;N;;;;
1D2C1;KAKTOVIK NUMERAL ONE;No;0;L;;;;1;N;;;;
1D2C2;KAKTOVIK NUMERAL TWO;No;0;L;;;;2;N;;;;
1D2C3;KAKTOVIK NUMERAL THREE;No;0;L;;;;3;N;;;;
1D2C4;KAKTOVIK NUMERAL FOUR;No;0;L;;;;4;N;;;;
1D2C5;KAKTOVIK NUMERAL FIVE;No;0;L;;;;5;N;;;;
1D2C6;KAKTOVIK NUMERAL SIX;NO;0;L;;;;6;N;;;;
1D2C7;KAKTOVIK NUMERAL SEVEN;NO;0;L;;;;7;N;;;;
1D2C8;KAKTOVIK NUMERAL EIGHT;NO;0;L;;;;8;N;;;;
1D2C9;KAKTOVIK NUMERAL NINE;No;0;L;;;;9;N;;;;
1D2CA;KAKTOVIK NUMERAL TEN;No;0;L;;;;10;N;;;;
1D2CB;KAKTOVIK NUMERAL ELEVEN;No;0;L;;;;11;N;;;;
1D2CC;KAKTOVIK NUMERAL TWELVE;No;0;L;;;;12;N;;;;
1D2CD;KAKTOVIK NUMERAL THIRTEEN;No;0;L;;;;13;N;;;;
1D2CE;KAKTOVIK NUMERAL FOURTEEN;No;0;L;;;;14;N;;;;
1D2CF;KAKTOVIK NUMERAL FIFTEEN;No;0;L;;;;15;N;;;;
1D2D0;KAKTOVIK NUMERAL SIXTEEN;No;0;L;;;;16;N;;;;
1D2D1;KAKTOVIK NUMERAL SEVENTEEN;NO;0;L;;;;17;N;;;;
1D2D2;KAKTOVIK NUMERAL EIGHTEEN;NO;0;L;;;;18;N;;;;
1D2D3;KAKTOVIK NUMERAL NINETEEN;No;0;L;;;;19;N;;;;
```


Atomic encoding

We propose atomic encoding of twenty digits, parallel to the Mayan numeral block, where the digits are also composed graphically of fives and units but that is not reflected in their encoding. Other possibilities, per the discussion for Mende (L2/12-023 etc.), are (a) combining characters for the sub-bases of five and (b) ligatures, either of fives and strokes or just of strokes. Either would increase font overhead for no benefit other than reducing the number of characters. Ligatures would be further problematic because it would not be straightforward to distinguish strings of digits from the strings of strokes that form those digits, like encoding Hangul without syllabic blocks. (E.g. conflating $>\vee 202$ with $\nabla 12$, which would be a disaster in accounting.) Combining characters would have the complication of requiring two characters each for five, ten and fifteen, one standalone and one combining. Kaktovik digits are treated by their users as unitary symbols for most purposes, with decomposition only relevant for arithmetic - not the province of the font. Either ligatures or combining characters would complicate conversion with English and French vigesimal notation, such as conventional 0-9 + A-K; these notations would have a one-to-one correspondence with an atomic encoding of Kaktovik numerals.

References

William Clark Bartley (1997) 'Making the Old Way Count'. Sharing Our Pathways. (A newsletter of the Alaska Rural Systemic Initiative. Alaska Federation of Natives / University of Alaska / National Science Foundation.) Vol. 2, no. 1, January/February.
___ (2002) 'Counting on Tradition: Iñupiaq Numbers in the School Setting.' In Hankes \& Fast (eds.) Changing the Faces of Mathematics: Perspectives on Indigenous People of North America. National Council of Teachers of Mathematics.

Edgar Grunewald (2019) 'Why These Are The Best Numbers!' Artifexian podcast.
Inuit Circumpolar Council-Canada (1998). 'Regarding Kaktovik Numerals.' Resolution 89-09. Resolution 89-09.
Edna Ahgeak MacLean (2014) Iñupiatun Uqaluit Taniktun Sivuninit / Iñupiaq to English Dictionary. University of Alaska Press.

Charls Wohlforth (2016) 'With few fluent speakers left, young people are teaching Inupiaq as they learn it.' Anchorage Daily News, January 16.

with Kaktovik Numerals（first column）and Arabic Numeral Equivalents（third column）

\％suitchuq（＊see note）	0
\ atausiq	1
v malğuk	2
h pinasut	3
w sisamat	4
－tallimat	5
\ulcorner itchaksrat	6
\checkmark tallimat malġuk	7
$\boxed{\pi}$ tallimat pijasut	8
¢ qulinŋugutailaq	9
$>$ qulit	10
$>$ qulit atausiq	11
\geq qulit malğuk	12
Ћ qulit pijasut	13
\ d akimiagutailaq	14
＞akimiaq	15
₹ akimiaq atausiq	16
\(
) akimiaq malguk	17
\} akimiaq pinasut	18
W iñuiññagutailaq	19

％	iñuiñก̃aq	20
\1	iñuiññaq atausiq	21
IV	iñuiññaq malg̉uk	22
In	iñuiññaq piyasut	23
IW	iñuiññaq sisamat	24
1－	iñuiññaq tallimat	25
Ir	iñuiññaq itchaksrat	26
	iñuiññaq tallimat malġuk	27
	iñuiññaq tallimat pijasut	28
\W	iñuiññaq quliņugutailaq	29
1^{7}	iñuiññaq qulit	30
17	iñuiññaq qulit atausiq	31
12	iñuiññaq qulit malguk	32
1	iñuiññaq qulit pigasut	33
1 W	iñuiññaq akimiagutailaq	34
15	iñuiñ̃̃aq akimiaq	35
1F	iñuiññaq akimiaq atausiq	36
1\％	iñuiññaq akimiaq malġuk	37
1布	iñuiññaq akimiaq pijasut	38
＄	malğukipiaǵutailaq	39

V ${ }^{\text {r }}$	malġukipiak	40
v	malġukipiaq atausiq	41
VV	malgukipiaq malg̉uk	42
vn	malġukipiaq pinasut	43
vw	malgukipiaq sisamat	44
v^{-}	malgukipiaq tallimat	45
V	malġukipiaq itchaksrat	46
VF	malgukipiaq tallimat malg̉uk	47
$\checkmark \pi$	malgukipiaq tallimat pijasut	48
vW	malġukipiaq quliņuġutailaq	49
$\mathrm{v}^{>}$	malgukipiaq qulit	50
v？	malgukipiaq qulit atausiq	51
v	malġukipiaq qulit malguk	52
v	malğukipiaq qulit pijasut	53
v W	malgukipiaq akimiagutailaq	54
v^{5}	malgukipiaq akimiaq	55
v5	malgukipiaq akimiaq atausiq	56
v	malġukipiaq akimiaq malguk	57
\checkmark 右	malġukipiaq akimiaq pijasut	58
VW	pinasukipiagutailaq	59

Figure 1．MacLean（2014： 836 ff ）．The lower numbers， 1 to 59．Note that the Kaktovik numbers in the tens＇and fifteens＇rows are graphically simpler than those immediately above and below them，and that the corresponding Iñuiaq numbers are lexically simpler than those above and below them．The word for twenty is iñuiññaq，but multiples of twenty（up to twenty score）use the suffix－ipiak＇score＇． The word for 59 is threescore－less－one，with the subtractive suffix－utailaq．

$>_{\gamma}$	qulikipiaq	200
s_{γ}	akimiakipiaq	300

Figure 2．Ibid．Simple combinations of Kaktovik digits generally correspond to single Iñupiaq words．Here the sub－base digits plus a zero， $\boldsymbol{\gamma}(2 \times 5 \times 20)$ and $\boldsymbol{= \gamma}(3 \times 5 \times 20)$ ，are read qulikipiaq＇ten－score＇and akimiakipiaq＇fifteen－score＇．

\ヵ\％	iñuiññakipiaq（traditional form） or，in reindeer herding and math，ilagiññaq	400
Vry	malguagliaq	800
hror	pijasuagliaq	1，200
Wry	sisamaagliaq	1，600
$\chi_{\gamma \gamma}$	tallimaagliaq	2，000
$>_{\gamma \gamma}$	quliagliaq	4，000
$S_{\gamma \gamma}$	akimiagliaq	6，000

Figure 3．Ibid．Multiples of $400(1 \times, 2 \times, 3 \times, 4 \times, 5 \times, 10 \times, 15 \times$ ）．The word for 400 ， iñuiññakipiaq，means twenty－score，but multiples of 400 use the suffix－agliaq．

W配	atausiqpautailaq	7，999
\．रヶ）	atausiqpak	8，000
V．888	malġuqpak	16，000
	pijasuqpak	24，000
W．rer	sisamaqpak	32，000
－．8r	tallimaqpak	40，000
「．¢ر子	tallimaqpak atausiqpak	48，000
	tallimaqpak malguqpak	56，000
	tallimatqak pinasuqpak	64，000
W．ror	tallimaqpak sisamaqpak	72，000
＞ 78γ	quliqpak	80，000
？．8ry	quiliqpak atausiqpak	88，000

Figure 4．Ibid．Multiples of $8000(1 \times, 2 \times, 3 \times, 4 \times, 5 \times, 6 \times, 7 \times, 8 \times, 9 \times, 10 \times, 11 \times$ ），using the suffix－pak．The number word at top is 8000 －less－one，with the subtractive suffix－ utailaq．That suffix has no correspondence in the written number．
Table 4．The Decimal System and the Iñupiaq System．

97，531 in the Decimal System		$\geq, n \Psi 7=97,531$ in the Iñupiaq System			
		V	＞（V）	2	forty－thousands
			\checkmark	2	eight－thousands
		n	（ ${ }^{\text {）}}$	0	two－thousands
9	ten－thousands		n	3	four－hundreds
7	thousands	$₹$	s（ L ）	3	hundreds
5	hundreds		\backslash	1	score
3	tens	＜	$>_{\text {（V）}}$	2	fives
1	ones		\}	1	ones

Figure 5．Ibid．p．834．The upper and lower portions of the digits $\vec{\nabla} h \leqslant\rangle$ correspond to the upper and lower beads of an Iñupiaq abacus，making arithmetic straightforward．

Figure 6. Handwritten forms on the front board in one of our (Catherine Strand's) Early Childhood Education language-immersion class in Kaktovik, 2017-2018 school year. Note that the digits without a sub-base of 5 are not as tall as the digits with a sub-base: the lower strokes do not expand into the upper region of the glyph even when nothing occupies it. Good font design will reflect this stroke arrangement.

Figure 7. Some of Strand's kindergartners with Kaktovik number blocks. The upward sides show W 4 and $\gamma 0$, with counters to match.

Figure 8. Wohlforth (2016). Front board of a classroom in Utqiagivik (Barrow), displaying Kaktovik numbers and their Iñupiaq readings.

Figure 9. An Iñupiaq base-20 abacus.

Figure 10. Visual addition $(2+2=4)$.

Figure 11. Grunewald (2019: 2m26s). Modified screenshot [some color added] of a subtitled video made by a language enthusiast, demonstrating how long division is easier in Kaktovik numerals than in Hindu-Arabic, due to one being able to see the divisor in the dividend. The problem here is $И ₹ \llbracket \backslash(30,561) \div M \backslash(61)=\backslash \backslash(501)$. This is a simple problem, appropriate for introducing the concept to children.

Figure 12. Grunewald (2019: 2m56s). A second modified screenshot, showing that the first digit in the quotient is $V(2)$, because the divisor fits into the first three digits of the dividend twice (seen in the red and blue chunking of the underlined digits). The second digit of the quotient is $\backslash(1)$, because when we shift over one place to the right, the divisor can be traced in the dividend once (green). The third digit is $\gamma(0)$, because when we shift one more place to the right, no strokes remain for chunking. The divisor matches the remaining digits of the dividend (white), for a final digit in the quotient of one.

The problem is $\bar{W} \bar{W} \bar{\pi} \bar{\pi} \backslash\ulcorner(46,349,226) \div \nabla \backslash(2,826)=V \backslash \gamma \backslash(16,401)$.

Figure 13. Bartley (1997: 13). An early account of the system.

Laserlinupiaq Samples

Laserlñupiaq (Times-style)
Iñupiaq Special Characters

Ǵg Ł t Ł Ł L !

Base 20 Number System (Kaktovik Numerals)
The first line is the InupiaqLS font; the second line shows the heavy top strokes of the InupiaqLSB font

Figure 14. Kaktovik digits in Linguist's Software's LaserIñupiaq font (1997, redesigned 2010). This is the font used for MacLean (2014). LaserYukon uses the same design. The glyphs were (re)designed to Bartley's specifications, and closely follow Bartley (1997).

ISO/IEC JTC 1/SC 2/WG 2
 PROPOSAL SUMMARY FORM TO ACCOMPANY SUBMISSIONS FOR ADDITIONS TO THE REPERTOIRE OF ISO/IEC $10646{ }^{1}$ Please fill all the sections A, B and C below.
 Please read Principles and Procedures Document (P \& P) from std.dkuug.dk/JTC1/SC2/WG2/docs/principles.html for guidelines and details before filling this form. Please ensure you are using the latest Form from std.dkuug.dk/JTC1/SC2/WG2/docs/summaryform.html. See also std.dkuug.dk/JTC1/SC2/WG2/docs/roadmaps.html for latest Roadmaps.

A. Administrative

B. Technical - General

1. Choose one of the following:
a. This proposal is for a new script (set of characters):

- - - - - - -

2. Number of characters in proposal:
3. Proposed category (select one from below - see section 2.2 of P\&P document):

4. Fonts related:
a. Who will provide the appropriate computerized font to the Project Editor of 10646 for publishing the standard?

MIT-licensed font available at GitHub, https://github.com/0xcf843ecf802c722f434d56/InupiaqNumbers
$\overline{\mathrm{b}} . \overline{\text { Identify }} \overline{\text { the }} \overline{\text { party }}$ granting a license for use of the font by the editors (include address, e-mail, $\overline{\mathrm{ftp}} \overline{\mathrm{p}} \overline{\mathrm{site}} \overline{\text { etc. }}$):

6. References:
a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided?
b. Are published examples of use (such as samples from newspapers, magazines, or other sources) of proposed characters attached?
$---\frac{\text { yes }}{\text { yes }}----$

7. Special encoding issues:

Does the proposal address other aspects of character data processing (if applicable) such as input, presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)?

8. Additional Information:

Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script that will assist in correct understanding of and correct linguistic processing of the proposed character(s) or script. Examples of such properties are: Casing information, Numeric information, Currency information, Display behaviour information such as line breaks, widths etc., Combining behaviour, Spacing behaviour, Directional behaviour, Default Collation behaviour, relevance in Mark Up contexts, Compatibility equivalence and other Unicode normalization related information. See the Unicode standard at http://www.unicode.org for such information on other scripts. Also see Unicode Character Database (http://www.unicode.org/reports/tr44/) and associated Unicode Technical Reports for information needed for consideration by the Unicode Technical Committee for inclusion in the Unicode Standard.

1. Form number: N4502-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09, 2003-11, 2005-01, 2005-09, 2005-10, 2007-03, 2008-05, 2009-11, 2011-03, 2012-01)

C．Technical－Justification
1．Has this proposal for addition of character（s）been submitted before？ If YES explain
2．Has contact been made to members of the user community（for example：National Body， user groups of the script or characters，other experts，etc．）？＿－yes＿－－

$$
\text { If YES, with whom? } \quad \ldots \ldots \text { Ronald H Brower Sr., Edna Ahgeak MacLean }
$$

If YES，available relevant documents：
3．Information on the user community for the proposed characters（for example： size，demographics，information technology use，or publishing use）is included？ Reference：
 Reference： Reference：
5．Are the proposed characters in current use by the user community？ If YES，where？Reference：
6．After giving due considerations to the principles in the P\＆P document must the proposed characters be entirely in the BMP？

If YES，is a rationale provided？
If YES，reference：
＿－－no＿－－

8．Can any of the proposed characters be considered a presentation form of an existing character or character sequence？

If YES，is a rationale for its inclusion provided？
If YES，reference：
9．Can any of the proposed characters be encoded using a composed character sequence of either existing characters or other proposed characters？

If YES，is a rationale for its inclusion provided？
－ーーーーー
If YES，reference：
10．Can any of the proposed character（s）be considered to be similar（in appearance or function）
to，or could be confused with，an existing character？
no
If YES，is a rationale for its inclusion provided？
$------$
If YES，reference：
11．Does the proposal include use of combining characters and／or use of composite sequences？
If YES，is a rationale for such use provided？
If YES，reference：
Is a list of composite sequences and their corresponding glyph images（graphic symbols）provided？
If YES，reference：
12．Does the proposal contain characters with any special properties such as control function or similar semantics？

no

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

13．Does the proposal contain any Ideographic compatibility characters？
no－
If YES，are the equivalent corresponding unified ideographic characters identified？
ーーーーーーー
－－－－－－
If YES，reference：

