L2/21-135R

Reserved Emoji (RE), Fleshed-Out

From: Mark Davis
Date: 2021-July-13

This document is for the following action.

Action 167A094 Flesh out approaches RE and RID ofdocument 12/21-071 and
bring back for discussion at the next UTC meeting. See Future Unicode Emoji
Options [1.2/21-078]

The primary goal of Reserved Emoji (RE) is to allow implementations that run on previous
versions of Unicode / Emoji to support display emoji from (some) later versions: that is, some
degree of future-proofing. The main problem is that even if the implementation is upgraded with a
font that supports the new emoji, the processing of emoji for line break and other segmentation
purposes can fail. What the user can see, for example, is half of an emoji sequence at the end of one

line, and the rest at the start.

As it turns out, we had already defined the property Extended_Pictographic for the purpose of new
emoji, and these are already used for future-proofing in cases such as UAX #29 . We can utilize this
definition to implement RE more broadly. The key policy change is that we guarantee to only
allocate new emoji characters from the set of Extended_ Pictographic from several versions ago.
Then those versions would be ‘future proofed’ for display, with some small changes. Key to this is
making sure that segmentation algorithms (including line break) work with Extended_ Pictographic.
As it turns out, only one change for segmentation needs to be changed. We could also document

this approach in UTS #51 for other kinds of algorithms.

Define a potential emoji (PE) as any Extended_Pictographic code point that is unassigned.

There are 1,525 such code points in U14.0. We thus have plenty of room for the next few versions,
so we need no change in U14.0 in Extended_Pictographic. To make sure that all new emoji come

from Extended_Pictographic, we need the following policy recorded in the UTC minutes:

Proposed Emoji allocation policy

https://www.unicode.org/L2/L2021/21078-emoji-future.pdf
https://www.unicode.org/L2/L2021/21078-emoji-future.pdf
https://unicode.org/reports/tr29

New Emoji characters are to be allocated from unassigned code points that are in

\p{Extended_Pictographic} in Unicode version 13.0.

(Note: If we ever ran out of Extended_Pictographic, we could just catch that a few versions

ahead of time, extend Extended_Pictographic, and change the version.)

Action for Roadmap committee:

Change the roadmap to 1FCO00..1FFFF to be called Extended Pictographics

We also need to make sure that new emoji sequences are forward-compatible in emoji sequences.
That means that any emoji sequence will not be broken if an emoji character is replaced by an
unassigned Extended_Pictographic character. That can be accomplished with the following

change:

Proposed LineBreak enhancement (UAX #14)
Change
LB30b Do not break between an emoji base and an emoji modifier.
EB x EM
To
LB30b Do not break between an emoji base (or potential emoji) and an emoji modifier.
EB x EM
[\p{Extended_Pictographic}&\p{Cn}] x EM

A potential emoji (PE) is any Extended_Pictographic code point that is unassigned.

https://unicode.org/reports/tr14/#EB
https://unicode.org/reports/tr14/#EM
https://unicode.org/reports/tr14/#EB
https://unicode.org/reports/tr14/#EM

Action for Chris Chapman & Ed committee: make the proposed change in Unicode 14.0.

Proposed UTS #51 enhancement

Add a new section as follows (wording subject to editorial improvements). Note: this section can

come in a later version than the Proposed Emoji allocation policy and Proposed LineBreak

enhancement.

1.4.10 Future Proofing

Sometimes an implementation will receive an emoji from a newer version of software. Even if the
implementation has a font that supports the emoji, processing of the emoji can fail because the
implementation doesn’t have newer Unicode properties. Unicode segmentation algorithms handle
that situation because they recognize that any new emoji (for at least the next few versions) are all

allocated from characters in \p{Extended_Pictographic}.

If an implementation is using the emoji definitions and data files in this specification directly
(rather than through the segmentation algorithms), then a few adjustments need to be made to

allow for future-proofing.
Define a potential emoji (PE) as any Extended_Pictographic code point that is unassigned.

e Thatis, PE :=[\p{Extended_Pictographic}&\p{Cn}]

The key is to treat all PE characters as if they were emoji for purposes of validation. This also rests
on the fact that emoji components [ED-5] are very unlikely to change over versions. The following

extended definitions are then applied in three key cases.

Future-Proofing Definitions

Definiendum Definiens Future-Proofed Definiens

emoji_character \p{Emoji} [\p{Emoji}PE]

default_emoji_presentation |\p{Emoji_Presentation} |[[\p{Emoji_Presentation}PE]
_character

emoji_modifier_base \p{Emoji_Modifier_Base} |[\p{Emoji_Modifier_Base}PE]

This process is similar to the way Unicode treats certain other unassigned code points as having
specific default properties. For example, certain unassigned code points recommended to be treated

as if they were Arabic letters for the purpose of the Bidirectional Algorithm.

http://unicode.org/reports/tr51/#def_level2_emoji

Background

RID
NOTE: As for RID, I think that the RE approach satisfied the major need without as complicated

a mechanism, so I don’t think it necessary to flesh that out or bring it back to the UTC.

Emoji Modifier Sequences
An emoji modifier sequence is:

emoji_modifier_sequence := emoji_modifier_base emoji_modifier

So for forward compatibility of emoji modifier sequences in segmentation, we would just need to
prevent a break between a potential emoji and an emoji modifier. The following are used in the
specifications of different kinds of segmentation that are in question. These include all and only the

emoji_modifier characters:

Line_Break=E_Modifier (EM)
Word_Break=Extend

Grapheme_Cluster_Break=Extend

Word_Break and Grapheme_Cluster_Break are already covered, since we have the following, which

doesn’t depend on the nature of the preceding code point.

Do not break before extending characters or ZWJ.

GB9 x (Extend | ZWJ)

and

Ignore Format and Extend characters, except after sot, CR, LF, and Newline. (See
Section 6.2, Replacing Ignore Rules.) This also has the effect of: Any x (Format | Extend |
ZWJ)

WwB4 X (Extend | Format | ZWJ)* — X

So the only change needed for modifier sequences would be for LineBreak. That can be done with

the change listed in Proposed LineBreak enhancement.

https://unicode.org/reports/tr29/#GB9
https://unicode.org/reports/tr29/#Grapheme_Cluster_and_Format_Rules
https://unicode.org/reports/tr29/#WB4

Emoji ZWJ Sequences

These are defined by ED-15a and ED-16 in UTS #15
emoji_zwj_element :=
emoji_character
| emoji_presentation_sequence

| emoji_modifier_sequence

emoji_zwj_sequence :=

emoji_zwj_element (ZWJ emoji_zwj_element)+

Again, Word_Break and Grapheme_Cluster_Break are handled already by the following rules.

Do not break within emoji modifier sequences or emoji zwj sequences.

GB11 \p{Extended_Pictographic} Extend* ZWJ x \p{Extended_Pictographic}

Do not break within emoji zwj sequences.

WB3c ZWJ x \p{Extended_Pictographic}

Ignore Format and Extend characters, except after sot, CR, LF, and Newline. (See
Section 6.2, Replacing Ignore Rules.) This also has the effect of: Any x (Format | Extend |
ZWJ)

WB4 X (Extend | Format | ZWJ)* — X

For ZW] sequences, LineBreak also works with no change:

LB8a Do not break after a zero width joiner.

ZWJ x

http://unicode.org/reports/tr51/#def_emoji_zwj_element
http://unicode.org/reports/tr51/#def_emoji_zwj_sequence
https://unicode.org/reports/tr29/#GB11
https://unicode.org/reports/tr29/#WB3c
https://unicode.org/reports/tr29/#Grapheme_Cluster_and_Format_Rules
https://unicode.org/reports/tr29/#WB4
https://unicode.org/reports/tr14/#ZWJ

A ZWJ will prevent breaks between most pairs of characters. This behavior is used to
prevent breaks within emoji zwj sequences.

LB9 Do not break a combining character sequence; treat it as if it has the line breaking class
of the base character in all of the following rules. Treat ZW.J as if it were CM.

Treat X (CM | ZWJ)* as if it were X.

https://unicode.org/reports/tr14/#ZWJ
https://unicode.org/reports/tr14/#ZWJ
https://unicode.org/reports/tr14/#CM

