
1

C0 and C1 stability for Unicode and 10646

Kent Karlsson

Stockholm

2022-02-11

Individual contribution

Introduction
Lately there have been a number of quite destructive, from a standard and standards use

perspective, suggestions and proposals for the so-called C0 and C1 areas for “control codes”.

Effectively, some propose to regard these areas as wholly private use, and one can assign whatever

ill-designed set of control codes there; some do not even have line feed. This is very strange as this

goes against the very grain of Unicode and ISO/IEC 10646. Unfortunately, neither Unicode nor 10646

in any way discourages this. These areas cannot be regarded as some kind of private-use areas. There

are many important characters allocated in these areas, that are never expected to change,

characters that are either near-universally supported, or has special properties in Unicode (for bidi

and line-breaking at least). Just about every process that handles Unicode (or indeed many other

encodings) rely on that several of the C0 (in particular) and C1 characters do not suddenly get some

other semantics.

No-one is expecting that U+0009 would be anything else than CHARACTER TABULATION, no-one is

expecting that U+000A be anything else than LINE FEED, etc., in a Unicode encoding, no matter how

weird or old the “original encoding” (to have a mapping to Unicode, perhaps proposing addition of

some so-called “printable” characters to the Unicode standard). But there are weird encodings.

Teletext has no line feed, no carriage return, no character tabulation, … Instead, the entire C0 (yes,

C0, not C1) is repurposed to have graphic characters with control functionality (code page switching,

colour change, …).

True, most C0 and C1 (“control”) characters are today generally uninterpreted. And some of them

are really obsolete, especially in a Unicode/10646 context. Like SHIFT IN and SHIFT OUT, which make

sense only in a code page switching context and are explicitly forbidden to have any effect by ISO/IEC

10646, or the INFORMATION SEPARATORs, which were intended for a kind of data structure

linearisation that is, AFAIK, not used anymore (but they do have non-default properties in the

Unicode character database).

There are actually some “private-use” control codes in the C0/C1 area: DEVICE CONTROLs, though

DC1 and DC3 are de-facto standardized for flow control in terminal (emulators), leaving DC2 and

DC4, and then also PRIVATE USE 1 and 2.

But there are some character encodings that are “a bit crazy” when it comes to control codes. They

override all of C0 (or C1) with something that cannot even be regarded as pure control characters. In

particular Teletext (but there are apparently others, also apart from EBCDIC encodings). Teletext has

in the C0 range “control codes” where most of them serve three purposes at once 1) a graphic

rick
Text Box
L2/22-013R

2

character (usually a SPACE, but under some conditions it could be a “mosaic” character), 2) code

page switching often to the default “alphanumeric” code page (set elsewhere in the Teletext

protocol), or the “mosaic” code page (but there are some that do other cope page switching), 3) sets

a colour styling for the text. The Teletext encodings have no CHARACTER TABULATION, HT is just not

used. And in Teletext there is no LINE FEED (or any other NLF), the Teletext protocol instead has an

explicit line number (within the Teletext page) for each line transmitted.

L2/21-235 ‘Proposal to add further characters from legacy computers and teletext’ suggests that:

“Control characters from microcomputer platforms and teletext were also determined to be out of scope for the

UCS. These characters were located in what would today be considered the C0 control range (0x00–0x1F) or the

C1 control range (0x7F–0x9F). Processes that need to interchange these codes should simply interchange the

binary C0 or C1 value, extended to the UCS code space but without further mapping. Emulators should treat

these control codes as appropriate for the targeted environment.”

This must be the absolutely worst suggestion in the history of Unicode by an unspeakably enormous

margin. Literally! Firstly, there is no such thing as an (isolated) target environments in this solar

system. In particular, Teletext is not an isolated target system at all; it is very widespread and has

connections to web pages and smart phone apps. The suggestion is detrimental to interoperability,

for all systems that use Unicode/10646 and to the Unicode/10646 standards themselfs. Secondly, no-

one, absolutely no-one, has “processes” that expects the C0/C1 areas to be private-use areas in any

way whatsoever.

Teletext
The suggestion above is an especially bad idea for converting Teletext text to Unicode. Teletext has

“control codes” in the C0 area that aren’t quite control codes, they are spacing graphic characters,

with two other functionalities. They are usually rendered as a SPACE, but in some circumstances

rendered as a “mosaic” character. In Teletext, all codepages (they are defined in the Teletext

standard) are 7-bit using the 8th bit as parity). For instance, 0x0A, which is used for “End box” spacing

“control” (usually rendered as a SPACE, and used for subtitling via Teletext, as well as news flash

functionality), would be mapped to U+000A, LINE FEED, which absolutely no-one expects to be

anything else than LINE FEED in any context. And 0x00 which is used for “Alpha black”, which

switches to the primary G0 codepage, sets the foreground colour to black, and is (usually) displayed

as a SPACE; 0x00 would be turned into U+0000, NULL, which absolutely no-one expects to be

anything else than NULL, which in addition is often used as string terminator; which is inaccurate but

extremely widespread. Indeed, the entire C0 is repurposed in Teletext (the one called ESC is not an

escape character in the normal sense, it switches to an alternative G0/G2, so it is more like SI).

So, what about LINE FEED (or CARRIAGE RETURN)? Those C0 codes are mapped to something entirely

different in Teletext. How represent multiple lines (in a page)? Is there some other code used for

LINE FEED or similar? No. In addition to page numbers (and subpage numbers), the Teletext protocol

has explicit line numbers (within the page). (The Teletext protocol is a quite complicated protocol;

not a design I would recommend…)

So, is this a disaster for Teletext when (literally) outside of the box (i.e., TV set)? No, of course not.

Nobody, absolutely nobody, follows the disastrous suggestion quoted above. Teletext is displayed via

several handfuls of web pages (and smartphone apps). Generally, the Teletext pages are converted

to HTML pages, with styled text for the text in the pages; though some use generated images, more

and more it seems, but not a technical necessity (but images may currently provide better fidelity

than styled HTML text).

3

This image is taken from one such web page:

Teletext colours
L2/21-235 ‘Proposal to add further characters from legacy computers and teletext’ states:

“4. Teletext. Teletext was a service invented in the United Kingdom in the early 1970s for

broadcasting pages of information, generally text and simple block graphics, to analog television

receivers via the vertical blanking interval. Teletext found its greatest popularity in Europe, where it

was commonplace until the adoption of digital television; almost all analog television sets sold in

Europe since the early 1980s had built-in teletext decoders.”

While most of that is true, the use of past tense is not quite accurate, Teletext is still in use. Nor is the

use of “until”. Teletext is supported in all manufactured TV sets and “TV boxes”, also for digital

television. In addition, Teletext pages are commonly converted to web pages (using HTML, usually

this was with styled text, rarely with images, but the latter has become more common), and smart

phone apps (again using HTML). Teletext pages can also be converted to ECMA-48 (fast-tracked ISO

version is ISO/IEC 6429) using control sequences for the colour changes, both the ones inline and the

ones out of line (in the Teletext protocol, for additional colours).

Below is an excerpt from [Teletext] regarding colours (CLUT is colour lookup table, 2-bit reference

number, Entry number (in the CLUT) has a 3-bit reference number). (Leaving out the details of how

these can used in the Teletext protocol, as that is out of scope for this proposal, and quite intricate).

Note that there is one added (not part of the quote) column, for colour swatches. Some of the colour

entries can be modified (at conformity/presentation level 3.5), and thus corresponds to an ECMA-48

colour palette entry; a converter to HTML/CSS need to keep more directly track of the settings of the

4

Teletext CLUTs, and that approach of course can be used for a converter to ECMA-48. Some of the

colours can be invoked by using inline spacing “controls”, but only within the Teletext protocol. We

will basically ignore the complications of “conformity levels” (“presentation levels”). It is obvious that

the Teletext protocol is overcomplicated, and nothing anyone should try to mimic in any

replacement, in particular not in Unicode.

The quote below is included here just to establish that Teletext (at conformity levels greater than 2)

has more colours than the ones available via the spacing “control” codes (which aren’t really control

codes but serves three functions in one). The additional colours are used via a kind of out of line

formatting objects, that reference substrings of the page. At conformity level 3.5 there is a

mechanism for redefining the colours in this colour palette. All text colour settings (background and

foreground) are reset to default colours (black (or transparent) background, white foreground/text)

at end of line. For details, see [Teletext].

12.4 Colour Map

Table 30: Colour Map

CLUT Entry

Number

Default Colour Default

Values

Swat-

ches

Comments

0

 R G B

0 Black 0 0 0

Fixed at Levels 1, 1.5 and 2.5

Re-definable using X/28/4 or

M/29/4 at Level 3.5

1 Red 15 0 0

2 Green 0 15 0

3 Yellow 15 15 0

4 Blue 0 0 15

5 Magenta 15 0 15

6 Cyan 0 15 15

7 White 15 15 15

1

0 Transparent - - - Valid at Levels 2.5 and 3.5 (fixed)

1 Half red 7 0 0

Valid at Levels 2.5 and 3.5

Fixed at Level 2.5

Re-definable using X/28/4 or

M/29/4 at Level 3.5

2 Half green 0 7 0

3 Half yellow 7 7 0

4 Half blue 0 0 7

5 Half magenta 7 0 7

6 Half cyan 0 7 7

7 Grey 7 7 7

2
0 15 0 5

 1 15 7 0

5

2 0 15 7 Valid at Levels 2.5 and 3.5

Re-definable using X/28/0 Format

1 or M/29/0

3 15 15 11

4 0 12 10

5 5 0 0

6 6 5 2

7 12 7 7

3

0 3 3 3

Valid at Levels 2.5 and 3.5

Re-definable using X/28/0 Format

1 or M/29/0

1 15 7 7

2 7 15 7

3 15 15 7

4 7 7 15

5 15 7 15

6 7 15 15

7 13 13 13

NOTE: The individual R, G, B levels are variable in 16 equally spaced steps. A value of 0 represents zero

intensity and a value of 15 (decimal) represents full intensity. The levels are not gamma corrected.

Teletext styles (other than colour)
Teletext in origin has only fixed-width, upright, “normal” weight style. But at conformity level

(“presentation level”) 3.5 there is also support for bold, italics and proportional spacing. There is also

support for underlined text, but not quoting that section here.

This text styling is done via out of line formatting objects, that reference a starting point in the line.

01110 Font Style

This command specifies the appearance of the text with respect to italics, bold and

proportional spacing. The address field defines the column at which the style(s) starts.

The effect of this attribute persists to the end of a display row unless overridden by a

further Font Style command.

 D6 D5 D4 D3 D2 D1 D0

 R2 R1 R0 Reserved Italics Bold Proportional Spacing

The functions controlled by bits D0, D1 and D2 are enabled when the bit is set to '1',

and cancelled when it is set to '0'. Bits D6 - D4 allow the font style to be extended to

the following 0 to 7 (maximum) rows, at the same column positions.

6

The quote above is included here just to establish that Teletext (at conformity levels greater than 3)

has more styles than just upright, fixed width, “normal” weight. This styling is not mediated by

control characters, but out of line with the text, in formatting “objects”. For details see [Teletext].

Teletext protocol and code page switching
Teletext relies heavily on code page switching via the “control” characters (again, three functions in

one code), and setting of code pages in the Teletext protocol. All the code pages are 7-bit, using the

8th bit for parity. The G2 page is a “mosaic graphics” page (in two variants, connected and separated

“mosaic” pieces, there is a “control” code for switching between them). The “alphanumerics” page is

set in the Teletext protocol to one of the “language variants” of ISO/IEC 646, or a Hebrew page, or an

Arabic page (well, there are two, primary and secondary, with ESC/SI to switch between them).

Teletext “control codes” to ECMA-48 mapping
Teletext pages are commonly converted to HTML/CSS. This could be done (and was done) by using

the styling mechanisms of CSS. But now they are often converted to images (embedded in HTML),

presumably for greater fidelity with the “look” of Teletext pages on TV sets.

But an alternative is to convert the Teletext styling to ECMA-48 (ISO/IEC 6429) styling. Most of which

do not really require any additions to ECMA-48, except for specifying the colours better. There is one

functionality in particular that does require a substantial addition to ECMA-48 styling: for the Start

box and End box. These are used for the subtitling (and news flash) functionality of Teletext, and has

no close corresponding control sequences in ECMA-48. (An addition is also needed for more directly

mapping Teletext’s strange way of setting background colour.) Here is a quote from my proposal to

extend the ECMA-48 styling functionality, focussing on converting Teletext text to use ECMA-48

styling:

11. Converting Teletext styling to ECMA-48 styling

Teletext is still in common use around the world, especially for optional subtitling, though the use of

Teletext for news pages has declined or even been abandoned. Teletext allows for certain style

settings, mostly to do with colour. There are also control bits in the Teletext protocol for handling

bold, italic and underline. The colour codes also select which set of characters to use (either

alphanumeric or “mosaic” characters, the latter are Teletext specific symbols used to build up larger

(and crude…) graphics). Note that the coding for “alphanumeric” characters have multiple variants

for G0/G2, various Latin subsets, Greek, Cyrillic, Arabic and Hebrew. These are selected by control

bits in the Teletext protocol, in addition ESC can be used to switch between a primary and a

secondary G0+G2 set. Further, the “mosaic” characters (G1) have two variants, a “contiguous” form

(default, and selected by 0x19) and a “separated” form (selected by 0x1A). From a modern encoding

point of view the latter are separate characters (not yet in Unicode). Teletext also allows for

dynamically defined (“bitmapped”) fonts of unspecified charset.

The table is a rough sketch only. Teletext overrides (italics, bold, underline, more colours, prop. font,

G3 chars.) are not covered in the sketch mapping here, though the functionality is covered. Character

sets are specified in control bits in the Teletext protocol, that is not covered here.

Teletext ECMA-48 (as extended here)

0x00 Alpha black (and sets “alpha mode”, G0) (default) SP? CSI 30m

0x01 Alpha red (and sets “alpha mode”, G0) SP? CSI 91m

0x02 Alpha green (and sets “alpha mode”, G0) SP? CSI 92m

0x03 Alpha yellow (and sets “alpha mode”, G0) SP? CSI 93m

7

0x04 Alpha blue (and sets “alpha mode”, G0) SP? CSI 94m

0x05 Alpha magenta (and sets “alpha mode”, G0) SP? CSI 95m

0x06 Alpha cyan (and sets “alpha mode”, G0) SP? CSI 96m

0x07 Alpha white (and sets “alpha mode”, G0) SP? CSI 37m

0x08 Flash SP? CSI 5m or SP? CSI 6m

0x09 Steady (default) CSI 25m SP?

0x0A End box (default) SP? CSI 112:0m (allow 100%

fading)

0x0B Start box (news flashes; also used for subtitles) SP? CSI 112:1m (block fading)

0x0C Normal size (default) SP? CSI 73:1:1m

0x0D Double height (note: background & foreground

 overshadows text on the next line)

SP? CSI 73:2:1m (overshadowing is

 implementation defined)

0x0E Double width SP? CSI 73:1:2m

0x0F Double size (note: extends down one “row”

 (overshadows text on the next line))

SP? CSI 73:2:2m (might not

 overshadow text on the next line)

0x10 Mosaics black (and sets “mosaics mode”, G1) SP? CSI 30m

0x11 Mosaics red (and sets “mosaics mode”, G1) SP? CSI 91m

0x12 Mosaics green (and sets “mosaics mode”, G1) SP? CSI 92m

0x13 Mosaics yellow (and sets “mosaics mode”, G1) SP? CSI 93m

0x14 Mosaics blue (and sets “mosaics mode”, G1) SP? CSI 94m

0x15 Mosaics magenta (and sets “mosaics mode”, G1) SP? CSI 95m

0x16 Mosaics cyan (and sets “mosaics mode”, G1) SP? CSI 96m

0x17 Mosaics white (and sets “mosaics mode”, G1) SP? CSI 37m

0x18 Conceal (ignored on the currently displayed page

when user presses a ‘reveal’ button)

CSI 38:8m SP? (not CSI 8m)

0x19 (“mosaics mode”) Contiguous mosaic graphics

(default); note: does not unset underlined in “alpha mode”

(converter change) SP?

0x1A (“mosaics mode”) Separated mosaic graphics; note:

does not set underlined in “alpha mode”

(converter change) SP?

0x1B Escape (toggles between two G0 code pages) SP? (converter change)

0x1C Black background (default) CSI 40m SP?

0x1D New background (foreground to background) CSI 48:6m SP?

0x1E Hold mosaics (details of hold/release mosaics is

beyond the scope of this paper)

(SP? := <mos. char>; SP?

0x1F Release mosaics (details of hold/release mosaics is

beyond the scope of this paper)

SP?; SP? := SP

line break (implicit; Teletext has numbered “rows”) (style

settings are reset at the beginning of each row)

line break (CRLF/CR/LF), CSI 0m;

SP? := SP

As you can see, the “triple functionality” control codes can be converted to using Unicode with

ECMA-48 control sequences for the colour changes as well as “subtitle boxing” (with a proposed

extension to ECMA-48). There is no need for new control characters or redefining any control

characters. The Teletext “control” characters are so deeply rooted in the Teletext protocol, which

uses code page switching extensively, that they do not even make sense outside of that protocol and

must be converted anyway.

I do not know the storage format that broadcaster’s Teletext systems use. But it is surely not in the

Teletext protocol, but something converted to that protocol when the pages are sent. The storage

8

formats may well use “escapes” (in the programming language sense; like \g for alpha green, say).

There is no need for “Teletext control codes” in the storage formats. The entire idea of using Teletext

control codes outside of the Teletext protocol is bogus and ill-conceived. But if converted to use

ECMA-48 styling, then that is a possible storage (archival) format.

Teletext and optional subtitling (and news flashes)
Subtitles (in Teletext) are rarely, if ever (haven’t seen that), converted to web pages. Subtitling needs

timing information (when to show the subtitles). This is not part of the Teletext protocol but must be

part of the storage format for Teletext subtitling (again, I’m not familiar with the storage formats

used, but they (or it) are likely proprietary for a particular system).

News flashes, a good idea but haven’t seen that used, are more one-off (show now, …, stop

showing), not related to running time of the TV program. But on the Teletext protocol side news

flashes would use the same “box” controls as subtitling (plus that there are protocol bits saying

whether the page a “normal” page, a subtitling page, or a news flash page).

Teletext and digital TV broadcast/multicast (DVB, IP-TV)
The original Teletext data was transmitted in the so-called synch lines of the analogue TV signal. For

the digital TV broadcasts (and multicasts, a.k.a. IP-TV), the Teletext data is embedded in the digital TV

signal, but not in the synch lines as there are no sync lines, indeed no scan lines at all. See reference

[Teletext in DVB] for details of that embedding of Teletext in DVB (Digital Video Broadcasting).

Teletext references
Teletext is not dead, quite yet. But it is admittedly on the decline. There are few and fewer

broadcasters that provide any Teletext news service. Teletext is still used for optional subtitling, for

accessibility reasons. It may continue to be in use for optional subtitling for several years to come. In

DVB there is a newer mechanisms for subtitling (apart from Teletext), using images, so any fonts

need only be on the broadcaster side, not the TV set side. But that has still to catch on, it seems.

[Teletext] Enhanced Teletext specification, ETSI EN 300 706 V1.2.1, https://www.etsi.org/
deliver/etsi_en/300700_300799/300706/01.02.01_60/en_300706v010201p.pdf,
2003.

[Teletext in DVB] Digital Video Broadcasting (DVB); Specification for conveying ITU-R System B Teletext
in DVB bitstreams, ETSI EN 300 472 V1.4.1, https://www.etsi.org/
deliver/etsi_en/300400_300499/300472/01.04.01_60/en_300472v010401p.pdf,
2017.

[TeletextWebList] http://teletext.mb21.co.uk/live.shtml (many links are now defunct, due to the decline
of use of Teletext for news pages).

[WikiTeletext] https://en.wikipedia.org/wiki/Teletext,
https://en.wikipedia.org/wiki/Teletext_character_set.

Some legacy encodings for C0/C1 according to INTERNATIONAL REGISTER

OF CODED CHARACTER SETS TO BE USED WITH ESCAPE SEQUENCES

The register summary is given at: https://www.itscj-ipsj.jp/custom_contents/cms/linkfile/ISO-IR.pdf.

This does not cover all “old” control codes. For instance, “PETSCII”, “ATASCII” and EBCDIC are not

covered (but see below). But for these, much of the special control codes have to do with colour

changes and arrow key presses, which is all covered by standard control sequences in ECMA-48.

https://www.etsi.org/deliver/etsi_en/300700_300799/300706/01.02.01_60/en_300706v010201p.pdf
https://www.etsi.org/deliver/etsi_en/300700_300799/300706/01.02.01_60/en_300706v010201p.pdf
https://www.etsi.org/deliver/etsi_en/300400_300499/300472/01.04.01_60/en_300472v010401p.pdf
https://www.etsi.org/deliver/etsi_en/300400_300499/300472/01.04.01_60/en_300472v010401p.pdf
http://teletext.mb21.co.uk/live.shtml
https://en.wikipedia.org/wiki/Teletext
https://en.wikipedia.org/wiki/Teletext_character_set
https://www.itscj-ipsj.jp/custom_contents/cms/linkfile/ISO-IR.pdf

9

Here is a walk-through of the registered C0 and C1 variants for ISO/IEC 2022.

• 1 C0 Set of ISO 646 https://www.itscj-ipsj.jp/ir/001.pdf 4/0 4.2

A bit cryptic, but this should probably be seen as the “normal” C0, but with one major typo:

the first ETX should be STX.

• 7 NATS, C0 Set https://www.itscj-ipsj.jp/ir/007.pdf 4/1 4.9

Intended for “newspaper typography”. Seems to be mappable to ECMA-48 styling (plus word

delete…).

• 26 IPTC, C0 Set https://www.itscj-ipsj.jp/ir/026.pdf 4/3 4.14

“International press council”; has similarities with entry 7. Seems to be mappable to ECMA-48

styling (plus word delete…), plus maybe some APC…ST (the description in the registration is

incomplete), which is private-use in ECMA-48.

• 36 C0 Set of ISO 646 with SS2 instead of IS4 https://www.itscj-ipsj.jp/ir/036.pdf

 4/4 4.18 The title says it all. Easily mapped to ECMA-48 standard C0/C1. However, that is for

SINGLE SHIFT, and thus not relevant for Unicode/10646, only for conversion (maybe to

Unicode).

• 48 INIS, Control Set https://www.itscj-ipsj.jp/ir/048.pdf 4/2 4.29

“International Nuclear Information System”/”Bibliographic data interchange”; Just declaring

that they (supposedly) only use ESC, GS (IS3) and RS (IS2) out of the “normal” C0 codes.

• 74 C0 for Japanese standard JIS C 6225-1979 https://www.itscj-ipsj.jp/ir/074.pdf

4/6 4.48

“Normal” C0 except that IS4 is replaced by CEX (CONTROL EXTENSION). CEX should probably

be mapped either to DLE or some ECMA-48 control sequence (depending on what CEX is…).

• 104 Minimum C0 Set for ISO 4873 https://www.itscj-ipsj.jp/ir/104.pdf 4/7 4.62

Ordinary C0 limited to ESC…

• 106 Teletex primary set of Control Functions CCITT Rec. T.61

https://www.itscj-ipsj.jp/ir/106.pdf 4/5 4.68 (Not to be confused with Teletext.)

C0 easily mapped to ECMA-48 standard C0/C1. However, that is for LOCKING SHIFTs, and thus

not relevant for Unicode/10646, only for conversion (maybe to Unicode).

• 130 C0 Set of ISO 646 without SI and SO ASMO-662 and COMECON ST SEV 358

https://www.itscj-ipsj.jp/ir/130.pdf 4/8 4.80

Normal (ECMA-48) C0 but excluding SI and SO (LS1 and LS0). These two controls are basically

always uninterpreted today (and must be uninterpreted for Unicode/10646) anyway.

• 132 Primary Control Set of Data Syntax I of CCITT Rec. T.101

https://www.itscj-ipsj.jp/ir/132.pdf 4/9 4.85

Easily mappable to ECMA-48 standard control codes and standard control sequences.

• 134 Primary Control Set of Data Syntax II of CCITT Rec. T.101

https://www.itscj-ipsj.jp/ir/134.pdf 4/10 4.93

Mostly easily mappable to standard ECMA-48 control codes/sequences, except for CURSOR

ON/OFF and REPEAT, which may need some minor extension to ECMA-48 or the use of

private use control codes/sequences.

• 135 Primary Control Set of Data Syntax III of CCITT Rec. T.101

https://www.itscj-ipsj.jp/ir/135.pdf 4/11 4.97

Easily mappable to ECMA-48 standard control codes and standard control sequences.

• 140 C0 Set of ISO 646 with EM replaced by SS2 - Czechoslovak 4/12 4.110 Standard CSN

369102 https://www.itscj-ipsj.jp/ir/140.pdf 4/12 4.110

The title says it all. Easily mapped to ECMA-48 standard C0/C1.

https://www.itscj-ipsj.jp/ir/001.pdf
https://www.itscj-ipsj.jp/ir/007.pdf
https://www.itscj-ipsj.jp/ir/026.pdf
https://www.itscj-ipsj.jp/ir/036.pdf
https://www.itscj-ipsj.jp/ir/048.pdf
https://www.itscj-ipsj.jp/ir/074.pdf
https://www.itscj-ipsj.jp/ir/104.pdf
https://www.itscj-ipsj.jp/ir/106.pdf
https://www.itscj-ipsj.jp/ir/130.pdf
https://www.itscj-ipsj.jp/ir/132.pdf
https://www.itscj-ipsj.jp/ir/134.pdf
https://www.itscj-ipsj.jp/ir/135.pdf
https://www.itscj-ipsj.jp/ir/140.pdf

10

• 40 Additional Control Functions for Bibliographic Use according to DIN 31626

https://www.itscj-ipsj.jp/ir/040.pdf 4/5 4.25

Has a number of control codes for affecting bibliographic sorting of strings. These can be

mapped to private-use control sequences as per ECMA-48, or private-use Unicode characters.

• 56 Attribute Control set for UK Videotex British Telecom

https://www.itscj-ipsj.jp/ir/056.pdf 4/0 4.32 (Videotex was a precursor to Teletext.)

Neither the 7-bit encoding (using escape sequences) nor the 8-bit encoding of that

registration can be used in Teletext (and probably nor in Videotex): there are no escape

sequences in Teletext, nor are there any 8-bit encodings so there is no C1 area. These

“controls” are also inappropriate for anything outside of the Teletext protocol, since these

(like the real C0 in Teletext) assume a particular code page setup particular to Teletext. In

addition, the descriptions are wrong (or at least incomplete); these are spacing graphic

characters (despite being called control characters), usually rendered as SPACE (this likely

holds also for Videotex). And… there are no CSI nor ESC (despite the name) controls in

Teletext (and likely likewise for Videotex). So this is just…very wrong.

• 67 Additional Control Functions for Bibliographic Use according to ISO 6630

https://www.itscj-ipsj.jp/ir/067.pdf 4/2 4.38

See registration nr 124 below. Has a number of control codes for affecting bibliographic

sorting of strings. These can be mapped to private-use control sequences as per ECMA-48, or

private-use Unicode characters.

• 73 Attribute Control Set for Videotex CCITT https://www.itscj-ipsj.jp/ir/073.pdf

4/1 4.42 (Videotex was a precursor to Teletext.) In addition to the problems listed with entry

56 (see above), this one is incorrect relative to the (Enhanced) Teletext standard w.r.t. the set

of “controls”, even when ignoring the issues listed above (for entry 56). So this is just…very,

very wrong (and likely wrong also w.r.t. Videotex).

• 77 C1 Control Set of ISO 6429-1983 https://www.itscj-ipsj.jp/ir/077.pdf 4/3 4.55

This seems to the normal C1 controls.

• 105 Minimum C1 Set for ISO 4873 https://www.itscj-ipsj.jp/ir/105.pdf 4/7 4.65

“Normal” C1 limited to SS2 and SS3…

• 107 Teletex Supplementary Set of Control Functions CCITT Rec. T.61

https://www.itscj-ipsj.jp/ir/107.pdf 4/8 4.72 (Not to be confused with Teletext.)

“Normal” C1 limited to PLU, PLD, and CSI.

• 124 Upward Compatible Version of ISO 6630 (Registration 67)

https://www.itscj-ipsj.jp/ir/124.pdf 4/0 4/2 4.76

Has a number of control codes for affecting bibliographic sorting of strings. These can be

mapped to private-use control sequences as per ECMA-48, or private-use Unicode characters.

• 133 Supplementary Control Set of Data Syntax I of CCITT Rec. T.101

https://www.itscj-ipsj.jp/ir/133.pdf 4/4 4.89

(Another registration for Videotex, but different set of controls. See above. This one has

likely never been used.)

• 136 Supplementary Control Set of Data Syntax III of CCITT Rec. T.101

https://www.itscj-ipsj.jp/ir/136.pdf 4/6 4.102

(Yet another registration for Videotex, but different set of controls. See above. This one has

likely never been used.)

Note that there is no registration for Teletext “controls”; and the registration for “normal” C0 has a

major typo.

https://www.itscj-ipsj.jp/ir/040.pdf
https://www.itscj-ipsj.jp/ir/056.pdf
https://www.itscj-ipsj.jp/ir/067.pdf
https://www.itscj-ipsj.jp/ir/073.pdf
https://www.itscj-ipsj.jp/ir/077.pdf
https://www.itscj-ipsj.jp/ir/105.pdf
https://www.itscj-ipsj.jp/ir/107.pdf
https://www.itscj-ipsj.jp/ir/124.pdf
https://www.itscj-ipsj.jp/ir/133.pdf
https://www.itscj-ipsj.jp/ir/136.pdf

11

It is high time to scrap all this for the purposes of ISO/IEC 10646 (which mistakenly still references it).

The C0/C1 need to be fixed and fixed to what is in ISO/IEC 6429. Again, this does not mean that

implementations suddenly must interpret all or any of C0/C1 characters according to ISO/IEC 6429.

All can stay as is in just about all modern implementations w.r.t. conformity to the Unicode standard

and the ISO/IEC 10646 standard. Most of this is either completely outdated (since decades), or plain

wrong (w.r.t. the relevant standard; Teletext in particular). Data using these registrations may still

occur in archival data, but should be converted to follow ISO/IEC 6429 (ECMA-48) with suitable bit

padding for UTF-16 and UTF-32, and appropriate bit encoding for C1 in UTF-8. If there is no direct

mapping to ECMA-48 control codes or standard control sequences, there are a few control codes

that are private use, a large number of control sequences that are private use (and one could use

appropriate extensions to the standard ones as well, though that would be a matter of at least

proposed standard extensions), and all control strings (APC…ST, OSC…ST, DCS…ST) are all private use.

So there is no lack of appropriate ways of representing “odd” (and old) control codes in a standards

compliant manner according to ISO/IEC 6429.

Bibliographic sorting controls
While most of the non-ISO/IEC 6429 registered control sets are either defective or misguided, one of

the few that may actually have continued interest is the bibliographic sorting one, https://www.itscj-

ipsj.jp/ir/124.pdf. (There are actually three bibliographic sorting control sets registered, but we will

look only at the last one.)

While these are formulated as control codes in the registration, I can see three different reasonable

ways of handling them in a Unicode and ECMA-48 context. (Apart from CUS to CGJ and preferring

superscript/subscript styling to PLU/PLD.) 1) Use printable Unicode characters that are “extremely”

unlikely to occur in a bibliographic registry entry (but one can use a character escaping scheme just in

case). That way entry is made easier, one can pick from a small palette of characters, and they are

visible through common system fonts. And the characters in question should be bidi neutral and bidi

mirrored, so that they work in a bidi environment as well. 2) Use Unicode private use characters.

These are “guaranteed” not occur in actual bibliographic entries, and can in some sense be

“controls”, but can also be given glyphs in special fonts. But that is also a downside: you need special

fonts to make them visible, and they might not work well in a bidi context. 3) Use control sequences.

That is closer to the original (control codes), but are still invisible (if displayed properly), but are

longer than just one character (so handling them for interpretation is a little bit harder). One can

combine these approaches though. Use printable characters for input, then pre-process to private-

use characters (and interpret character escapes), and then do the bibliographic sorting. Note that the

character choices and control sequence choices here are for illustration of the approaches only, it is

not a firm proposal.

Bibl. hex. Mnem. Name printable private-use contr.seq.(p.u.)

87 CUS Close-up for sorting COMBINING GRAPHEME JOINER (U+034F)

88 NSB Non-sorting characters
begin

❰ (U+2770) U+F80A CSI 1:1s

89 NSE Non-sorting characters
end

❱ (U+2771) U+F80B CSI 1:0s

8B PLD Partial line down PLD (U+008B) (But better to use ECMA-48
superscript/subscript styling per prop. extension;
CSI 56:1m, …, CSI 56:0m; CSI 56:=1m, …; CSI 56:0m)

8C PLU Partial line up PLU (U+008C) (But better to use ECMA-48
superscript/subscript styling per prop. extension;
CSI 56:1m, …, CSI 56:0m; CSI 56:=1m, …; CSI 56:0m)

https://www.itscj-ipsj.jp/ir/124.pdf
https://www.itscj-ipsj.jp/ir/124.pdf

12

Bibl. hex. Mnem. Name printable private-use contr.seq.(p.u.)

91 EAB Embedded annotation
begin

⟬ (U+27EC) U+F800 CSI 2:1s

92 EAE Embedded annotation
end

⟭ (U+27ED) U+F801 CSI 2:0s

95 SIB Sorting interpolation
begin

⦃ (U+2983) U+F802 CSI 3:1s

96 SIE Sorting interpolation
end

⦄ (U+2984) U+F803 CSI 3:0s

97 SSB Secondary sorting
value begin

⦅ (U+2985) U+F804 CSI 4:1s

98 SSE Secondary sorting
value end

⦆ (U+2986) U+F805 CSI 4:0s

9C KWB Keyword begin ⦉ (U+2989) U+F806 CSI 5:1s

9D KWE Keyword end ⦊ (U+298A) U+F807 CSI 5:0s

9E PSB Permutation string
begin

⦑ (U+2991) U+F808 CSI 6:1s

9F PSE Permutation string
end

⦒ (U+2992) U+F809 CSI 6:0s

The registration form gives more information on how these controls (or higher-level protocol, if using

printable characters) are to be used. The description in the registration is still incomplete and leaves

much of the specification on how these controls affect the sorting to be found elsewhere (in

particular ISO 6630:1986 Documentation — Bibliographic control characters).

EBCDIC control codes
Also EBCDIC control codes can be reasonably converted to ECMA-48 control codes and control

sequences. But we need a few extensions to ECMA-48 for subscript/superscript styling and line

indent. There are also three control codes with S/360 special meaning; below I’ve used private use

control sequences for mapping those.

The table below is mostly based on https://en.wikipedia.org/wiki/EBCDIC. There appears to have

been some variation (both in time and space), which are not covered here.

EBCDIC
hex

Name Mnem. Description
EBCDIC to ECMA-48

(preliminary)
ICU

00 null NUL NULL (U+0000) <U0000>

01 start of heading SOH SOH (U+0001) <U0001>

02 start of text STX STX (U+0002) <U0002>

03 end of text ETX ETX (U+0003) <U0003>

04 Select SEL
Device control
character taking a
single-byte parameter.

DLE (…) (U+0010, …)
(DLE is de facto deprecated
since ECMA-24 is withdrawn)

<U009C>

05 horizontal tab. HT HT (U+0009) <U0009>

06
Required New
Line

RNL
Line-break resetting
Indent Tab mode

CSI 75:0:0m, CSI 76:0:0m,
NEL

<U0086>

07 delete DEL DEL (U+007F) <U007F>

https://en.wikipedia.org/wiki/EBCDIC

13

EBCDIC
hex

Name Mnem. Description
EBCDIC to ECMA-48

(preliminary)
ICU

08 Graphic Escape GE

Non-locking shift that
changes the
interpretation of the
following byte.

SS2 (U+008E)
(Must be uninterpreted in
Unicode; though this control

code should be interpreted

by a converter to Unicode)

<U0097>

09 Superscript SPS
Begin superscript or
undo subscript.
[toggles]

CSI 56:1m, CSI 56:0m
(ECMA-48 as extended in my
proposal to update the styling
part of ECMA-48; normally
ECMA-48 control sequences
do not use toggling)

<U008D>

0A Repeat RPT
Switch to an operation
mode repeating a print
buffer

DLE (…) (U+0010, …)
(DLE is de facto deprecated
since ECMA-24 is withdrawn)

<U008E>

0B vertical tabulation VT VT (U+000B) <U000B>

0C form feed FF FF (U+000C) <U000C>

0D carriage return CR CR (U+000D) <U000D>

0E shift out SO

SO (U+000E)
(Must be uninterpreted in
Unicode, though this control

code should be interpreted

by a converter to Unicode)

<U000E>

0F shift in SI

SI (U+000F)
(Must be uninterpreted in
Unicode, though this control

code should be interpreted

by a converter to Unicode)

<U000F>

10 data link escape DLE
DLE (U+0010)
(DLE is de facto deprecated
since ECMA-24 is withdrawn)

<U0010>

11 device control 1 DC1 DC1/XON (U+0011) <U0011>

12 device control 2 DC2 DC2 (U+0012) <U0012>

13 device control 3 DC3 DC3/XOFF (U+0013) <U0013>

14
Restore,
Enable
Presentation

RES/ENP
Resume output (after
BYP/INP)

XON/DC1 (U+0011) (dup.) <U009D>

15 New Line NL Line break. NEL (or LF, or CRLF) <U0085>

16 backspace BS BS (U+0008) <U0008>

17
Program Operator
Communication

POC

Followed by two one-
byte operators that
identify the specific
function, for example a
light or function key.

CSI n SP W (FNK)
(The following two bytes
need be converted to a
suitable n)

<U0087>

18 cancel CAN CAN (U+0018) <U0018>

19 end of medium EM EM (U+0019) <U0019>

1A Unit Backspace UBS A fractional backspace.
CSI y
(a private-use control
sequence)

<U0092>

1B
Customer Use
One

CU1 PU1 (U+0091) <U008F>

1C
Interchange File
Separator

IFS FS/IS4 (U+001C) <U001C>

14

EBCDIC
hex

Name Mnem. Description
EBCDIC to ECMA-48

(preliminary)
ICU

1D
Interchange
Group Separator

IGS GS/IS3 (U+001D) <U001D>

1E
Interchange
Record Separator

IRS RS/IS2 (U+001E) <U001E>

1F
Interchange Unit
Separator

IUS US/IS1 (U+001F) <U001F>

20 Digit Select DS
Used by S/360 CPU
edit (ED) instruction

CSI 1z
(a private-use control
sequence)

<U0080>

21
Start of
Significance

SoS

Used by S/360 CPU
edit (ED) instruction.
(Note: different from
ISO/IEC 6429’s SOS.)

CSI 2z
(a private-use control
sequence)

<U0081>

22 Field Separator FDS
Used by S/360 CPU
edit (ED) instruction.

CSI 3z
(a private-use control
sequence)

<U0082>

23 Word Underscore WUS
Underscores the
immediately preceding
word.

CSI 4m, CSI 24m
(surrounding the
“immediately preceding
word”)

<U0083>

24
Bypass,
Inhibit
Presentation

BYP/INP

De-activates output,
i.e., ignores all
graphical characters
and control characters
besides transmission
control codes and
RES/ENP, until the next
RES/ENP.

(Not sure the description is
correct…)

XOFF/DC3 (U+0013) (dup.)
(or just throw away text:
DC4 (? dup.))

<U0084>

25 line feed LF LF (U+000A) <U000A>

26
end of
transmission
block

ETB ETB (U+0017) <U0017>

27 escape ESC ESC (U+001B) <U001B>

28 Set Attribute SA

Marks the beginning of
a fixed-length device
specific control
sequence. Deprecated
in favour of CSP.

CSI … or DLE … <U0088>

29
Start Field
Extended

SFE

Marks the beginning of
a variable-length device
specific control
sequence. Deprecated
in favour of CSP.

CSI … or DLE … <U0089>

2A Set Mode, Switch SM/SW

Device specific control
that sets a mode of
operation, such as a
buffer switch.

DLE (…) (U+0010, …)
(DLE is de facto deprecated
since ECMA-24 is withdrawn)

<U008A>

15

EBCDIC
hex

Name Mnem. Description
EBCDIC to ECMA-48

(preliminary)
ICU

2B
Control Sequence
Prefix

CSP

Marks the beginning of
a variable-length device
specific control
sequence. Followed by
a class byte specifying
a category of control
function, a count byte
giving the sequence
length (including count
and type bytes, but not
the class byte or initial
CSP), a type byte
identifying a control
function within that
category, and zero or
more parameter bytes.

CSI (U+009B)
(The description (as per
Wikipedia) says ”device
specific”; however, the
description (in Wikipedia)
does not give enough detail
to specify exact conversions,
or even which functions may
be specified, so it is hard to
say how to interpret the rest
of the control sequence. A
more detailed analysis, given
more detailed information, is
needed to give a full
conversion specification)

<U008B>

2C
Modify Field
Attribute

MFA

Marks the beginning of
a variable-length device
specific control
sequence. Deprecated
in favour of CSP.

CSI … or DLE … <U008C>

2D enquiry ENQ ENQ (U+0005) <U0005>

2E acknowledge ACK ACK (U+0006) <U0006>

2F bell BELL
[The device control, not
the bell symbol]

BELL (U+0007) <U0007>

30 (reserved)
Reserved for future use
by IBM

Conversion error: SUB <U0090>

31 (reserved)
Reserved for future use
by IBM

Conversion error: SUB <U0091>

32 SYN synchronous idle SYN (U+0016) <U0016>

33 Index Return IR

Either move to start of
next line (see also NL),
or terminate an
information unit
(see also IUS/ITB).

IND (U+0084)? <U0093>

34
Presentation
Position

PP

Followed by two one-
byte parameters (firstly
function, secondly
number of either
column or line) to set
the current position.

CSI n;mH <U0094>

35 Transparent TRN

Followed by one byte
parameter that indicates
the number of bytes of
transparent data that
follow.

CSI 8m … CSI 28m
(Enclosing the characters
that should be transparent.
Here I assume that
“transparent” means
“transparent colour”. But it
might mean “non-character
data” in some way.
In the latter case, one can
use SOS…ST combined, if
needed, with base-64
encoding of the non-
character data.)

<U0095>

36
Numeric
Backspace

NBS
Move backward the
width of one digit.

BS (U+0008) dup.,
or CSI 1y

<U0096>

37
end of
transmission

EOT EOT (U+0004) <U0004>

16

EBCDIC
hex

Name Mnem. Description
EBCDIC to ECMA-48

(preliminary)
ICU

38 Subscript SBS
Begin subscript or undo
superscript. [toggles]

CSI 56:=1m, CSI 56:0m
(ECMA-48 as extended in my
proposal to update the styling
part of ECMA-48; normally
ECMA-48 control sequences
do not use toggling)

<U0098>

39 Indent Tab IT

Indents the current and
all following lines, until
RNL or RFF is
encountered.

CSI 75:0:3m, CSI 76:0:3m
(ECMA-48 as extended in my
proposal to update the styling
part of ECMA-48)

<U0099>

3A
Required Form
Feed

RFF
Page-break resetting
Indent Tab mode.

CSI 75:0:0m, CSI 76:0:0m,
CR, FF

<U009A>

3B
Customer Use
Three

CU3 PU2 (U+0092) <U009B>

3C device control 4 DC4 DC4 (U+0014) <U0014>

3D
negative
acknowledge

NAK NAK (U+0015) <U0015>

3E (reserved)
Reserved for future use
by IBM

Conversion error: SUB <U009E>

3F substitute SUB SUB (U+001A) <U001A>

40 space SP SP (U+0020) <U0020>

41 required space RSP NBSP (U+00A0) missing

CA Syllable hyphen SHY SHY (soft hyphen) (U+00AD) missing

E1 Numeric space NSP FIGURE SPACE (U+2007) missing

FF Eight Ones EO Used as filler DEL (U+007F); dup. <U009F>

For ICU all mappings to C0 (for 21 years now) are OK w.r.t. ECMA-48. However, mappings to C1 are

botched, with the exception of NEL. In addition, three “semi-control” codes are not mapped in ICU.

ATASCII, PETSCII, ISCII-ATR
The character encoding for many old computer systems do not follow the ISO/IEC 2022 architecture,

and their control codes do not follow ISO/IEC 6429 and sometimes allocate control codes in what

would otherwise be “graphic” areas. However, many of the “special” control codes (regardless of

allocation) can mostly easily be mapped to standard control sequences in ISO/IEC 6429. A few may

need to be mapped to some minor extensions or the use of private use control sequences.

Several of the ATASCII and PETSCII control codes are for arrow keys (there are ISO/IEC 6429 standard

control sequences for that), or (foreground) colour changes (there are ISO/IEC 6429 standard control

sequences for that). So much, if not all, of those legacy control codes can be mapped to ISO/IEC 6429

standard control sequences. (And mapped back, if needed.)

Below are mappings for ATASCII controls, PETSCII controls (varies per version), and ISCII styling

controls (but not the C0/C1 controls in ISCII).

This should be enough to show the principle not only for these legacy encodings, but also for other

“legacy” control codes, and how they should be handled (by interested parties, not to be handled or

hosted by Unicode consortium).

The UTC, however, must avoid supporting, and indeed deter, disastrously destructive approaches

such as:

17

“Control characters from microcomputer platforms and teletext were also determined to be out of

scope for the UCS. These characters were located in what would today be considered the C0 control

range (0x00–0x1F) or the C1 control range (0x7F–0x9F). Processes that need to interchange these

codes should simply interchange the binary C0 or C1 value, extended to the UCS code space but

without further mapping. Emulators should treat these control codes as appropriate for the targeted

environment.”.

… and instead encourage doing mappings as below (and above). (Again, not suggesting that Unicode

consortium actually define the mappings, nor host such mapping tables. Just to say, in short: “this is

how to do it, details are left to interested parties”.)

ATASCII control characters to ECMA-48 mapping (and, in principle, backmapping)

ATASCII
Hex.

Function
ECMA-48 (preliminary)

based on https://en.wikipedia.org/wiki/ATASCII

00 (NULL)

1B Escape key ESC (U+001B) or, rather, INT - INTERRUPT (ESC a)

1C Cursor Up CUU - CURSOR UP (CSI A, using default arg.: 1)

1D Cursor Down CUD - CURSOR DOWN (CSI B, using default arg.: 1)

1E Cursor Left CUB - CURSOR LEFT (CSI D, using default arg.: 1)

1F Cursor Right CUF - CURSOR RIGHT (CSI C, using default arg.: 1)

7D Clear Screen RIS - RESET TO INITIAL STATE (ESC c)

7E Delete DEL (U+007F)

7F Tab HT (U+0009)

9B End of line CR (U+000D) or LF (U+000A) or even NEL (U+0085)

9C Delete Line DL - DELETE LINE (CSI M, using default arg.: 1)

9D Insert Line IL - INSERT LINE (CSI L, using default arg.: 1)

9E Clear Tab stop TBC – (CHARACTER) TABULATION CLEAR (CSI g)

9F Set Tab stop HTS - CHARACTER TABULATION SET (U+0088)

FD Buzzer BELL (U+0007)

FE
Delete
Character

ECH - ERASE CHARACTER (CSI X, using default arg.: 1)

FF
Insert
Character

ICH - INSERT CHARACTER (CSI (, using default arg.: 1)

Note that the three last ones are not in the C0/C1 ranges.

PETSCII control characters to ECMA-48 mapping, C0 part

PETSCII
hex.

E-48 C
esc.

PETSCII to ECMA-48 mapping, per version (preliminary)
based on https://en.wikipedia.org/wiki/PETSCII

00 NUL \0 (NULL)

01 SOH --- ---

02 STX ---/ul.on --- Ul.on. CSI 4m

03 ETX Stop ESC a (INT - INTERRUPT)

04 EOT --- ---

05 ENQ White CSI 37m

06 ACK --- ---

07 BEL \a

BELL --- BELL

https://en.wikipedia.org/wiki/ATASCII
https://en.wikipedia.org/wiki/Tab_key
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Bell_character
https://en.wikipedia.org/wiki/PETSCII
https://en.wikipedia.org/wiki/%5C0
https://en.wikipedia.org/wiki/%5Ca

18

PETSCII
hex.

E-48 C
esc.

PETSCII to ECMA-48 mapping, per version (preliminary)
based on https://en.wikipedia.org/wiki/PETSCII

08 BS \b Sh.dis./--- CSI =0:0 SP W (new) ---

09 HT \t

Sh.en./HT CSI =0:1 SP W (new) HT

0A LF \n

---/LF --- LF (dupl.) (or IND)

0B VT \v

Shift en. --- CSI =0:1 SP W (new)

0C FF \f

Shift dis. --- CSI =0:0 SP W (new)

0D CR \r

CR CR

0E SO Txt.mode SO

0F SI ---/blink on --- blink on: CSI 5m

10 DLE --- ---

11 DC1/XON Cur. down CUD - CURSOR DOWN (CSI B, using default arg.: 1)

12 DC2 Reverse on CSI 7m

13 DC3/XOFF Home CSI H (using default args. 1;1)

14 DC4 Delete DEL

15 NAK --- ---

16 SYN --- ---

17 ETB --- ---

18 CAN ---/
Tab.set/clr.

Toggle: HTS (U+0088), TBC: CSI 0g.
ECMA-48 (fortunately) does not have

toggling tab set/unset, so we need to use
a private use control sequence, like CSI |.

19 EM --- ---

1A SUB --- ---

1B ESC \e

ESC --- (ESC)

1C FS/IS4 Red CSI 91m

1D GS/IS3 Cur. right CUF - CURSOR RIGHT (CSI C, using default arg.: 1)

1E RS/IS2 Green CSI 92m

1F US/IS1 Blue CSI 94m

It is not clear what Shift-enable and Shift-disable did (Shift-lock/Caps-lock, or actually Shift?).

The PETSCII colours to SGR control sequences may need adjusting.

PETSCII control characters to ECMA-48 mapping, C1 part

PETSCII
hex. E-48

E-48
ESC+

PETSCII to ECMA-48 mapping, per version (preliminary)
based on https://en.wikipedia.org/wiki/PETSCII

80 PAD @ --- ---

81 HOP A Ornge/d.prpl CSI 99m (new) CSI 35m

82 BPH B
Blink on/

ul.off
--- blink on:

CSI 5m
--- Ul.off: CSI 24m

83 NBH C Run OSC run ST

84 IND D
Blink off/--- --- blink off:

CSI 25m

85 NEL E F1 CSI 1 SP W FNK (FUNCTION KEY)

https://en.wikipedia.org/wiki/PETSCII
https://en.wikipedia.org/wiki/%5Ct
https://en.wikipedia.org/wiki/%5Cn
https://en.wikipedia.org/wiki/%5Cv
https://en.wikipedia.org/wiki/%5Cf
https://en.wikipedia.org/wiki/%5Cr
https://en.wikipedia.org/wiki/%5Ce
https://en.wikipedia.org/wiki/PETSCII

19

PETSCII
hex. E-48

E-48
ESC+

PETSCII to ECMA-48 mapping, per version (preliminary)
based on https://en.wikipedia.org/wiki/PETSCII

86 SSA F F2 CSI 2 SP W FNK (FUNCTION KEY)

87 ESA G F3 CSI 3 SP W FNK (FUNCTION KEY)

88 HTS H F4 CSI 4 SP W FNK (FUNCTION KEY)

89 HTJ I F5 CSI 5 SP W FNK (FUNCTION KEY)

8A VTS J F6 CSI 6 SP W FNK (FUNCTION KEY)

8B PLD K F7 CSI 7 SP W FNK (FUNCTION KEY)

8C PLU L F8 CSI 8 SP W FNK (FUNCTION KEY)

8D RI M LF LF (U+000A, or IND or NEL)

8E SS2 N Graphics SI

8F SS3 O ---/Blink off --- blink off: CSI 25m

90 DCS P Black CSI 30m

91 PU1 Q Curs. up CUU - CURSOR UP (CSI A, using default arg.: 1)

92 PU2 R Reverse off CSI 27m

93 STS S CLR ESC c (RIS - RESET TO INITIAL STATE)

94 CCH T Insert CSI @ (ICH - INSERT CHARACTER)

95 MW U
Brown/

dark yellow
CSI 38:2::165:42:42m, …

96 SPA V
Pink/

yllw-grn/
lght red

CSI 38:2::255:192:203m, …

97 EPA W

Dark grey/
pink/

dark cyan/
light grey

CSI 90m (new), …

98 SOS X
Med.grey/
blue-green

CSI 98m (new), …

99 SGC Y
Lght.green/

lght blue
CSI 38:2::152:251:152m, …

9A SCI Z
Lght.blue/
dark blue

CSI 38:2::135:206:235m, …

9B CSI [
Lght.grey/
dark grey

CSI 97m (new), …

9C ST \ Purple CSI 95m

9D OSC] Curs. left CUB - CURSOR LEFT (CSI D, using default arg.: 1)

9E PM ^ Yellow CSI 93m

9F APC _ Cyan CSI 96m

The colour settings are for foreground colour. Background colour is set by other means.

The PETSCII colours to SGR control sequences may need adjusting to get the colours right. In addition

several of the colours vary a bit too much per version (omitting the details here). Note that colours,

underline, and arrow keys per ECMA-48 are commonly supported in modern terminal emulators; but

ECMA-48 is not limited to terminal emulators by any means.

https://en.wikipedia.org/wiki/PETSCII

20

ISCII styling controls to ECMA-48 mapping (note: ATR (0xEF) is not in the C0/C1 ranges)

ISCII (all these ATR toggle) ECMA-48 (as extended here; note: no toggling)

ATR BLD (= ATR 0) (bold) CSI 1m or CSI 1:3m, CSI 22m

ATR ITA (= ATR 1) (italic) CSI 3m, CSI 23m

ATR UL (= ATR 2) (underline) CSI 4m, CSI 24m

ATR EXP (= ATR 3) (expand) CSI 73:1:2m, CSI 73:1:1m

ATR HLT (= ATR 4) (highlight/bold) CSI 1m or CSI 1:3m, CSI 22m

ATR OTL (= ATR 5) (outline) CSI 80:6:5;38:6m (setting the all-around 0,05 em shadow

colour to be the current text colour, and then setting the

text colour to be the same as the (opaque) background

colour), CSI 38:7;89m (if not combined with SHD)

ATR SHD (= ATR 6) (shadow) CSI 81:45:6:10;80:6:5;38:6m (extra shadow to the ‘south-

east’), CSI 38:7;89m (if not combined with OTL)

ATR TOP (= ATR 7) (top half of

double height glyphs)

CSI 73:2:1;113:1m, CSI 73:1:1;113:0m

ATR LOW (= ATR 8) (low half of

double height glyphs)

CSI 73:2:1;113:2m, CSI 73:1:1;113:0m

ATR DBL (= ATR 9) (double size) CSI 73:2:2m (combined with ATR TOP and ATR LOW one

can get CSI 73:4:2m and combined with ATR EXP also

CSI 73:4:4m) or maybe CSI 72:0:2m (not clear from ISCII),

CSI 73:1:1m or maybe CSI 72:0:0?5m

line break char (in ISCII all style

settings are auto-reset at the

beginning of each line)

line break char, CSI 0m

(C0/C1 not covered here, nor EXT (= SS2?), just the styling controls.) (“Here” refers to my proposal to

update/extend styling controls for ECMA-48.)

Note again that ATR (= 0xEF) is outside of C0/C1.

Recommendations
The goal of this paper is not to preserve Teletext, even though quite a lot of is has been devoted to

certain aspects of Teletext. But that has been in order to give a background for why it is a bad idea to

regard C0/C1 areas as some kind of private use area(s), like suggested in L2/21-235 ‘Proposal to add

further characters from legacy computers and teletext’ which suggests that:

“Control characters from microcomputer platforms and teletext were also determined to be out of scope for the

UCS. These characters were located in what would today be considered the C0 control range (0x00–0x1F) or the

C1 control range (0x7F–0x9F). Processes that need to interchange these codes should simply interchange the

binary C0 or C1 value, extended to the UCS code space but without further mapping. Emulators should treat

these control codes as appropriate for the targeted environment.”

This must not happen. It is a senseless idea for Teletext (as explained at length above) and is a very,

very bad idea also for other, less extreme, settings. The C0/C1 needs to be fixed in semantics. That

does not mean that Teletext and other “old” systems are left stranded. For Teletext it is perfectly

possible to convert to another styling system that is valid outside of the Teletext protocol. For other

odd-ball old control codes one should map each to the closest corresponding ISO/IEC 6429 control

21

code (there are even 4 private-use ones), escape sequence, control sequence (CSI…..; there are

plenty of private use ones), or control string (often application program control string; APC….ST; all of

which is private-use).

C0/C1 should be protected by conformity clauses, stability clauses, and a total rewrite of TUS section

23.1 (Control Codes; see below for a suggested rewrite) of the Unicode standard, and a rewrite of at

least section 13.4 (Identification of control function set) of ISO/IEC 10646 (nobody, absolutely

nobody, implements those escape sequences (for C0/C1) anyway).

C0/C1 needs to be as stable as the ASCII part of the Unicode and ISO/IEC 10646 standards. This does

not mean that implementations must start supporting lots of control codes not supported today.

Many of them will simply be uninterpreted, as they are today. Note that not even A-Z, a-z, 0-9 are

required to be supported by conforming implementations. (All do, but that is for practical reasons,

not conformity reasons.)

Requesters that want “new” control codes for handling some (presumably old) character sets when

mapped to Unicode, should be directed to ISO/IEC 6429, which in addition to many standard control

sequences, also has room for private-use control sequences and control strings. There is no need to

add any “new” control code to Unicode for any “old” character set, while still having C0/C1 areas

stable.

No new control codes in Unicode or ISO/IEC 10646
There is no need to encode any new control codes in Unicode. ISO/IEC 6429 provides plenty of

private use possibilities: a few C0/C1 control codes (PUx, DCx) that are private-use, lots of private use

control sequences, and all control strings are private-use. In addition, Unicode has private use areas.

So, for control codes from legacy character sets that cannot be mapped closely to ISO/IEC 6429

C0/C1 controls codes or control sequences (many can be so mapped), there are plenty of private-use

options. Some (in particular, box start/end in Teletext) may need extensions to the SGR functionality

of ISO/IEC 6429 which are not formally private-use.

Nit: Teletext has no tabs, and no line feed (lines are handled by having line numbers in the Teletext

protocol), and overrides the entire C0 (yes, C0, not C1, there is no C1 in Teletext) controls with

graphic characters (SPACE or a “mosaic” character) that have control functions (often two each).

C0/C1 stability
C0/C1 needs to be stable (except for the handful of private-use control codes), not vary like a private

use area, like some have, quite destructively (from a standards and standards use perspective),

proposed. Below are some text changes to the Unicode standard text relevant to this as well as some

text changes to ISO/IEC 10646 relevant to this. There may be more changes needed.

All Cc, Cf and Zp/Zl characters must be glyphless in normal circumstances (i.e., no font lookup). Note

that SPACE is considered to be a glyph here. (Note that this makes Teletext “controls” (which are

actually SPACE or a “mosaic” character) moved to C1 unsuitable also under the secondary alternative

below). Of course, failure to parse ESC-sequences for C1 controls does not count, since such parsing

should not be required. Nor does a “show invisibles” mode (a non-default mode, that still may be

“on” by default for uninterpreted control codes or control sequences), which may show some

generated glyph or a fallback glyph or special display glyph for Cc, Cf, and Zs/Zp/Zl characters.

22

Primary alternative
Change the approach for both C0 and C1 from a totally open “may” to a “shall”/“must” for both

Unicode and ISO/IEC 10646 to reference ISO/IEC 6429 for the definition of the “control” characters in

those areas. This way both C0 &C1 are stable in Unicode/10646 from a standards point of view.

Secondary alternative
Change the approach for C0 from a totally open “may” to a “shall”/“must” for both Unicode and

ISO/IEC 10646 to reference ISO/IEC 6429 for the definition of the “control” characters in C0.

Change the approach for C1 from a totally open “may” to a “should” for both Unicode and ISO/IEC

10646 to reference ISO/IEC 6429 for the definition of the “control” characters in C1. However, the

ESC-representation for C1 control codes always refer to the ISO/IEC 6429 C1 control codes.

This secondary alternative is passable, though not ideal, for two reasons: 1) C1 “controls” are often

left uninterpreted, and 2) ISO/IEC 6429 (ECMA-48) has a mechanism for accessing the “true” C1

controls (according to ISO/IEC 6429) in case there is no C1 area, or, by extension, in case the C1 area

is botched (from a ISO/IEC 6429 point of view). This is the default approach already taken in terminal

emulators, since the existence of a plain C1 at all is not guaranteed in those contexts. This approach

would allow the ICU mappings for EBCDIC and allow the bibliographic C1 control codes (but not the

ESC-sequences for those).

Note that the ICU mapping of EBCDIC to C1 controls is non-conforming to ISO/IEC 10646 as it is

currently written, since that C1 set is not registered.

Proposed text changes, and property changes for the Unicode standard
For the proposed changes below, the primary alternative above is assumed.

Old (https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf):

Control Codes. Sixty-five code points (U+0000..U+001F and U+007F..U+009F) are defined

specifically as control codes, for compatibility with the C0 and C1 control codes of the

ISO/IEC 2022 framework. A few of these control codes are given specific interpretations by

the Unicode Standard. (See Section 23.1, Control Codes.)

Proposed (6429 instead of 2022):

Control Codes. Sixty-five code points (U+0000..U+001F and U+007F..U+009F) are defined

specifically as control codes, for compatibility with the C0 and C1 control codes of ISO/IEC

6429:1992 Information technology — Control functions for coded character sets. A few of

these control codes are given specific interpretations by the Unicode Standard. (See Section

23.1, Control Codes.)

Old (https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf):

Control Codes

In addition to the special characters defined in the Unicode Standard for a number of

purposes, the standard incorporates the legacy control codes for compatibility with the ISO/

IEC 2022 framework, ASCII, and the various protocols that make use of control codes. Rather

than simply being defined as byte values, however, the legacy control codes are assigned to

Unicode code points: U+0000..U+001F, U+007F..U+009F. Those code points for control

23

codes must be represented consistently with the various Unicode encoding forms when they

are used with other Unicode characters. For more information on control codes, see Section

23.1, Control Codes.

Proposed (6429 instead of 2022):

Control Codes

In addition to the special characters defined in the Unicode Standard for a number of

purposes, the standard incorporates the legacy control codes for compatibility with ISO/IEC

6429:1992 Information technology — Control functions for coded character sets, ASCII, and

the various protocols that make use of control codes. Rather than simply being defined as byte

values, however, the legacy control codes are assigned to Unicode code points:

U+0000..U+001F, U+007F..U+009F. Those code points for control codes must be

represented consistently with the various Unicode encoding forms when they are used with

other Unicode characters. For more information on control codes, see Section 23.1, Control

Codes.

Old (https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf):

23.1 Control Codes

There are 65 code points set aside in the Unicode Standard for compatibility with the C0 and

C1 control codes defined in the ISO/IEC 2022 framework. The ranges of these code points are

U+0000..U+001F, U+007F, and U+0080..U+009F, which correspond to the 8- bit controls

00_16 to 1F_16 (C0 controls), 7F_16 (delete), and 80_16 to 9F_16 (C1 controls),

respectively. For example, the 8-bit legacy control code character tabulation (or tab) is the

byte value 09_16; the Unicode Standard encodes the corresponding control code at U+0009.

The Unicode Standard provides for the intact interchange of these code points, neither adding

to nor subtracting from their semantics. The semantics of the control codes are generally

determined by the application with which they are used. However, in the absence of specific

application uses, they may be interpreted according to the control function semantics specified

in ISO/IEC 6429:1992.

In general, the use of control codes constitutes a higher-level protocol and is beyond the scope

of the Unicode Standard. For example, the use of ISO/IEC 6429 control sequences for

controlling bidirectional formatting would be a legitimate higher-level protocol layered on top

of the plain text of the Unicode Standard. Higher-level protocols are not specified by the

Unicode Standard; their existence cannot be assumed without a separate agreement between

the parties interchanging such data.

Representing Control Sequences

There is a simple, one-to-one mapping between 7-bit (and 8-bit) control codes and the

Unicode control codes: every 7-bit (or 8-bit) control code is numerically equal to its

corresponding Unicode code point. For example, if the ASCII line feed control code (0A_16)

is to be used for line break control, then the text “WX<LF>YZ” would be transmitted in

24

Unicode plain text as the following coded character sequence: <0057, 0058, 000A, 0059,

005A>.

Control sequences that are part of Unicode text must be represented in terms of the Unicode

encoding forms. For example, suppose that an application allows embedded font information

to be transmitted by means of markup using plain text and control codes. A font tag specified

as “^ATimes^B”, where ^A refers to the C0 control code 01_16 and ^B refers to the C0

control code 02_16, would then be expressed by the following coded character sequence:

<0001, 0054, 0069, 006D, 0065, 0073, 0002>. The representation of the control codes in the

three Unicode encoding forms simply follows the rules for any other code points in the

standard:

 UTF-8: <01 54 69 6D 65 73 02>

 UTF-16: <0001 0054 0069 006D 0065 0073 0002>

 UTF-32: <00000001 00000054 00000069 0000006D 00000065 00000073 00000002>

Escape Sequences. Escape sequences are a particular type of protocol that consists of the use

of some set of ASCII characters introduced by the escape control code, 1B_16, to convey

extra-textual information. When converting escape sequences into and out of Unicode text,

they should be converted on a character-by-character basis. For instance, “ESC-A” <1B 41>

would be converted into the Unicode coded character sequence <001B, 0041>. Interpretation

of U+0041 as part of the escape sequence, rather than as latin capital letter a, is the

responsibility of the higher-level protocol that makes use of such escape sequences. This

approach allows for low-level conversion processes to conformantly convert escape

sequences into and out of the Unicode Standard without needing to actually recognize the

escape sequences as such.

If a process uses escape sequences or other configurations of control code sequences to embed

additional information about text (such as formatting attributes or structure), then such

sequences constitute a higher-level protocol that is outside the scope of the Unicode Standard.

Specification of Control Code Semantics
Several control codes are commonly used in plain text, particularly those involved in line and

paragraph formatting. The use of these control codes is widespread and important to

interoperability. Therefore, the Unicode Standard specifies semantics for their use with the

rest of the encoded characters in the standard. Table 23-1 lists those control codes.

 Table 23-1. Control Codes Specified in the Unicode Standard

 Code Point Abbreviation ISO/IEC 6429 Name

 U+0009 HT character tabulation (tab)

 U+000A LF line feed

 U+000B VT line tabulation (vertical tab)

 U+000C FF form feed

 U+000D CR carriage return

 U+001C FS information separator four

 U+001D GS information separator three

 U+001E RS information separator two

 U+001F US information separator one

 U+0085 NEL next line

25

The control codes in Table 23-1 have the Bidi_Class property values of S, B, or WS, rather

than the default of BN used for other control codes. (See Unicode Standard Annex #9,

“Unicode Bidirectional Algorithm.”) In particular, U+001C..U+001E and U+001F have the

Bidi_Class property values B and S, respectively, so that the Bidirectional Algorithm

recognizes their separator semantics.

The control codes U+0009..U+000D and U+0085 have the White_Space property. They also

have line breaking property values that differ from the default CM value for other control

codes. (See Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”)

U+0000 null may be used as a Unicode string terminator, as in the C language. Such usage is

outside the scope of the Unicode Standard, which does not require any particular formal

language representation of a string or any particular usage of null.

Newline Function. In particular, one or more of the control codes U+000A line feed,

U+000D carriage return, and the Unicode equivalent of the EBCDIC next line can encode a

newline function. A newline function can act like a line separator or a paragraph separator,

depending on the application. See Section 23.2, Layout Controls, for information on how to

interpret a line or paragraph separator. The exact encoding of a newline function depends on

the application domain. For information on how to identify a newline function, see Section

5.8, Newline Guidelines.

Proposed (incl.: HTJ should be treated the same as HT; bidi, lb, and some other prop. fixes):

23.1 Control Codes

There are 65 code points set aside in the Unicode Standard for compatibility with the C0 and

C1 control codes defined in ISO/IEC 6429:1992 Information technology — Control functions

for coded character sets. The ranges of these code points are U+0000..U+001F, U+007F, and

U+0080..U+009F, which correspond to the 8- bit controls 00_16 to 1F_16 (C0 controls),

7F_16 (delete), and 80_16 to 9F_16 (C1 controls), respectively. For example, the 8-bit legacy

control code character tabulation (or tab) is the byte value 09_16; the Unicode Standard

encodes the corresponding control code at U+0009.

The Unicode Standard provides for the intact interchange of these code points, neither adding

to nor subtracting from their semantics, except as noted below. The semantics of the control

codes are generally determined by the application with which they are used. The control

function semantics is specified in ISO/IEC 6429:1992. With some exceptions, especially the

ones for NLF and tab, many applications do not interpret most of the control codes, and they

are then usually rendered as zero-width and glyph-less (something that may cause security

issues or strange errors).

In general, the use of control codes constitutes a higher-level protocol and is beyond the

scope of the Unicode Standard, except for the control codes mentioned in section

Specification of Control Code Semantics below.

For example, the use of ISO/IEC 6429 control sequences for controlling bidirectional

formatting would be a legitimate higher-level protocol layered on top of the plain text of the

Unicode Standard. Note though, that the use of ISO/IEC 6429 control sequences for

26

controlling bidirectional formatting is incompatible with the use of the Unicode bidi

algorithm, a different higher-level protocol for the same purpose using control codes that are

not in C0/C1. A more common use of ISO/IEC 6429 control sequences is to specify bold,

italic, or underline style, as well as background and foreground colours for the text.

Even if a process does not interpret any of the ISO/IEC 6429 escape sequences, control

sequences, or control strings, it may render them (in their entirety) as zero-width and glyph-

less (if rendering is at all part of the process), or (in their entirety) as default-ignorable.

However, that is not required by the Unicode standard.

Higher-level protocols, except for the Unicode bidi algorithm and certain cursive shaping, are

not specified by the Unicode Standard; their existence cannot be assumed without a separate

agreement between the parties interchanging such data (and likewise for the Unicode bidi

algorithm).

Representing Escape Sequences, Control Sequences and Control Strings

There is a simple, one-to-one mapping between commonly used 7-bit (and 8-bit) control

codes (those conforming to ISO/IEC 6429) and the Unicode control codes: every 7-bit (or 8-

bit) control code is numerically equal to its corresponding Unicode code point. For example,

if the ASCII line feed control code (0A_16) is to be used for line break control, then the text

“WX<LF>YZ” would be transmitted in Unicode plain text as the following coded character

sequence: <0057, 0058, 000A, 0059, 005A>.

Escape sequences and control sequences, as well as control strings, that are part of Unicode

text must be represented in terms of the Unicode encoding forms. For example, suppose that

an application allows embedded font information to be transmitted by means of markup using

plain text and control codes. A font tag specified as “^ATimes^B”, where ^A refers to the C0

control code 01_16 and ^B refers to the C0 control code 02_16, would then be expressed by

the following coded character sequence: <0001, 0054, 0069, 006D, 0065, 0073, 0002>. The

representation of the control codes in the three Unicode encoding forms simply follows the

rules for any other code points in the standard:

 UTF-8: <01 54 69 6D 65 73 02>

 UTF-16: <0001 0054 0069 006D 0065 0073 0002>

 UTF-32: <00000001 00000054 00000069 0000006D 00000065 00000073 00000002>

(Note that this example is an example only; it has no known implementations, nor does it

follow ISO/IEC 6429 syntax for control strings (something that does have some

implementations). The appropriate control string syntax is APC…ST, where the … is private

use. It could be “fnt=Times”.) [It would be preferable to use the latter, which is standards

based and realistic, rather than something purely invented for this paragraph…i.e. APC

fnt=Times ST.]

Escape sequences and control sequences. [That subtitle should probably be moved up, or

deleted; there is already a title good enough above.] Escape sequences and control sequences

are a particular type of protocol that consists of the use of some set of ASCII characters

introduced by the escape control code, 1B_16, or the control sequence introducer control

code, to convey extra-textual information. When converting escape sequences into and out of

27

Unicode text, they should be converted on a character-by-character basis. For instance, “ESC-

A” <1B 41> would be converted into the Unicode coded character sequence <001B, 0041>.

Interpretation of U+0041 as part of the escape sequence, rather than as latin capital letter a, is

the responsibility of the higher-level protocol that makes use of such escape sequences. This

approach allows for low-level conversion processes to conformantly convert escape

sequences into and out of the Unicode encoding forms without needing to actually recognize

the escape sequences as such, provided that the other encoding conforms to ISO/IEC 6429.

ISO/IEC 6429 also specifies the general syntax for control strings but does not specify the

content of such strings; they are entirely private-use. See example above.

If a process uses escape sequences or other configurations of control code sequences to embed

additional information about text (such as formatting attributes or structure), then such

sequences constitute a higher-level protocol that is outside the scope of the Unicode Standard.

Legacy charsets often contain control codes that do not directly match any of the control

codes in C0/C1 of ISO/IEC 6429. However, often one can find matching standard control

sequences in ISO/IEC 6429. For example, ATASCII's 1C_16 (cursor up) corresponds to

ISO/IEC 6429's CSI 1A, (cursor up 1 step) and PETSCIIs 1F_16 (blue) corresponds to

ISO/IEC 6429's CSI 34m (blue-ish foreground) or maybe better CSI 94m (clear blue

foreground, a popular extension to ISO/IEC 6429). For Teletext "control" codes, specified in

the "Enhanced Teletext" standard, many of them serve three purposes in one, a graphic

character, code page switching, and colour change. E.g. Teletext’s 00_16 (alpha black),

(usually) displays as a SPACE, switches to the current default "alphanumeric" 7-bit codepage,

and changes to black foreground colour; despite not being true control characters, they are

graphic characters with variable display, they reside in the C0 area of all of the 7-bit

codepages of Teletext (aside: Teletext itself has no escape sequences, nor any control

sequences, nor any C1 area). Generally, if there is no close match, one may consider using the

private-use control codes, the private-use control sequences of ISO/IEC 6429 or even private-

use Unicode code points. Unicode does not specify these mappings.

Specification of Control Code Semantics
Several control codes are commonly used in plain text, particularly those involved in line and

paragraph formatting. The use of these control codes is widespread and important to

interoperability. Therefore, the Unicode Standard specifies semantics for their use with the

rest of the encoded characters in the standard. Table 23-1 lists those control codes.

 Table 23-1. Control Codes Specified in the Unicode Standard

 Code Point Abbreviation ISO/IEC 6429 Name

 U+0009 HT character tabulation (tab)

 U+000A LF line feed

 U+000B VT line tabulation (vertical tab)

 U+000C FF form feed

 U+000D CR carriage return

 U+001C FS information separator four

 U+001D GS information separator three

 U+001E RS information separator two

 U+001F US information separator one

 U+0085 NEL next line

 U+0089 HTJ character tabulation with justification

28

The control codes in Table 23-1 have the Bidi_Class property values of S or B, rather than the

default of BN used for other control codes. (See Unicode Standard Annex #9, “Unicode

Bidirectional Algorithm.”) In particular, U+001C..U+001E and U+001F have the Bidi_Class

property values B and S, respectively, so that the Bidirectional Algorithm recognizes their

separator semantics.

The control codes U+0009..U+000D and U+0085 have the White_Space property. They also

have line breaking property values that differ from the default CM value for other control

codes. (See Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”)

[Line break properties for U+001C..U+001F: Though these characters are basically obsolete,

they do have “special” bidi properties. They should have line break properties consistent with

the bidi properties. HTJ should have bidi and line break properties consistent with HT.]

U+0000 null may be used as a Unicode string terminator, as in C, C++ and several other

programming languages. Such usage is outside the scope of the Unicode Standard, which does

not require any particular formal programming language representation of a string or any

particular usage of null.

Newline Function. In particular, one or more of the control codes U+000A line feed,

U+000D carriage return, and the Unicode equivalent of the ISO/IEC 6429 next line (often

used in EBCDIC based encodings) can encode a newline function. A newline function can act

like a line separator or a paragraph separator, depending on the application. See Section

23.2, Layout Controls, for information on how to interpret a line or paragraph separator. The

exact encoding of a newline function depends on the application domain. For information on

how to identify a newline function, see Section 5.8, Newline Guidelines. Also U+000B (line

tabulation) and U+000C (form feed) can encode new line functions, similar to that of line

separator.

Proposed, LineBreak.txt, change to have:
001C..001E;BK # Cc [3] <control-001E>..<control-001F> [cmp. bidi B]

001F;BA # Cc <control-001F> [cmp. bidi S]

0084;LF # Cc <control-0084> [xterm still interprets this character]

0089;BA # Cc <control-0089> [this is a character tabulation variant]

Proposed, UnicodeData.txt, change to have:

000C;<control>;Cc;0;S;;;;;N;FORM FEED (FF);;;;

0084;<control>;Cc;0;S;;;;;N;;;;; [xterm still interprets this character]

0089;<control>;Cc;0;S;;;;;N;CHARACTER TABULATION WITH JUSTIFICATION;;;;

Proposed text changes for ISO/IEC 10646
Section 12 correctly states:

“Code extension control functions for the ISO/IEC 2022 code extension techniques (such as
designation escape sequences, single shift, and locking shift) shall not be used with this coded
character set.”

29

However, section 13.4 incorrectly contradicts that for control characters, harking back to ISO 2022

codepage switching which must not be used with the ISO/IEC 10646 encodings:

“13.4 Identification of control function set

When the escape sequences from ISO/IEC 2022 are used, the identification of each set of control functions (see
Clause 12) of ISO/IEC 6429 to be used in conjunction with ISO/IEC 10646 shall be an identifier sequence of the
type shown below.

 ESC 02/01 04/00 identifies the full C0 set of ISO/IEC 6429
 ESC 02/02 04/03 identifies the full C1 set of ISO/IEC 6429

For other C0 or C1 sets, the final octet F shall be obtained from the International Register of Coded Character
Sets. The identifier sequences for these sets shall be

 ESC 02/01 F identifies a C0 set
 ESC 02/02 F identifies a C1 set

If such an escape sequence appears within a code unit sequence conforming to ISO/IEC 2022, it shall consist
only of the sequences of bit combinations as shown above.

If such an escape sequence appears within a code unit sequence conforming to this document, it shall be padded

in accordance with Clause 12.”

That text needs to be replaced. This leftover from before the synchronization with Unicode has

made some think that the “shall not be used with this coded character set” from section 12 does

not apply to the C0/C1 areas, which of course it does. Indeed, C0/C1 need be fixed to that of ISO/IEC

6429, by reference to that standard.

Proposed replacement:

13.4 Control function set

The control codes in C0 shall be as defined in ISO/IEC 6429.

The control codes in C1 [shall| should] be as defined in ISO/IEC 6429. The escape sequences designating control
codes in C1 shall be referring to C1 control codes as defined in ISO/IEC 6429.

[only needed for the “should” option in the previous paragraph: If the control codes in C1 deviate from ISO/IEC
6429, that shall be clearly documented and such encodings shall not use any of the designations UTF-8, UTF-
16BE, UTF-16LE, UTF-32BE or UTF-32LE, and the characters shall be single function control characters without
any graphic component.]

As mentioned in section 12: Code extension control functions for the ISO/IEC 2022 code extension techniques
(such as designation escape sequences) shall not be used with this coded character set.

There may be some other changes needed as well.

Conclusions
That ISO/IEC and Unicode has not stabilised the C0 and C1 areas, but left them as totally user-defined

(a.k.a. private use) is a major standardisation failure. Fortunately, it has gone largely unnoticed (for

30 years!), and just about everyone assume that C0 and C1 are the ECMA-48 (ISO/IEC 6429) ones,

and nothing else. Even if most handling of character strings ignores most of ISO/IEC 6429, it is always

assumed that HT, VT, FF LF, CR and sometimes NEL are always exist and are at their ECMA-48

positions.

This standardisation flaw is especially embarrassing for Unicode and 10646 due to the high emphasis

on stability that these standards feature. Even more embarrassing is the pre-synchronisation leftover

in ISO/IEC 10646 that (contradicting a strong requirement not to use it) “sort of” allows for ISO/IEC

2022 style of swapping out C0 or C1 to something else. And Unicode only says “may use ISO/IEC

6429”, which is as far from a requirement to use it one can get, without saying “must not”.

30

Unfortunately, now, this catastrophic flaw has been brought forward in both character proposals as

well as in the general forum, and people are explicitly asking to “use” this major catastrophic flaw.

This is something, I wager, all existing software dealing with Unicode characters and encoding are

totally unprepared for. Few standards and semistandards make provisions that the C0/C1 of ECMA-

48 are used, and no other. And no software makes provisions for any kind of changeability of C0/C1

in any way whatsoever. So allowing C0/C1 to effectively be all private-use (in addition to the explicit

private use control codes) is a major disaster for these two standards.

Fortunately, it is easy to get out this problem. Stabilize the C0/C1 areas to be the ECMA-48 (ISO/IEC

6429) ones. That is what (almost) everyone has assumed anyway. That requires a few text changes to

both standards, and a proposal to some of those changes are give above. This does not mean that

implementations need support more of ECMA-48 than they do already. But it also means that

implementations do not need to prepare for, or be able to explicitly reject, other C0/C1 definitions.

The latter capabilities are basically required as the standards are written today. And no-one should

do such changes to their implementations, not even a little bit.

But what about character sets that do have other control codes (not counting the ones that just do

restrictions, which in themselves are catastrophic enough, or minor movements of control codes)?

Most of these “other” control codes can easily be mapped to ECMA-48 control codes or control

sequences. Some need to use an extension or two, or even, when appropriate, use private use

control sequences. Example mappings are given above, for Teletext, EBCDIC, PETSCII, ATASCII, ISCII

styling as well as bibliographic sorting control codes.

We have given detailed motivation for why the “looseness” w.r.t. C0/C1, basically making them

private-use areas is a really bad idea, standardswise. We have also given, in fair detail, mappings of

“odd” control code sets to ECMA-48 (ISO/IEC 6429), showing that “odd” controls in existing character

sets can be mapped to either 1) existing control codes or control sequences in ECMA-48, or 2) control

sequences that can be extensions to existing functionality in ECMA-48, or (less common) use private

use control sequences or even (all private use) control strings as defined in ECMA-48.

Thus, there is no need to ever define any more control codes in Unicode/10646, except possibly for

very script specific ones.

Unicode and 10646 need to stabilise the C0 and C1 areas, so that they are never perceived as private-

use areas, and indeed have (or at least should have for C1) a stable semantics. Something that is

assumed in all modern software that deal with characters and character strings. This stabilisation

should have been done from start, butt better late than never. But this is a stability that has been

generally assumed (at least for C0) anyway, so formally stabilising is not a breaking change. It just

reaffirms what has already been generally assumed.

On the other hand, not stabilising C0/C1, but instead openly “admit” that C0/C1 are private-use areas

(by whatever name) is highly destructive and breaks absolutely all modern software that does

anything with characters. and likely breaks a lot of standards and semistandards as well (for

programming languages, data structure languages, and more), since few have explicit guards saying

that C0 (and C1) must be the ECMA-48 ones. So, no action on this issue is a non-option. A highly

destructive non-option.
