L2/21-112

Issues in Devanagari cluster validation

The Unicode Standard and the documentation of the OpenType Devanagari and Universal shaping engines don’t
agree on the definition of a valid Devanagari cluster, and Devanagari cluster validation in OpenType shaping

engines and in fonts produces inconsistent results.

Contents

What'’s cluster validation?

What’s a valid Devanagari cluster?
Characters used in and with the Devanagari script
Unicode character properties for Devanagari
Devanagari clusters in the Unicode Standard
Devanagari clusters in the Devanagari shaping engine
Devanagari clusters in the Universal shaping engine

Test environments

Cluster bases

Repha

Nukta

Virama

Unusual mark combinations

Udatta and Anudatta

Vedic character combinations

Canonical-equivalent mark sequences

Confusable mark sequences

Repeated marks

“Discouraged” characters

“Do not use” character sequences

Marks without bases

References

What’s cluster validation?

In complex writing systems, it’s not always obvious in which order characters that are
pronounced together or that form a cluster in rendering should be stored in a Unicode character
sequence. Glyphs are often rendered in a different sequence than the corresponding sounds in
spoken language are pronounced, and commonly some glyphs are shown above or below other

rick
Text Box
L2/21-112

glyphs, where the ordering is not clear. However, a defined character sequence is often important
for correct processing of the text — sorting strings, searching for specific words, finding line
breaks, and rendering the text using fonts.

Both the Unicode Standard and the OpenType script development documents therefore
commonly define the structure of a valid cluster in a script. OpenType shaping engines for
complex scripts usually validate incoming text as the first step in transforming a character
sequence into a two-dimensional arrangement of glyphs, and insert a dotted circle = whenever
they find a character where they don’t expect it. Fonts implemented using the Graphite and Apple
Advanced Typography shaping systems have to implement validation themselves.

Unfortunately the Unicode Standard and the OpenType script development documents don’t
always agree with each other on the structure of valid clusters, or even have internal
inconsistencies, and shaping engine implementations don’t always follow either of these

documents.

What’s a valid Devanagari cluster?

Defining a cluster model for Devanagari is complicated by the fact that Devanagari has been used
over a very long time (close to 2000 years) and for over 200 languages (SIL). Documentation
about the script tends to focus on contemporary use for a few popular languages such as Hindji,
Marathi, and Nepali, and on historical use for Sanskrit. It’s easy to derive from such
documentation a set of character combinations that must be supported, but it’s not sufficient to
derive which combinations should be prohibited. This document therefore compares current
documentation of cluster models in the Unicode standard and OpenType documentation as well
as a range of implementations to find disagreements that need to be investigated and resolved.

Characters used in and with the Devanagari script

Based on the the core specification and the data for Unicode 13.0, this document uses the
following Devanagari character set:

e The characters U+0900..U+0952 and U+0955..U+097F in the Unicode block
“Devanagari”. These characters have the Script property value “Devanagari”. Two
characters in this block, U4+0953 DEVANAGARI GRAVE ACCENT and U+0954
DEVANAGARI ACUTE ACCENT, should no longer be used.

e The characters in the Unicode block “Devanagari Extended”, U+A8EO - U+AS8FE
These characters have the Script property value “Devanagari”.

e The characters U+1CDO - U+1CF6 and U+1CF8 — U+1CF9 in the Unicode block
“Vedic Extensions”. These characters have the Script property value “Common” or
“Inherited” and a Script_Extensions property value that includes the script code “Deva”.
Two characters in this block, U+1CF7 and U+ 1CFA, do not include “Deva” in their
Script_Extensions property values and are therefore excluded.

e The characters in the Unicode block “Common Indic Number Forms”, U+A830 -
U+A839. These characters have the Script property value “Common” and a

Script_Extensions property value that includes the script code “Deva”.

The character U+20F0 COMBINING ASTERISK ABOVE. This character has the Script
property value “Inherited” and a Script_Extensions property value that includes the
script code “Deva”.

The characters U+002C comMa, U+002E FULL sTop, U+02BC MODIFIER LETTER
APOSTROPHE, U+200C ZERO WIDTH NON-JOINER, and U+200D ZERO WIDTH JOINER.
These characters have the Script property value “Common” or “Inherited” and are
mentioned in the Devanagari section of the Unicode Standard as being used with
Devanagari. U+0300 COMBINING GRAVE ACCENT and U+0301 COMBINING ACUTE
ACCENT are also mentioned in the chapter, but apparently only intended for use with
Latin.

The characters U+00AO NO-BREAK SPACE and U+25CC DOTTED CIRCLE. These
characters have the Script property value “Common” and are commonly used as bases to
show stand-alone marks in any script.

Unicode character properties for Devanagari

The Unicode Standard provides several character properties that can help describe the structure

of Devanagari clusters. The Universal Shaping Engine (USE), part of OpenType rendering

systems, uses these properties to define character classes, which are used in its definition of

(generic Brahmic) clusters. The following table shows the Devanagari characters identified above

and their properties and classes.

Code points Characters Gen- |Canon- Indic syl- |Indic |USE subclass
eral |ical labic posi-
cate- lcom- |category | tional
gory | bining cate-
class gory
0971 Lm |0 Other NA |BASE_IND
1CF2..1CF3 ¢ Lo |0 Consonan- [NA |BASE _IND
t Dead
0950, FPygygd |Lo |0 Other NA |BASE IND
A8F4..A8F7,
AS8FB, ASFD
1CED o Mn 220 Other Bot- |BASE IND
tom
1CE2..1CE8 Mn |1 Other Over- |BASE_IND
struck
002C, 002E, , llle"wo " |Po |0 Other NA |BASE_IND
0964..0965, o
0970, 1CD3,
AB8F8..A8FA,

AS8FC

02BC ’ Lm Other NA | OTHER
1CE9..1CEC, &8 vwvn&& |Lo Other NA |OTHER
1CEE..1ICF1 8%
A830..A835 == No Other NA | OTHER
1CF5..1CF6 Xw Lo Consonan- [NA |CONS_WITH_STACKER
t With_S-
tacker
093D N Lo Avagraha |NA |BASE
A8F2..A8F3 M Lo Bindu NA BASE
0915..0939, ®ETYSAY |Lo Consonant |[NA |BASE
0958..095F SIHAACSET S
0978..097F R R I)
TIHHIIYA
BHFIUTIE
FETASTH
AEFITF?
EX|
0904..0914, FFATIIFH Lo Vowel In- |[NA |BASE
0960..0961, FGUTTTT A dependent
0972..0977, 3t ot 3t K
A8FE Agatatay
g
0966..096F 022384&9 |Nd Number |NA | BASE
¢R
25CC So Consonan- [NA |BASE_OTHER
t_Place-
holder
00AO Zs Consonan- [NA |BASE _OTHER
t_Place-
holder
093C Mn Nukta Bot- |CONS_MOD_BELOW
tom
094D o Mn Virama Bot- |HALANT
tom
093FE 094E ot Mc Vowel_De- |Left |VOWEL_PRE
pendent
093A, Vowel De- |[Top |VOWEL ABOVE
0945..0948, pendent

0955, A8FF

0941..0944, 0 Vowel De- |Bot- |VOWEL BELOW
0956..0957, Q@ pendent tom
0962..0963
093B, 093E, Mc |0 Vowel De- |Right | VOWEL POST
0940, pendent
0949..094C,
094F
0900..0902 Mn |0 Bindu Top |VOWEL MOD_ABOVE
0951, 230 Cantilla- |Top |VOWEL MOD_ABOVE
1CDO0..1CD2, ; tion_Mark
1CDA..1CDB,
1CEO, 1CF4,
20FO0,
A8EO0..A8F1
0952, 220 Cantilla- |Bot- |VOWEL MOD_ BELOW
1CD5..1CD9, tion_Mark |tom
1CDC..1CDF
1CD4 = Mn |1 Cantilla- | Over- VOWEL_MOD_BELOW
tion_Mark |struck
1CE1 § Mc |0 Cantilla- |Right | VOWEL MOD_POST
tion_Mark
0903 Mc |0 Visarga Right | VOWEL MOD_POST
A838) Sc 0 Other NA | SYM or BASE _IND
A836..A837, 06§ So 0 Other NA |SYM or BASE IND
A839
200D cf |0 Joiner NA | ZERO_WIDTH_JOINER
200C Cf 0 Non_Joiner NA | ZE-
RO_WIDTH_NON JOINER
1CF8..1CF9 Mn 230 Cantilla- |NA | undefined
tion_Mark

There are some problems in this table:

e The classification of code points 1CED and 1CE2..1CES$ is clearly wrong — combining

marks aren’t meant to be used by themselves, as BASE_IND would indicate.
e Code points A838 and A836..A837, A839 could by the current classification be either
BASE_IND or SYM.
e For code points 1CF8..1CF9 the Unicode data isn’t sufficient to fully determine the USE

character classes, although it appears that their positional category should be Top and
their USE subclass therefore VOWEL_MOD_ABOVE.

We’ll investigate below what this means for validation specifications and implementations.

Devanagari clusters in the Unicode Standard

The description of Devanagari in the Unicode Standard doesn’t provide a concise definition of an
orthographic Devanagari cluster. Instead, there are several separate pieces of information
scattered over the chapter:

e A dead consonant is a consonant followed by a virama; it can’t be followed by a vowel,
whether independent or dependent (page 447).

e A live consonant is a consonant not followed by a virama (it doesn’t necessarily mean that
the inherent vowel in a live consonant is actually pronounced).

e Consonant clusters consist of an (often empty) sequence of dead clusters, followed by
one live consonant (page 451).

e A live consonant can be followed by a dependent vowel (page 451).

e A dead consonant shouldn’t be followed by an independent or dependent vowel (page
451).

e The tables 12.1, 12.2, and 12.3 show glyphs for vowel letters, atomic consonants, and
consonant conjuncts respectively that have a simple encoding as well as longer character
sequences that could result in the same rendering. The longer character sequences
should not be used (pages 450-452 and 454).

e A dead consonant can be followed by U+200C ZERO WIDTH NON-JOINER or U+200D
ZERO WIDTH JOINER to control conjunct formation (pages 454-455).

e Independent vowels stand on their own (page 449).

e Dependent vowels do not stand on their own; they’re used in combination with a base
letterform (page 449).

e The nukta sign can immediately follow a consonant, and precede a virama (page 460).
e Other modifying marks should follow all other characters in the cluster. Bindus follow
vowel signs; svaras come last (page 460). Unfortunately, the standard doesn’t define

what it means by “bindus” and “svaras” in this context. “Bindus” are later (page 466)
described as “represented by U+0901 DEVANAGARI SIGN CANDRABINDU and U+0902
DEVANAGARI SIGN ANUSVARA”, but may also correspond to the Indic shaping category
“Bindu”, which has three additional Devanagari characters. “Svara” commonly means
“vowel”, but the text makes clear that it here refers to some “other type of combining

mark” besides vowels.

e Storage of plain text generally follows phonetic order; that is, a CV syllable with a
dependent vowel is always encoded as a consonant letter C followed by a vowel sign V
(page 461).

e A cluster-initial RA can have U+200D ZERO WIDTH JOINER before or after the virama to
control alternate forms (page 462).

From that we can derive a regular expression for a Devanagari cluster, assuming terms relating to
Indic syllabic categories mean those categories and that the undefined “svara” means all
remaining categories that contain marks, and using the syntax characters of
Perl/Python/Java/JavaScript regular expression patterns:

Vowel Independent | (0930 Nukta? Joiner? Virama)? (Consonant Nukta? Virama

(Joiner | Non_Joiner)?)* Consonant Nukta? (Virama | Vowel Dependent? [0900-
0902]* (Cantillation_Mark | Visarga | 1CED | [1CE2-1CE8])*)

The canonical combining classes don’t always align with this, however. In particular, the
cantillation marks U+1CD4 and U+1CE2..U+1CE8 have combining class 1, so normalization
would reorder them to before a nukta, which has combining class 7.

The regular expression does not capture that an independent vowel shouldn’t follow a virama.
The Unicode Standard also includes three tables showing glyphs for vowel letters, atomic
consonants, and consonant conjuncts that have a simple encoding as well as longer character
sequences that could result in the same rendering. The longer character sequences should not be
used. Validation has to check for any such character sequences and reject them.

Devanagari clusters in the Devanagari shaping engine

In OpenType rendering systems, Devanagari is usually handled by the Devanagari shaping engine.
The documentation for this engine provides three patterns for Devanagari syllables:

{C+[N]+<H+[<ZWN]J|ZW]>]| <ZWN]J|ZW]J>+H>} + C+[N]+[A] + [< H+
[<ZWN]J|ZW]>] | {M}+[N]+[H]>]+[SM]+[(VD)]

[Ra+H]+V+[N]+[<[<ZW]J|ZWN]J>]+H+C|ZWJ+C>]+[{M} +[N]+[H]] +
[SM]+[(VD)]

#[Ra+H]+NBSP+ [N]+[<[<ZWJ|ZWNJ>]+H+C>]+ [{M}+[N]+[H]]+ [SM] +
[(VD)]

The syntax of these patterns is documented, except for the “#” character, but of the nonterminals
only some clearly map to Unicode character categories, and especially SM, syllable modifier signs,
and VD, vedic, seem to be buckets with a large variety of characters. My best guess for the
meaning of the symbols that don’t directly map to Indic syllabic categories:

e M, matra: Vowel Dependent

e SM, syllable modifier signs: [0900-0902] | 0951 | 20F0 | [AS8E0-A8F1] | Visarga

e VD, vedic: [1CD0-1CD2] | [ICDA-1CDB] | 1CEO | 1CF4 | [1CD5-1CD9] | [1CDC-
1CDF] | 1CD4 | 1CE1 | [1CF8-1CF9] | 1CED | [1CE2-1CE8], or in shorter form
[1ICDO-1CD2] | [1CD4-1CE8] | 1CED | 1CF4 | [1CF8-1CF9]

With that, and omitting the unexplained “#”, the patterns become:

(Consonant Nukta? (Virama (Non_Joiner | Joiner)? | (Non_Joiner | Joiner)
Virama))* Consonant Nukta? 0952? (Virama (Non_Joiner | Joiner)? |
Vowel Dependent* Nukta? Virama?)? SM? VD{0,2}

(0930 Virama)? Vowel Independent Nukta? ((Joiner | Non_Joiner)? Virama
Consonant | Joiner Consonant)? (Vowel Dependent* Nukta? Virama?)? SM?
VDA{0,2}

(0930 Virama)? 00AO0 Nukta? ((Joiner | Non_Joiner)? Virama Consonant)?

(Vowel Dependent* Nukta? Virama?)? SM? VD{0,2}

Devanagari clusters in the Universal shaping engine

The Universal shaping engine (USE) in OpenType is a generic shaping engine designed primarily
for Brahmic scripts. It is not the default engine for Devanagari, but the OpenType
implementations in HarfBuzz and CoreText let a font opt into shaping by the USE by using the
“dev3” script tag.

The USE’s cluster validation is quite clearly defined, as long as all characters involved have their
USE classes fully defined — which, as we’ve seen above, unfortunately isn’t the case for
Devanagari. My best guesses for the classes of characters where the USE class is currently
undefined, wrong, or ambiguous:

e 1CF8..1CF9: VOWEL MOD ABOVE

e 1CED: VOWEL_MOD_BELOW

1CE2..1CE8: VOWEL_MOD_BELOW (CONS_FINAL MOD might be possible as well)
A838, A836..A837, A839: SYM

Omitting classes and cluster patterns that aren’t relevant to Devanagari, the patterns defined in
the USE documentation become:

BASE_IND | OTHER

CONS_WITH_STACKER? (BASE | BASE_OTHER) CONS MOD_BELOW*
(HALANT BASE CONS_MOD_BELOW*)* VOWEL PRE* VOWEL_ABOVE*
VOWEL BELOW* VOWEL_POST* VOWEL_MOD_ABOVE*

VOWEL MOD_BELOW* VOWEL_MOD_POST*

CONS_WITH_STACKER? (BASE | BASE_OTHER) CONS_MOD_BELOW*
(HALANT BASE CONS_MOD_BELOW*)* HALANT

SYM

Test environments

The following sections look at the differences between these definitions and test how different
implementations handle them. The comparison tables have the following columns, some of them
only in Firefox or in Safari:

e Text or Noto: Shows a Devanagari character sequence that may or may not be a valid
cluster, rendered using an OpenType Devanagari shaping engine and the Noto Sans
Devanagari font.

e Dev3 (only in Firefox and Safari): Shows the same Devanagari character sequence,
rendered using an OpenType Universal shaping engine and a modified version of an
older version of the Noto Sans Devanagari font (the last one under the Apache license),
in which “dev2” script tags have been replaced with “dev3” script tags. In environments

supporting “dev3” script tags, this causes the font to be handled by the USE. Note that
the USE differs from the Devanagari shaping engine not only in validation (which we
want to test here), but also in subsequent reordering and feature processing steps. The
font is not designed for compatibility with these differences, so some character
sequences may be rendered in ways not intended by its designers.

e Annapurna (only in Firefox): Shows the same Devanagari character sequence, rendered
using the Graphite shaping system and the Annapurna font. As a Graphite font, this font
has to implement cluster validation itself.

e Sangam and MT (only in Safari): Shows the same Devanagari character sequence,
rendered using the AAT shaping system and the Devanagari Sangam MN and
Devanagari MT fonts. As AAT fonts, these fonts should implement cluster validation
themselves. As it turned out, Devanagari MT doesn’t do any validation and doesn’t even
have a dotted circle glyph.

e Code: Shows the Unicode code points of the Devanagari character sequence, as the tests
often involve reordering the sequence of non-spacing marks or invisible characters.

e Unicode, OpenType dev2, and OpenType dev3: Whether the cluster definitions discussed
above would consider the character sequence a valid cluster (v) or invalid ().

e Edge, Firefox dev2, Safari dev2, Firefox dev3, and Safari dev3: Whether these browsers and
the underlying OpenType shaping systems (DirectWrite for Edge, HarfBuzz for Firefox,
and CoreText for Safari) consider the character sequence a valid cluster or not, as
evidenced by the rendering using Noto Sans Devanagari (dev2) or the modified Dev3
font (dev3) in these browsers. For Edge, the “legacy” version was tested, as the new
Chromium-based version uses HarfBuzz rather than DirectWrite for shaping.

e Annapurna, Sangam, and MT: Whether the Annapurna, Devanagari Sangam MN, and
Devanagari MT fonts consider the character sequence a valid cluster or not, as evidenced
by the rendering in Firefox or Safari.

When a font doesn’t support all the characters in the tested character sequence, the
corresponding cells are shown in gray.

Cluster bases

The Devanagari section of the Unicode Standard describes only consonants as cluster bases; the
Devanagari shaping engine adds independent vowels and NO-BREAK SPACE; the Universal Shaping
Engine also allows digits, avagraha characters, and DOTTED CIRCLE.

This table tests with the consonant &, the independent vowel 3, the digit o, the DEVANAGARI
SIGN AVAGRAHA $, the VEDIC SIGN ARDHAVISARGA %, and the dotted circle by attaching the nukta

2, the pre-base vowel 2, the anusvara «, and the visarga <.

Noto |Dev3 | Sangam | MT | Code | Uni- | Open- | Open- | Edge | Fire- | Safari | Fire- | Safari| Anna- |Sangam | MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3

g Ed Ed F (0915 ¥ v v v v v v v v v v

093C

fe | f& f& | f%|0915 v v
093F

& | & & % | 0915 v v
0902

h: h: &: %: | 0915 v v
0903

I oA | | 0905 v v
093C

far | far | erf> | far | 0905) v
093F

3 | gt 3 3 | 0905 v v
0902

3t | e a: | = | 0905 v v
0903

o o os o | 0966 v)
093C

of | foo | ofd | of 0966))
093F

o o 0: o 10966 v)
0902

om: | o | emx | o: | 0966 \4 v
0903

s | S s | s |093D v)
093C

st | fso | sf: | sf1093D))
093F

st € S s 1093D v)
0902

S S: Sin s: 093D 4 v
0903

X X 1CF2
093C

<2 | xf2 1CF2
093F

NG X 1CF2
0902

X X 1CF2

0903

25CC| = o v v v v v v v

093C
2 2 of 25CC| = o v v | Y v v v)
093F
25CC| = o v v v v v v v
0902
25CC| = o v v | Y v v v v
0903
00AQ | = v v v | Y v v v v
093C
2 > 00A0| = v v v v o v v v
093F
00A0 | = v v v | Y v v v v
0902
00AQ | = v v v | Y v v v v
0903

Observations: The set of supported cluster bases varies significantly. Shaping engines support
more than the Unicode Standard and the Devanagari shaping engine documentation would
suggest, but support for digits and avagraha is limited. It’s not clear whether HarfBuzz’s support
for ardhavisarga as a base is based on evidence that marks attach to it.

Recommendations: Cluster models for Devanagari should include consonants, independent
vowels, digits, avagraha, dotted circle, and no-break space as base characters. Which Vedic signs
to include as bases needs to be decided based on evidence that marks attach to them - see the

section Vedic character combinations for some examples.

Repha

Repha is an above-base mark representing an initial dead consonant Ra in a cluster. According to
the Unicode Standard, it’s encoded as RA plus vIRAMA when followed by a consonant, but as just
RA when followed by a vowel (primarily vocalic r and 1), which should be encoded in its
dependent form. The regular expressions for the Devanagari shaping engine, on the other hand,
expect repha-vowel combinations to be encoded as RA plus VIRAMA followed by the independent
vowel, and add the use of repha with NO-BREAK SPACE. In this case, we’re not only checking
whether the character sequence is accepted as valid, but also whether the sequence of rRA and
VIRAMA is recognized as part of a larger cluster and the repha glyph is used. A checkmark in
parentheses indicates that this does not happen.

Noto |Dev3 | Sangam | MT | Code | Uni- | Open- | Open- | Edge | Fire- | Safari | Fire- | Safari| Anna- |Sangam | MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3

- & F 0930 v 4 v v 4 4 4 v v v v
094D
0915
@ | of W || 0930] = v v v | v |V v)) ()
094D
0905
Tk | kR | TR |TE 0930 = v 2 A B A I 0 T A 4) «))
094D
090B
® | 3 ;e 0930 v v v vV Y Y W)) | v
0943
| X 0930 | ¢ | Vv ARECORRCONICO I A)
094D
00A0
e R 0030 o | o | v | v v v v]v]® | @
094D
25CC
Observations: Every implementation allows every representation of repha, including the one that
the Unicode Standard prohibits. However, it seems independent vowels, no-break space, and
dotted circle are sometimes treated as new clusters rather than continuations of the ra-virama
cluster, as the repha glyph is not used.
Recommendations: The combination of RA, VIRAMA with an independent vowel should be treated
as two separate clusters, so that the repha glyph is not used. No-break space and dotted circle
should be treated as continuations of the cluster that the ra-virama sequence started, so that the
repha glyph is used.
Nukta
The Unicode Standard and the USE treat nukta signs as consonant modifiers and require them to
immediately follow consonants. The Devanagari shaping engine also allows them after dependent
vowels, and both OpenType shaping engines allow them after independent vowels.
Noto | Dev3 | Sangam | MT | Code | Uni- Open- | Open- Edge |Fire- | Safari| Fire- Safari| Anna- |Sangam|MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3
s | fF | & 0915 v | v | Vv | Y Y | YV || Vv | v | ¥ |V
093C
093F
f@ || f& | F 0915 o v o Vv |y || @ v v o)

093F
093C
@l | @l ®1 | F | 0915| ¥ 4 4 v | v v v 4 v v 4
093C
093E
@ | Pl HT | FT1, 0915 v v | Y v 4 v v
093E
093C
il A I 10905 4 4 v | ¥ 4 v v 4 v v
093C
Observations: Support for nukta after dependent vowels is spotty. Using nukta in this position
could be for two reasons: either users want to actually indicate that the dependent vowel has a
different pronunciation, or they intend it to apply to the consonant and just don’t know that they
should input it before the vowel. Only the first reason would justify support.
Recommendation: Investigate the reasons for using nukta after dependent vowels.
Virama
The Unicode Standard and the USE require a virama to follow a consonant, possibly after an
intervening nukta, joiner, or non-joiner. The Devanagari shaping engine also allows it after a
dependent vowel, and both OpenType shaping engines allow it after an independent vowel.
Noto | Dev3 | Sangam | MT | Code | Uni- | Open- | Open- | Edge | Fire- | Safari | Fire- | Safari| Anna- |Sangam |MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3
EY F Cd ® 0915| Vv 4 v v | Y v v 4 4 v v
094D
EY =3 D ® 0915| Vv 4 v v | Y v v v v v v
093C
094D
Fh | Th FhH | FF| 0915 ¥V 4 v v | Y v v 4 4 v v
094D
0915
%h | hh | HP | FH 0915 v v v | Y v 4 v v v
200C
094D
0915
%h | hh | HP | FH 0915 v v v | Y v v 4 v 4 v
200D

094D
0915

% | Fh $H | FF | 0915 ¥ v v 4 v v v v v
094D
200C
0915

Ih | Fh FH | ¥ 0915 ¥ v v v v v v v v
094D
200D
0915

&F | @mE | @S FH(0915 o | v | ¥ | Y| v v ||V v

093C
200C
094D
0915

&F | wE | B FH(0915 ¢ | v | V| Y| vV v vV

093C
200D
094D
0915

& | @H | dP FTH(0915 Y | v | v | V| V| v v vV

093C
094D
200C
0915

&h | Fh FH | F 0915 ¥ v v 4 v v v v v
093C
094D
200D
0915

B || & |[fFRl0915 o | v | o | v v | Vv | v |V v
093F
094D

& | T FT FT 0915 « v o v v v v v v
093E
094D

3 il 3 {0905 = v v v v v v v v
094D

Observations: Almost all implementations allow virama after both dependent and independent

vowels.

Recommendations: Investigate why that’s allowed.

Unusual mark combinations

The mark combinations tested in this section are not common, but they do occur, and a

consistent interpretation across standards, shaping engines, and fonts would be helpful. In

clusters with multiple vowels, we also check in which order the vowels are expected.

Noto

Dev3

Sangam

MT

Code

Uni-
code

Open-

Type
dev2

Open-

Type
dev3

Edge

Fire-
fox
dev2

Safari
dev2

Fire-
fox
dev3

Safari
dev3

Anna-

purna

Sangam

MT

/S

A,

0915
094D
0902

v

v

L

A

0915
094D
0903

/St

3

S

0915
094D
0951

0915
0902
0903

0915
093F
0902
094D

0915
093F
093E

0915
093E
093F

™)

)

)

0915
093F
0941

)

0915
0941
093F

)

)

)

0915

)

0941
0947

F F | 0F W95 o | v | v | VIV VIV V¥
0947
0941

)

0915 | = v v v v v v v v
0945
0941

68
68
681
(,-5'{(

)

T | e % F |0915| « v o o v v o o v
0941
0945

)

Observations: Multiple vowels are allowed if you get the order right — and that order may differ
between Sangam and the shaping engines. For other unusual combinations, it’s hard to predict
whether they will be accepted or not. The USE implementation in CoreText seems to align with
implementations of the Devanagari shaping engine rather than with the documentation of the
USE when it comes to virama combinations.

Recommendations: Investigate which of these combinations make sense in real life, support
those well in one specific order, and discontinue support for others.

Udatta and Anudatta

The OpenType Devanagari shaping engine places U+0952 DEVANAGARI STRESS SIGN ANUDATTA
before dependent vowels, while U+0951 DEVANAGARI STRESS SIGN UDATTA, which might be
classified as either a syllable modifier sign or a vedic sign, should follow the vowel and possibly
other syllable modifiers or vedic signs. The USE treats both as vowel modifiers, and places them
after vowels.

Noto | Dev3 | Sangam | MT | Code | Uni- | Open- | Open- | Edge | Fire- | Safari | Fire- | Safari| Anna- |Sangam MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3

hf> | & FHf #0915 « O O . o O o 3))
0951
093F

fh | f&h f& | f#0915| v 4 4 v | ¥ 4 v 4 4 4
093F
0951

EEf\ EEf\ a_'?f\ ?ff-\ 0915 o v o o o o o o (/) (‘/)
0952
093F

f& | f& f& | f&|0915| v o v VI v vy vy @V v v

093F
0952

0915
0951
0902

0915
0902
0951

E]

0915
0952
0902

194

19

0915
0902
0952

0915
0951
0903

0915
0903
0951

EL

I3

0915
0952
0903

L

0915
0903
0952

0915
0951
093F
0902

)

)

0915
093F
0951
0902

0915
093F
0902
0951

)

0915
0952
093F

)

)

0902

£l

A

0915
093F
0952
0902

P

0915
093F
0902
0952

)

0915
0951
093F
0903

)

)

0915
093F
0951
0903

0915
093F
0903
0951

)

%

0915
0952
093F
0903

)

)

¥

¥

0915
093F
0952
0903

0915
093F
0903
0952

)

18-

19

13-

0915
0951
0952

19

[$4-

0915
0952
0951

0905
0951

il A il 10905 = v v | v v v v v v v
0952
Observations: Nobody follows the Devanagari shaping engine document’s suggestion that
anudatta should be allowed before vowels. There’s not enough consensus where these marks
should go otherwise - in particular, implementations of the Devanagari shaping engine require
them to come after visarga, while implementations of the USE require them to precede that
character. Sangam doesn’t seem to like them in any more complex cluster.
Recommendations: Treat both udatta and anudatta the same way. Keep them in the position
where the implementations of the Devanagari shaping engine expect them, that is after the
visarga and similar marks. This requires a modification to the USE documentation.
Vedic character combinations
This section investigates character sequences that include Vedic characters from the Devanagari
and Vedic extension blocks. The samples are taken from documents in the Unicode document
registry that provided attestations for the characters: Everson et al. 2007; South Asia
subcommittee 2008; Sharma 2011a; Sharma 2009; Srinidhi and Sridatta 2017; Sharma 2011b.
Noto | Dev3 | Sangam | MT | Code | Uni- | Open- Open- | Edge | Fire- | Safari | Fire- Safari| Anna- |[Sangam|MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3
| a3 092F| v | Vv | ¥ | Y | VY | ¥ | Y | ¥
0947
1CEO
s | @ 00A| ¢ | o | v | o v | v v |V] W
AS8E1l
A8E1
T | @ 0930 v | o | v | v v v v v W
093E
A8E2
A8EF
@t | 092F v | v | v Y v | v v v
094B
A8E9
T | WAl v | o | v v vI|vIiv]v]
A8E3
0928
093E
A8E2
AS8EB

0968
A8EE

e

0930
093E
AS8FO0

E———

TSR

0928
0943
A8E2
092D
093E
1CD2
093D
1CD2
0968
1CD2

«d

«d

092F
0943
1CD8

=]

=]

0928
094D
0935
094B
1CE1

092F
0951
0903
1CE2

092F
0951
1CE2
0903

4ly

4l

091C
0900
0951

)

)

)

)

)

)

s

4

A8F4
0951

(€3

1CE9
0902
1CD8

C3¢

1CEA
0901

Rt | reRt Cakl 0915 | = v v v v v v v v
094E
094B

w

g g 090F | = o o v v v
1CD8
A8E3

w
w

T | T 090F | & | v | v | v | v | v | o |V
ASE3
1CD8

0924 | v 4 4 v v v v v
0941
1CDS8

A
A

2
2

0924 | ¥ v v v v v v v
094B
1CF4

X | Xk 1CF5| v o ARECARECARNCARECARNCD)
0915

aif 0906 | = v v v v v
1CF8

Observations: No shaping engine treated all samples as valid; the HarfBuzz Devanagari shaping
engine came closest. In the second-to-last line, the glyph for @ should be stacked on top of the
one for U+ 1CF5 VEDIC SIGN JIHVAMULIYA X; it’s not clear whether the rendering failures are due

to the shaping engines, or the font, or both.

Recommendations: As all samples above are attested, they should all be supported. Vedic signs
that serve as bases for other signs, such as U+ A8FA DEVANAGARI SIGN DOUBLE CANDRABINDU
VIRAMA ¥ or U+ 1CF5 VEDIC SIGN JIHVAMULIYA X, need to be classified to allow for such use. For
marks, the correct order needs to be determined, in a way that cooperates with normalization
(see the next section).

Canonical-equivalent mark sequences

The Unicode Standard specifies that certain character sequences are canonical-equivalent to each
other, and should therefore display identically. Equivalence is determined through three
operations: decomposition, composition, and reordering of marks based on their canonical
combining class. Within the Devanagari script, there’s no decomposition or composition, but
some marks have canonical combining class values that enable reordering: Nukta, virama,
cantillation marks, and the unclassified marks U+1CED and U+1CE2 through U+1CES. In the
following table, rows that use the same code points (in different order) are canonical-equivalent
and should be displayed identically. In each case, the first row contains the sequence in
normalization form C.

Noto

Dev3

Sangam

MT

Code

Uni-
code

Open-

Type
dev2

Open-

Type
dev3

Edge

Fire-
fox
dev2

Safari
dev2

Fire-
fox
dev3

Safari
dev3

Anna-
purna

Sangam

MT

0915
1CD4
093C

0915
093C
1CD4

0915
1CD4
094D

S

0915
094D
1CD4

0915
1CD4
0951

0915
0951
1CD4

S

-8

e

0915
093C
094D

S

2

e

0915
094D
093C

0915
093C
0951

0915
0951
093C

/S

S

0915
094D
0951

,ﬂ-l-

0915
0951
094D

18-

3,

13-

0915
0952

9}
Sl-
3
E

0951

0915
0951
0952

Observations: The shaping system used in Firefox, HarfBuzz, normalizes any input string, so

there’s no visible difference between the different rows with the same code points. In a number
of cases, however, normalization is incompatible with the expectations of the shaping engines.
The combining character classes used in normalization express primarily the position of a mark

relative to the base, while shaping engines expect character sequences to reflect a linguistic

model. The workaround Unicode sometimes recommends for such cases, adding the character

U+034F COMBINING GRAPHEME JOINER to block mark reordering, is not mentioned in the

Devanagari section of the Unicode Standard.

Recommendations: The canonical combining class of a character can’t be changed, no matter

what problems it causes, because of the Unicode stability policy regarding normalization. The

USE needs to be updated to be compatible with normalization. Cantillation marks with position
“Overstruck” have to be a separate subclass, and must be allowed before nukta, but also in later

places such as after visarga.

Confusable mark sequences

This section is similar to the one above in that it tests character sequences where the visual

placement doesn’t fully determine the encoding order. However, while sequences in the previous

section were canonical-equivalent, sequences here are not equivalent and therefore should render

differently. The Universal Shaping Engine documents the order in which marks should occur

(generally left-top-bottom-right within each USE character class); the Unicode Standard and the
Devanagari shaping engine don’t.

Noto | Dev3 | Sangam | MT | Code | Uni- | Open- | Open- | Edge | Fire- | Safari | Fire- | Safari

0915
0902
093C

0915
093C
0902

0915
0941
0947

0915

code| Type | Type

dev2 | dev3
v v v
v
v v

Anna-

fox | dev2 | fox | dev3 | purna

dev2

dev3

4
Sangam | MT
v
4 v
4 4
4 v

https://www.unicode.org/policies/stability_policy.html#Normalization

0947
0941
forr | oAt fer | fwr| 0915 4 v v | Y v v 4 v v v
093F
093E
&If> | @if> | @1 | &l 0915 v VoY)) |
093E
093F
& | & 0915 | ¥ 4 v v | Y v v 4
0902
1CD4
ke | 0915
1CD4
0902
& | & | dm | F 0915 ¥V v | v | Y| v | v v | Y v
0902
0952
& | B | P | F 0915 v v v
0952
0902
Observations: The good news is that for each tested mark pair there clearly is a preferred order.
The not-so-good news is that the not-preferred order for vowels is still allowed by the Devanagari
shaping engines in HarfBuzz and CoreText. Sangam doesn’t seem to like any combination of
anusvara and anudatta.
Recommendations: Cluster patterns should allow only one preferred order of non-spacing marks
to avoid confusable sequences.
Repeated marks
In a few combinations of Vedic signs, repeated marks in Devanagari are meaningful. Most of the
time, they’re spelling mistakes. In either case, they should be visible.
Noto | Dev3 | Sangam | MT | Code | Uni- | Open-|Open- Edge Fire- | Safari|Fire-|Safari| Anna- |Sangam MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3
Dz | D P %, | 0915 4 4 v v v v v
0941
0941
Dy | D P | F, 0915 4 v ca |V 4 4 4

0941
0941
0941

i % 10915 v o v o v o v v
0902
0902

Ho | & 0915 ¥ o N o o o N v o
0902
0902
0902

Fiox | F | 0915 ¥ o v v v v v v v
0903
0903

F0| 0915 | ¥ o v v o v v v v oo
0903
0903
0903

i & | 0915 | = v v v v o v v v
093C
093C

diE: | & 0915 o o v o o o v v o o
093C
093C
093C

$f\ ﬁF 0915 o o v v N4 o0 v v) o0
093C
093C
093F

A

0915 o o o b b o v
094D
094D

3
A

0915 | = o o G| | oo v O O3
094D
094D
094D

£l
3

S
S

19

F 0915 ¥ o v i v v v v
0952
0952

B

P F (0915 v o v o v o v v o o
0952
0952
0952

0915
AS8E1
AS8El

Ha

0915
AS8E1
AS8E1
AS8El

S

<5

0915
1CD8
1CD8

S

0915
1CD8
1CD8
1CD8

Observations: A mark repeated three times will never get you fewer dotted circles than the same

mark repeated twice. Beyond that, there doesn’t seem to be any recognizable logic behind these

results. Note that repeated marks are the only situation where Annapurna inserts dotted circles.

Recommendations: Cluster patterns should allow repetition of marks if it’s meaningful. Fonts
should be designed to make repeated marks visible, normally by stacking them, but for certain
Vedic signs by side-by-side positioning.

“Discouraged” characters

The Devanagari block of the Unicode Standard includes two characters that were intended for use

with Latin, not with Devanagari, and whose use is now discouraged entirely: U+0953

DEVANAGARI GRAVE ACCENT and U+0954 DEVANAGARI ACUTE ACCENT. Note that U+0953

DEVANAGARI GRAVE ACCENT is easily confused with U+0947 DEVANAGARI VOWEL SIGN E.

Noto | Dev3 | Sangam | MT | Code | Uni- | Open- | Open- |Edge | Fire- |Safari| Fire- Safari| Anna- |Sangam MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3

G G & | 0915 v | Y 4 4 v v v v
0953

& | @& & | % 0915 VI Y Y YY 4 VoY
0954

& | & | & | & 0905 2 A A A v v oY
0953

st | & & | & |0905 VI Y YN v v oY

0954

of | o 5 | 0966 v VoY v v
0953
o:l o oi" 6 10966 v v v v v
0954
st S s | § /093D v vV 4 v
0953
séo| S S § 1093D v v v v v
0954
x| = 1CF2 Vi | Y|V
0953
O 1CF2 Vv | Y | vy |V
0954
Observations: Apparently no implementer got the message that these characters should not be
used with Devanagari — where dotted circles are inserted, they seem to reflect unsupported base
characters, not the “discouraged” marks.
Recommendations: The use of these characters in Devanagari clusters should be disallowed; a
dotted circle should be inserted before them.
“Do not use” character sequences
The Devanagari section of the Unicode Standard includes three tables showing glyphs for vowel
letters, atomic consonants, and consonant conjuncts that have a simple encoding as well as
longer character sequences that could result in the same rendering. The longer character
sequences should not be used, and validation should therefore reject them. They are tested here.
Noto | Dev3 | Sangam | MT | Code | Uni- | Open- | Open-|Edge | Fire- |Safari| Fire- Safari| Anna- |Sangam MT
code| Type | Type fox | dev2 | fox | dev3 | purna
dev2 | dev3 dev2 dev3
| e | e | & 0905 v v v
0946
el | 81T | 3T | 37 | 0905 v 4 v
093E
T T T | & 0930 4 v 4 4 4 v v
094D
0907
3 | 3 3 3, | 0909 v v 4 v
0941

090F
0945

Ay

090F
0946

A,

090F
0947

0905
0949

&

0906
0945

K

0905
094A

0906
0946

0905
094B

0906
0947

0905
094C

0906
0948

K

e

0905
0945

0905
093A

ar:f

3t

a1t

0905
093B

0906
093A

ar:}

3t

ot

0905
094F

0905
0956

0905
0957

0916
094D
093E

0916
094D
200D
093E

0917
094D
093E

T

0917
094D
200D
093E

0918
094D
093E

T

T

el

0918
094D
200D
093E

091A
094D
093E

091A
094D
200D
093E

091C
094D
093E

091C
094D
200D
093E

091D
094D
093E

gl

T

)

091D
094D
200D
093E

091E
094D
093E

091E
094D
200D
093E

0923
094D
093E

Ta:T

T

0923
094D
200D
093E

A

0924
094D
093E

0924
094D
200D
093E

0925
094D
093E

Uil

u:T

)

o

0925
094D
200D
093E

0927
094D
093E

T

T

&

el

0927
094D
200D
093E

A

0928
094D
093E

0928
094D
200D
093E

A

0929
094D

093E

0929
094D
200D
093E

0928
093C
094D
093E

0928
093C
094D
200D
093E

-4

092A
094D
093E

TT

TT

092A
094D
200D
093E

092C
094D
093E

092C
094D
200D
093E

092D
094D
093E

®:T

BT

T

T

092D
094D
200D
093E

.

092E
094D
093E

E:T

E:T

092E
094D
200D

093E

092F

094D
093E
T | T T T | 092F

094D
200D
093E

0932
094D
093E

0932
094D
200D
093E

-
'.._.;'

0935
094D
093E

0935
094D
200D
093E

q

0936
094D
093E

T

T

&

0936
094D
200D
093E

A

=

0937
094D
093E

T

T

[Si)

0937
094D
200D
093E

A

0938
094D
093E

Tl

T

T

0938
094D

200D
093E

0959
094D
093E

LT

0959
094D
200D
093E

0916
093C
094D
093E

LT

0916
093C
094D
200D
093E

095A
094D
093E

095A
094D
200D
093E

0917
093C
094D
093E

T

0917
093C
094D
200D
093E

095B
094D
093E

095B
094D
200D
093E

091C
093C
094D
093E

al
&

091C
093C
094D
200D
093E

095F
094D
093E

T

T

095F
094D
200D
093E

%

092F
093C
094D
093E

T

T

092F
093C
094D
200D
093E

0979

094D
093E
gl | 9T il 0979

094D
200D
093E

A

097A
094D
093E

T

T

097A
094D
200D
093E

=

097B
094D
093E

097B
094D
200D
093E

=

i

097C
094D
093E

097C
094D
200D
093E

xd

i

=

097E
094D
093E

=

097E
094D
200D
093E

~

097F
094D
093E

12

097F
094D
200D
093E

T

FT

0915
094D
091A
094D
093E

el

e

e

0915
094D
091A
094D
200D
093E

&

0915
094D
0937
094D
093E

&1

&7

&

&1

0915
094D
0937
094D
200D
093E

A

0924
094D
0924
094D
093E

0924
094D
0924
094D
200D
093E

0928
094D
0924
094D
093E

=T

0928
094D
0924
094D
200D
093E

Observations: HarfBuzz reliably rejects “do not use” sequences. DirectWrite, CoreText, and

Sangam allow some of them, without much recognizable logic.

Recommendations: These sequences should be reliably rejected.

Marks without bases

Marks without bases are not valid clusters, and OpenType recommends inserting dotted circles to

indicate that.

Noto

Dev3

Sangam

MT

Code

Uni-
code

Open-

Type
dev2

Open-

Type
dev3

Edge

Fire-
fox
dev2

Safari
dev2

Fire-
fox
dev3

Safari
dev3

Anna-

purna

Sangam

MT

093C
2 f fi f | 093F

0902

NS

0903

- - 1CE2| = b b v v v v v

Observations: The shaping engines and the Sangam font insert dotted circles before the marks
that have the script property value Devanagari. U+ 1CE2, which has the script property value
Common, doesn’t get one — it’s possible that it gets redirected to the default shaping engine,
which does not validate.

Recommendations: OpenType specifications should be created that clarify how text is broken into

script runs and clusters, and provide a validation model that makes sense across all scripts.

References

Annapurna: Peter Martin: Annapurna SIL. Font version 1.204. Part of The Annapurna Font Family.
SIL International, 2019.

Edge: Microsoft Edge. Browser version 44.19041.1.0; EdgeHTML 18.19041. Included in Microsoft
Windows 10 version 2004. Microsoft, 2020.

Everson et al. 2007: Michael Everson and Peter Scharf (editors), Michel Angot, R. Chandrashekar,
Malcolm Hyman, Susan Rosenfield, B. V. Venkatakrishna Sastry, Michael Witzel: Proposal to
encode 55 characters for Vedic Sanskrit in the BMP of the UCS. Unicode Consortium, 2007.

Firefox: Firefox. Browser version 79.0. Mozilla, 2020.
MT: Monotype: Devanagari MT. Font version 13.0d1e3. Included in macOS 10.15.6. Apple, 2020.
Noto: Jelle Bosma: Noto Sans Devanagari Regular. Font version 2.001. Google, 2020.

OpenType Devanagari: Developing OpenType Fonts for Devanagari Script. Microsoft, dated
02/08/2018, accessed 2020-07-12.

OpenType USE: Creating and supporting OpenType fonts for the Universal Shaping Engine.
Microsoft, dated 07/31/2020, accessed 2020-08-07.

Safari: Safari. Browser version 13.1.2. Included in macOS 10.15.6. Apple, 2020.

Sangam: Muthu Nedumaran: Devanagari Sangam MN. Font version 14.0d1el2. Included in
macOS 10.15.6. Apple, 2020.

Sharma 2009: Shriramana Sharma: Request for encoding 1CF4 VEDIC TONE CANDRA ABOVE.
Unicode Consortium, 2009.

R RN RS

https://software.sil.org/annapurna/
https://www.unicode.org/L2/L2007/07343-n3366-vedic.pdf
https://github.com/googlefonts/noto-fonts/blob/012fbeb01b80f862b2167ac8fe36aaed11ce5573/phaseIII_only/unhinted/ttf/NotoSansDevanagari/NotoSansDevanagari-Regular.ttf
https://docs.microsoft.com/en-us/typography/script-development/devanagari
https://docs.microsoft.com/en-us/typography/script-development/use
https://www.unicode.org/L2/L2009/09344-candra-above.pdf

Sharma 2011a: Shriramana Sharma: Request to annotate 1CD8 VEDIC TONE CANDRA BELOW.
Unicode Consortium, 2011.

Sharma 2011b: Shriramana Sharma: Proposal to encode svara markers for the Jaiminiya Archika.
Unicode Consortium, 2011.

SIL: Devanagari (Nagari). SIL International. Accessed 2020-08-19.

South Asia subcommittee 2008: South Asia subcommittee: South Asia Subcommittee Report.
Unicode Consortium, 2008.

Srinidhi and Sridatta 2017: Srinidhi A and Sridatta A: Request to change the glyphs of Vedic signs
Jihvamuliya and Upadhmaniya. Unicode Consortium, 2017.

Unicode: The Unicode Consortium: The Unicode Standard, Version 13.0. The Unicode
Consortium, 2020. For Devanagari, in particular section 12.1 Devanagari, pages 447-472.

Unicode Normalization: The Unicode Consortium: Unicode Character Encoding Stability Policies.
The Unicode Consortium. Accessed 2020-08-19.

https://www.unicode.org/L2/L2011/11007-length-mark-candra-below.pdf
https://www.unicode.org/L2/L2011/11267r-svara-markers.pdf
https://scriptsource.org/cms/scripts/page.php?item_id=script_detail&key=Deva
https://www.unicode.org/L2/L2008/08110-southasia.pdf
https://www.unicode.org/L2/L2017/17095-vedic-sign-glyph-change.pdf
http://www.unicode.org/versions/Unicode13.0.0/
https://www.unicode.org/versions/Unicode13.0.0/ch12.pdf
https://www.unicode.org/policies/stability_policy.html#Normalization

